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Abstract

This paper presents three systems that are fully implemented and a proposal for a fourth
one. KASIMIR is a knowledge based-system using an ad hoc formalism similar to a simple
description logic with concrete domains which is used for representing decision protocols
in oncology. FUZZY-KASIMIR is an extension of KASIMIR with fuzzy concrete domains
taking into account discontinuities in the decision that are due to numerical thresholds. An-
other extension of KASIMIR has led to embed it into a semantic portal for oncology, which
has been motivated by the need to share knowledge for geographically distributed physi-
cians and has led to change the ad hoc formalism to the standard OWL DL. A combination
of these two extensions of KASIMIR is currently under implementation and will lead to a
semantic portal for oncology with fuzzy datatypes.

Key words: fuzzy description logics, semantic portal for oncology, OWL DL, fuzzy
datatypes

1 Introduction

The KASIMIR project studies knowledge management and decision support in on-
cology [4]. It has led to the implementation of the KASIMIR system in which vari-
ous medical decision protocols have been represented. The most complex protocol
represented so far in the KASIMIR system is the one for breast cancer treatment.
Besides protocol representation, tools for edition, visualization and maintenance of
the knowledge contained in protocols have been implemented in the KASIMIR sys-
tem [3]. KASIMIR uses an ad hoc representation formalism close to object-based
representation formalisms (OBRFs [17]) and to description logics (DLs [1]).

Two further versions of KASIMIR have been realized in parallel. The first one is
FUZZY-KASIMIR: a fuzzy extension of the formalism and the inferences of KA-
SIMIR, that can be considered as a fuzzy DL. The second one relies on semantic
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Web principles and technologies. KASIMIR is embedded into a semantic portal,
dedicated to the diffusion of knowledge and services for oncology. Particularly,
protocols are now represented and shared thanks to the OWL DL formalism, and
decision support relies on standard DL reasoning within this language.

Section 2 shows how medical decision protocols are expressed in KASIMIR and
why this classical representation may be insufficient because of a threshold prob-
lem in concrete domains. Section 3 presents the FUZZY-KASIMIR system, that has
been implemented in order to solve this problem. The current semantic portal for
oncology has been developed using the OWL DL formalism which does not inte-
grate fuzzy notions; section 4 describes the main features of this portal and explains
how it is planned to be extended in order to have a semantic portal for fuzzy de-
cision protocols in oncology. Section 5 discusses our approach and compares it to
related work, in particular to fuzzy DLs and similar formalisms; it discusses also
how fuzziness can be introduced in OWL DL, taking into account the semantic
Web origin of this formalism.

2 Decision Protocol Representation in KASIMIR

KASIMIR uses an ad hoc formalism for representing decision protocols, that is
inspired by OBRFs and DLs, but for the sake of simplicity, the syntax of the
ALC(D) formalism [1] is used in this section.

Context: case of a woman with N = −, HR = + and tumor grade = 1:

age< 70?
yes

xxppppp no
&&

LLLL

tumor size < 1 cm?
yes

xxrr
rr

r no
&&

NNNNN

�



�
	no chemotherapy

�



�
	no chemotherapy tumor size ≤ 2 cm?

yes

xxppppp no
&&

LL
LL

L

�



�
	tamoxifen age< 40?

yes
xxrrrr no

((QQQQQ

�



�
	chemotherapy

�



�
	chemotherapy and tamoxifen

Fig. 1. A protocol represented by a decision tree (extracted and adapted from the decision
protocol of breast cancer treatment described in www.oncolor.org/).

Let us consider the protocol of figure 1. It has been represented by the knowl-
edge base of figure 2. The Ci’s are concepts representing sets of individuals. For
instance, C0 represents the women of figure 1’s context and C1 represents, among
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[A0] C0 ≡ ∃sex.female u ∃N.false u ∃RH.true u ∃tumor.∃grade. =1

[A1] C1 ≡ C0 u ∃age. <70

[A2] C2 ≡ C0 u ∃age. ≥70

[A3] C3 ≡ C1 u ∃tumor.∃size.<1.0

[A4] C4 ≡ C1 u ∃tumor.∃size.≥1.0

[A5] C5 ≡ C4 u ∃tumor.∃size.≤2.0

[A6] C6 ≡ C4 u ∃tumor.∃size.>2.0

[A7] C7 ≡ C6 u ∃age.<40

[A8] C8 ≡ C6 u ∃age.≥40

[A9] C2 v ∃reco.no-chemo

[A10] C3 v ∃reco.no-chemo

[A11] C5 v ∃reco.tamoxifen

[A12] C7 v ∃reco.chemotherapy

[A13] C8 v ∃reco.chemo+tam

Fig. 2. A knowledge base representing the protocol of figure 1.

these women, the ones whose age is lower than 70. The axioms [A0] to [A8] define
the concepts of patients C0 to C8 by necessary and sufficient conditions. The axioms
[A9] to [A13] relate the concepts of patients to concepts of treatments: an axiom
Pat v ∃reco.Ttt means that for each patient of the set of individuals represented
by Pat, there is a recommended treatment in the set of treatments represented by
Ttt. For example, [A11] means that for the women represented by the class C5, a
treatment by tamoxifen (a hormonotherapy drug) is recommended by the protocol.
Let KB be a knowledge base: KB is a set of axioms.

A concept C represents a set and a role r represents a binary relation. An interpre-
tation I is a pair (∆I , ·I) where ∆I is a non-empty set and ·I maps a concept C
(resp., a role r) to a subset CI of ∆I (resp., to a subset rI of ∆I × ∆I). A concept
is either atomic (a concept name) or defined by an expression. Given two concepts
C and D and a role r, C u D (conjunction) and ∃r.C (role restriction) are two new
concepts such that, for every interpretation I, (C u D)I = CI ∩ DI and (∃r.C)I is
the set of the x ∈ ∆I for which exists y ∈ CI with (x, y) ∈ rI . The third KASIMIR

constructor is concrete feature restriction and is based on concrete domains.

The definitions below are inspired from [15]. A concrete domain D is a pair
(∆D, ΦD) where ∆D is a set and ΦD is a set of predicate names on ∆D. In the
following, only unary predicates are considered, i.e., ϕ ∈ ΦD is interpreted as a
subset of ∆D denoted by ϕD. Two concrete domains are represented in KASIMIR:
R = (∆R, ΦR) and Z = (∆Z, ΦZ).

∆R = IR is the set of real numbers and ΦR is the set of the predicate names >R, ⊥R

and Px where P ∈ {<,≤,≥, >} and x ∈ ∆R. >R is a name for ∆R and ⊥R, a name
for ∅: >R

R = ∆R, ⊥R
R = ∅. Px represents the set P R

x of t ∈ ∆R such that t P x. For
example, >R

1.=]1.; +∞[. More generally, P R
x is an interval with one infinite bound.

∆Z = ZZ is the set of integers and ΦZ is the set of the predicate names >Z, ⊥Z and
Px where P ∈ {<,≤,≥, >} and x ∈ ∆R. The interpretation of these predicates
are >Z

Z = ∆Z, ⊥R
R = ∅ and P Z

x = {n ∈ ∆Z | n P x} (e.g., ≥Z
3= {3, 4, 5, . . .}).
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Both R and Z are admissible, that is, for D ∈ {R, Z}: (1) ΦD is closed under nega-
tion 1 and contains a name >D for ∆D; (2) the satisfiability of any conjunction of
predicates from ΦD is decidable.

Let D = (∆D, ΦD) be a concrete domain, ϕ ∈ ΦD and g be a D-concrete feature,
i.e., a name interpreted by a mapping gI from ∆I to ∆D. The concept defined
by ∃g.ϕ represents the set of individuals x ∈ ∆I such that gI(x) ∈ ϕD. For ex-
ample, if age is a Z-concrete feature, size is a R-concrete feature and tumour

is a role, then ∃age.>70 represents the set of individuals older than seventy and
∃tumour.∃size.≤2. represents the set of individuals whose tumor size s is such
that s ≤ 2 cm.

Concepts of the form ∃g. =x are also used in the examples of this paper (for ex-
ample, ∃grade. =1 in the figure 2). In fact, it is not built on other predicate names,
but it is the abbreviation of ∃g.≥x u ∃g.≤x.

Let I = (∆I , ·
I), an interpretation. I satisfies an axiom C ≡ D if CI = DI . I

satisfies an axiom C v D if CI ⊆ DI . A model of KB is an interpretation satisfying
all its axioms.

The main inferences implemented in KASIMIR are the subsumption test and the
classification. Given two concepts C and D, C is subsumed by D –denoted by C v D–
if, for every model I of the knowledge base, CI ⊆ DI . Given a knowledge base KB
and a concept C, classification highlights the subsumers of C, i.e., the concepts D of
KB such that C v D.

For example, let us consider the knowledge base of figure 2 and a 39 year old
woman with N = −, HR = +, a tumor grade of 1 and a tumor size of 3 cm. This
medical case can be modeled by a concept MC (there is no mechanism for managing
instances in KASIMIR):

MC = C0 u ∃age. =39 u ∃tumour.∃size. =3.

The classification points out the concepts more general than MC in the knowl-
edge base. Among them, there is the concept ∃reco.chemotherapy (cf. axioms
[A0, 1, 4, 6, 7 and 12]). Thus, a chemotherapy is proposed for this patient.

Now, it can be remarked that the age 39 is close to the decision threshold 40 of
the protocol. This raises a problem if the choice of this threshold is not assumed
to be very accurate or if other factors, not expressed in the protocol, can be taken
into account (e.g., another health problem). Indeed, if the woman was just one year
older, this would lead to a different proposition of treatment (chemo+tam, cf. ax-
ioms [A0, 1, 4, 6, 8 and 13]). Therefore, it seems reasonable that the KASIMIR sys-
tem proposes both treatments chemotherapy and chemo+tam (the latter is a treat-

1 I.e., for each ϕ ∈ ΦD, exists ψ ∈ ΦD such that ψD = ∆D\ϕ
D.
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ment with a cure of chemotherapy and a cure of tamoxifen). The KASIMIR user, a
physician, can use these propositions to build his/her own proposition that can be
a choice between them or a combination of them (it may be the same chemother-
apy and another hormonotherapy, with a lower dose of tamoxifen). To implement
this mechanism, (classical) thresholds have been replaced by fuzzy thresholds; the
extension of KASIMIR for managing them is presented in the next section.

3 FUZZY-KASIMIR: Formalism and Inferences

This section presents how fuzziness is introduced into the formalism of KASIMIR.
First, some notions about fuzzy sets are reminded (for more information about
fuzzy sets, see [7]).

Given a set X , called the universe, a fuzzy subset of X is a function A : x ∈ X 7→
A(x) ∈ [0; 1] (for the sake of simplicity, a fuzzy set and its membership function
are not distinguished). Let A and B be two fuzzy subsets of X . A is a subset of
B –denoted by A ⊆ B– if, for every x ∈ X , A(x) ≤ B(x). A ∩ B is the fuzzy
subset of X such that (A∩B)(x) = min(A(x), B(x)), for x ∈ X . Fuzzy logics are
extensions of classical logic such that the truth values are elements of [0; 1] (0 stands
for “false” and 1, for “true”) and such that the logical connectors are extended on
[0; 1]. We use in the following the Zadeh fuzzy logic for which, in particular, ∧ is
fuzzified in min, ∨ in max and ¬ in n : x 7→ 1 − x. The implication ⇒ can be
fuzzified in different ways by a function F⇒ : (x, y) ∈ [0; 1]2 7→ F⇒(x, y). In the
following, the Łukasiewicz implication defined by F⇒(x, y) = min(1, 1 − x + y)
is used (we could also have chosen the Gödel implication as in [5]). Based on F⇒,
the gradual inclusion between two fuzzy subsets A and B of X can be defined by
F⊆(A, B) = infx∈X F⇒(A(x), B(x)). Note that F⊆(A, B) = 1 iff A ⊆ B. Given a
fuzzy subset A of X and α ∈]0; 1], Aα, the α-cut of A, is a classical set such that
x ∈ Aα iff A(x) ≥ α. If α = 1, Aα is called the core of A. The support of A is
{x ∈ X | A(x) > 0}.

The formalism of FUZZY-KASIMIR extends the one of KASIMIR by the addition
of new predicate names in the concrete domains D ∈ {R, Z}. Such a new predicate
name ϕ is interpreted as a fuzzy unary predicate ϕD, i.e., as a fuzzy subset of ∆D.

The new predicate names of the concrete domain R are ≤a±b and ≥a±b where a, b ∈
∆R and b > 0. They are interpreted by:

for x ∈ ∆R, ≤R
a±b (x) =



















1 if x ≤ a − b
a + b − x

2b if x ∈ [a − b; a + b]

0 if x ≥ a + b

≥R
a±b (x) = n

(

≤R
a±b (x)

)

= 1− ≤R
a±b (x)
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The new predicate names of Z are ≤a±b and ≥a±b with a, b ∈ ∆Z and b > 0. The
interpretations of these predicate names are the same as for the concrete domain R,
except that the universe is ∆Z.

R and Z remain admissible with the addition of these new predicate names, if the
conjunction and negation used in the definition of admissibility are min and n.

The semantics of a FUZZY-KASIMIR concept C is, for an interpretation I, a fuzzy
subset CI of ∆I . Given two concepts C and D, a role r, a concrete domain D =
(∆D, ΦD), a D-concrete feature g and ϕ ∈ ΦD, ·I maps the concept C u D into the
fuzzy set CI ∩ DI , the concept ∃r.C into the fuzzy set

(∃r.C)I : x ∈ ∆I 7→ sup
x∈∆I

min
(

rI(x, y), CI(y)
)

∈ [0; 1]

and the concept ∃g.ϕ into the fuzzy set

(∃g.C)I : x ∈ ∆I 7→ ϕD

(

gI(x)
)

∈ [0; 1]

The subsumption between concepts of FUZZY-KASIMIR can be defined as in KA-
SIMIR: C v D if for every model of KB, CI ⊆ DI , the only difference is that here,
⊆ stands for inclusion between fuzzy sets. Therefore, the hierarchical classification
can be still applied. Another inference implemented in FUZZY-KASIMIR is the
degree of subsumption between two concepts C and D:

Fv(C, D) = inf{F⊆(CI , DI) | I: model of KB}

It must be noticed that Fv(C, D) = 1 iff C v D. The fuzzy hierarchical classification
highlights the concepts D of KB such that Fv(C, D) > 0. An algorithm for fuzzy
hierarchical classification is presented in [14].

For instance, let KB be the knowledge base obtained by substituting in the knowl-
edge base of figure 2, the axioms [A6], [A7] and [A8], respectively by

[A6’] C6 ≡ C4 u ∃tumor.∃size.≥2.±1.

[A7’] C7 ≡ C6 u ∃age.≤40±5

[A8’] C8 ≡ C6 u ∃age.≥40±5

Let us now consider the example of section 2 with the new knowledge base. First,
it can be noticed that MC is not subsumed with a degree 1 by any concept related
to a treatment by an axiom. By contrast, it is subsumed with degrees of ]0; 1[ by
∃reco.chemotherapy and ∃reco.chemo+tam, with the respective degrees 0.6 and
0.4 (cf. axioms [A0, 1, 4, 6, 7’ and 12] and axioms [A0, 1, 4, 6, 8’ and 13]).

Therefore, the system recommends the two treatments chemotherapy and
chemo+tam, with a preference for the former. Thus, the physician using FUZZY-
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KASIMIR decides either one of these treatments, or a combination of them (e.g.,
with a compromise in the doses of the chemotherapy and hormonotherapy drugs).

4 Towards a Semantic Portal for Oncology based on Fuzzy Datatypes

One purpose of the KASIMIR project is the diffusion of standard knowledge in
oncology, in order to improve health-care practice. KASIMIR has to provide a di-
rect, updated and intelligent access to the current knowledge, for geographically
distributed users. This leads to standardization and distribution requirements for
both knowledge and software components within KASIMIR. For this reason, the
KASIMIR system is currently embedded into a semantic portal for oncology. This
semantic portal is a Web server used to supply and share knowledge and intelli-
gent services for oncology, thanks to semantic Web principles and technologies. In
particular, medical decision protocols are represented within the OWL DL formal-
ism and supplied services are based on standard DL reasoning with this formalism.
Note that this leads to an improved expressivity with respect to the ad hoc KASIMIR

formalism, and that it allows KASIMIR to take advantage of the other knowledge
sources and tools available on the semantic Web.

In the following, we focus on the representation of medical decision protocols
within the OWL DL formalism, and particularly on the currently debated subject of
concrete domain representation (section 4.1). As explained in the previous section,
representation of decision protocols leads us to introduce fuzziness in the repre-
sentation formalism. Then, on the basis of lessons learnt from the development of
FUZZY-KASIMIR, section 4.2 discusses the introduction of fuzzy datatypes into
OWL DL.

4.1 Protocol Representation in the Current Semantic Portal

The semantic portal has been developed within an architecture based on Web ser-
vices dedicated to OWL reasoning. The KASIMIR user interface, used to associate a
treatment to a patient description, has been replaced by a more general instance ed-
itor called EDHIBOU that uses these Web services. The principles of the translation
of KASIMIR knowledge bases in OWL DL is presented hereafter.

The KASIMIR ad hoc syntax is closer to object-based representation formalisms
than to DLs. A first work was to translated in the DL syntax of ALC(D). This part
of this translation is not detailed here: KASIMIR has already been described in the
DL syntax in the previous sections.

The representation of concrete domains in OWL is based on XML Schema datatypes.
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A datatype corresponds to a (possibly infinite) set of values that are addressed
through literals. A literal is a string that is interpreted as a value of a datatype. For
example, "40"^^xsd:integer is a literal representing the integer 40, xsd:integer
being the XML Schema datatype for integers. There are two disjoint types of
properties in OWL: object properties, that relate instances to other instances, and
datatype properties, that relate instances to literals. Object properties correspond
to roles and datatype properties to concrete features in classical DLs. Now, some
concept constructors can use datatype properties and datatypes to build complex
concepts. For example, the concept ∃age.integer, where age is a datatype prop-
erty, corresponds to ∃age.>Z in the previous KASIMIR representation. In the XML
syntax of OWL, ∃age.integer can be written:

<owl:Restriction>

<owl:onProperty rdf:resource="#age"/>

<owl:someValuesFrom rdf:resource=

"http://www.w3.org/2001/XMLSchema#integer"/>

</owl:Restriction>

XML Schema provides mechanisms to build user defined datatypes like derived
simple types. In particular, restrictions on existing datatypes can be used to ex-
press basic unary predicates like the ones that are used for protocol representa-
tion in KASIMIR. For example, ∃age.<40 in KASIMIR is expressed in OWL by
∃age.integerUnder40, with integerUnder40 the derived type of the integers
n < 40, defined by:

<xsd:simpleType name="integerUnder40">

<xsd:restriction base="integer">

<xsd:maxExclusive value="40"/>

</xsd:retriction>

</xsd:simpleType>

Then, subsumption between concepts is performed thanks to the subtype test
between XML Schema datatypes. For example, if integerBetween20and30

is a subtype of integerUnder40, then ∃age.integerBetween20and30 v
∃age.integerUnder40.

The problem is that derived types are not supported in the current OWL DL rec-
ommendation and that protocol representation for the KASIMIR portal uses it in
a non-standard way. Actually, only built-in datatypes (xsd:integer, xsd:float
etc.) are taken into account, but current studies like OWL-E [18] aims at extend-
ing these recommendations for expressive datatype expressions. Thus, there is a
reasonable hope that a future recommendation extending OWL DL will include
user-defined or derived datatypes.
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4.2 The Future Semantic Portal, with Fuzzy Datatypes

An important preliminary remark must be done about OWL reasoning with datatypes.
Datatype properties and object properties are disjoint in OWL, thus a reasoner on
OWL can be composed of two distinct parts:

• The concept reasoner deals with concepts and, whenever it meets a datatype,
calls the datatype reasoner.

• The datatype reasoner deals with datatypes and provides services (such as the
subtype test) independently from the concepts of the DL.

This principle can be used to implement in a straightforward way two inferences
on OWL with fuzzy datatypes: the subsumption (v) and the α-subsumption (vα).
The implementation of the degree of subsumption (Fv) is more complex and will
be discussed.

Remark: Many current DL reasoners use the method of semantic tableau to com-
pute the subsumption test. In fact, the test computed by this method is the satisfi-
ability of a concept and it calls the test of consistency of a datatype implemented
in the datatype reasoner [19]. However, subsumption test between concepts (resp.,
subtype test between datatypes) can be computed thanks to concept satisfiability
(resp., datatype consistency). Thus, in the following, only the subsumption test be-
tween concepts and the subtype test between datatypes are considered.

4.2.1 Fuzzy datatypes

A (classical) datatype represents a set of values. For example, the datatype
integerUnder40 represents the set {39, 38, 37, . . .}, i.e. <Z

40 with the notation of
section 2. We introduce the notion of fuzzy datatype, which represents a fuzzy set
of values. For example, let integerUnder40±5 be the fuzzy datatype representing
the fuzzy set ≤Z

40±5, with the notation of section 3. More generally, it is assumed
that a syntax is defined to introduce some fuzzy datatypes, in particular, the fuzzy
datatypes integerUndera±b and integerAbovea±b (a, b ∈ ∆Z, b > 0), repre-
senting respectively the fuzzy sets ≤Z

a±b and ≥Z
a±b. For example, we can imagine

that a definition of the fuzzy datatype integerUnder40±5 could be something
like:

<xsd:simpleType name="integerUnder40pm5">

<xsd:restriction base="integer">

<xsd:maxInclusive value="40" plusOrMinus="5"/>

</xsd:retriction>

</xsd:simpleType>
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Another possibility is to follow the idea presented in [5] and to define this fuzzy
datatype by two classical datatypes: integerUnderEq35 representing the core of
≤Z

40±5 and integerUnder45 representing its support. Then the definition of integerUnder40±5

could be:

<fxsd:fuzzyType name="integerUnder40pm5">

<fxsd:core value="integerUnderEq35"/>

<fxsd:support value="integerUnder45"/>

</fxsd:fuzzyType>

where fxsd would refer to a new namespace for fuzzy XML Schema datatype
definitions.

Let fd1 and fd2 be two fuzzy datatypes and A1 and A2, the corresponding fuzzy
sets. Let F4(fd1, fd2) = F⊆(A1, A2), the so-called subtype degree of fd1 in fd2.
For example:

F4(integerUnder40±5, integerUnder42±8) = 0.935

For α ∈]0; 1], let 4α be the crisp relation between fuzzy datatypes defined by
fd1 4α fd2 if F4(fd1, fd2) ≥ α. We call 4α the α-subtype relation (it is the α-cut
of F4). Finally, let 4 be the so-called subtype relation between fuzzy datatypes, i.e.,
fd1 4 fd2 if F4(fd1, fd2) = 1 (in other words, 4=41). 4 verifies fd1 4 fd2 iff
A1 ⊆ A2. It is assumed that, for the fuzzy datatypes that are introduced, F4 (and
thus 4α and 4) is computable. If the only fuzzy datatypes introduced are of the
forms integerUndera±b and integerAbovea±b, this property of computability
holds. 2

The crisp and fuzzy relations 4, 4α and F4 between fuzzy datatypes are used in
the following to compute the relations v, vα and Fv between concepts.

4.2.2 Subsumption between concepts with fuzzy datatypes (v)

Let C and D be two concepts described in OWL DL, possibly using fuzzy datatypes.
As mentioned above, the concept reasoner used to compute the test C v D uses the
services of the datatype reasoner, in particular the subtype test. Thus, to compute
the subsumption test, it is not necessary to modify the concept reasoner, but only
the datatype reasoner, so that it can take into account fuzzy datatypes and the com-
putation of 4.

2 Indeed, in order to compute F4(fd1, fd2) = infx F⇒(A1(x), A2(x)), it is sufficient to
compute this for x ∈ {a1 − b1, a1 + b1, a2 − b2, a2 + b2}, for fdi = integerUnderai±bi
or fdi = integerAboveai±bi, i ∈ {1, 2}.
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Let us consider these two examples:

∃age.integerUnder40±5 v ∃age.integerUnder50±10

∃age.integerUnder40±5 6v ∃age.integerUnder42±8

To compute these tests, the concept reasoner calls the datatype reasoner with the
queries:

integerUnder40±5 4 integerUnder50±10? (answer: yes)
integerUnder40±5 4 integerUnder42±8? (answer: no )

4.2.3 α-subsumption between concepts with fuzzy datatypes (vα)

PSfrag replacements

α

query

answer
OWL DL reasoner for vα

concept reasoner

fuzzy datatype reasoner

fd1 subtype of fd2? fd1 4α fd2

C vα D?

C v D? yes/no
yes/no

Fig. 3. Architecture of an OWL DL reasoner supporting the vα inference.

Let α ∈ [0; 1] and vα be the binary relation between concepts defined by C vα D if
Fv(C, D) ≥ α. As it was the case for v, the test C1 vα C2 can be computed without
modifying the concept reasoner. The principle of the implementation of vα, as it is
planned, is illustrated by the figure 3. Let us assume that a query C vα D is sent to
the service for the α-subsumption. This service gives the parameter α to the fuzzy
datatype reasoner, so that, each time a subtype test is requested for a pair (fd1, fd2)
of fuzzy datatypes, it computes fd1 4α fd2. Therefore, the computation of the test
C vα D amounts to the computation by the concept reasoner of C v D, which calls
the fuzzy datatype reasoner parameterized by the value α.

This service should give the following results on these examples:

∃age.integerUnder40±5 vα ∃age.integerUnder50±10 for any α[0; 1]

∃age.integerUnder40±5 vα ∃age.integerUnder42±8 iff α ≤ 0.935
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Remark: For this computation it is assumed that the concept reasoner does not
store the results of previous subsumption tests for future reuse, or that this storage
can be reseted. Indeed, if the result of any subsumption test is stored, then, after
a test C vα D has been performed with a positive answer, any test C vβ , with the
same concepts C and D, will reuse this answer!

4.2.4 Degree of subsumption between concepts with fuzzy datatypes (Fv)

What makes possible the implementation of v and vα without modifying the con-
cept reasoner is that the result of these tests are binary. Now, a service implementing
Fv would return a fuzzy truth value, thus using the output of the classical concept
reasoner as the output of this service is not possible. However, it is possible to reuse
–without changing it– the concept reasoner in order to implement Fv. The principle
is as follows. Let us assume that the α-subsumption has been implemented accord-
ing to the architecture of figure 3. The computation of Fv(C, D) is based on the
following equation:

Fv(C, D) = max{α ∈ [0; 1] | C vα D} (1)

Thus, to compute Fv(C, D), it is sufficient to find this maximum value of α. This
search can be done by dichotomy, given ε the precision of the required result (i.e.,
|Fv(C, D) − α| ≤ ε, where α is the value that is computed by this search):

1. Let a = 0, b = 1 and α = 1

2
.

2. While b − a > ε do
2.i If C vα D (cf. section 4.2.3) then let a = α else let b = α.

2.ii Let α = a+b
2

.
3. Return α

This computation requires at most d− log2 εe queries C vα D (where dxe is the
lowest integer a such that x ≤ a).

This algorithm can be modified to provide an exact result if the set of the fuzzy
truth values explored is finite. This occurs if a finite scale of fuzzy truth values is
used, as suggested in [5].

An ongoing study aims at finding an exact value of Fv(C, D), even with the scale of
truth values [0; 1]. The principle would be, given the concepts C and D, to make the
fuzzy datatype reasoner generate a finite set of values FTV . Then, the dichotomy
can be performed in FTV , which would require at most 1 + dlog2 |FTV |e tests
C vα D. How this set can be efficiently generated is still an open question.
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Another way to implement Fv could be to modify the concept reasoner so that it
can manipulate fuzzy truth values, but designing and implementing a fuzzy concept
reasoner which is as optimized as current (classical) DL reasoners is a much more
complex task, from both theoretical and applied viewpoints. 3

5 Discussion and Related Work

The contribution of this paper is twofold. First, a description of a simple represen-
tation language similar to a fuzzy DL –the FUZZY-KASIMIR formalism– has been
described. Section 5.1 situates this language among the family of fuzzy DLs and
related formalisms. The second contribution is our proposal of a semantic portal
using the formalism OWL DL with fuzzy datatypes. OWL DL is not only a formal-
ism equivalent to an expressive DL, it is also a language that has been designed for
the semantic Web, which involves additional requirements. Section 5.2 shows how
our proposal fulfills these requirements.

5.1 Fuzzy DLs: how Fuzziness is Introduced into DLs

[26] [25] [16] [22] [23] [9] [24] [20] [11; 10] [13] [6] F-K

(FPCD) × × × × ×

(M) × × × ×

(FQ) ×

(FAX) × × × ×

(FA) × × × × × ×

Table 1
Fuzzy DLs and related work, according to the way fuzziness is introduced in the formalism
(F-K stands for FUZZY-KASIMIR) .

The fuzzy DLs we have met in the literature are built following the same general
principle: starting from a (classical) DL, such as ALC, additional features are added
to it in order to express fuzziness. In any case, the semantics consists in interpreting
a concept by a fuzzy set and a role by a fuzzy binary relation. By contrast, there
are different ways to introduce fuzziness into the DL formalism. To our knowledge,
there are five of these ways:

(FPCD) Fuzzy predicates in concrete domains,
(M) Modifiers of concepts,
(FQ) Fuzzy quantifiers,
(FAX) Fuzzy axioms and

3 For this purpose, Umberto Straccia has suggested to use techniques for mixed integer
programming [24].
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(FA) Fuzzy assertions.

The table 1 presents some fuzzy DLs and related formalisms, under the viewpoint
of these five fuzziness introduction types. The related formalisms are either DLs
taking into account some uncertainty (possibilistic logic [11; 10] or probabilis-
tic reasoning [13]), or object-based representation formalisms with fuzzy features
(like [6] and FUZZY-KASIMIR).

(FPCD) is the approach used in FUZZY-KASIMIR. Sub-categories of (FPCD) can
be defined by precising what are the concrete domains involved and what are the
families of fuzzy predicate names that are supported.

(M) is based on the constructors mC, where m is a modifier (also called a manipu-
lator or a hedge) and C is a concept. A modifier is a function m : [0; 1] → [0; 1]. For
example, the modifier very is often defined by very(t) = t2. Given an interpreta-
tion I, mC is interpreted by (mC)I(x) = m(CI(x)) for x ∈ ∆I . Different families
of modifiers give birth to different sub-categories of (M).

(FQ) consists in extending the classical quantifiers of DLs (∃ and ∀) with fuzzy
quantifiers. The language of the chosen fuzzy quantifiers characterizes the fuzzy
extension of the DL.

(FAX), contrasting with the previous ways of introducing fuzziness, does not con-
sist in defining new concept constructors, but it consists in associating to axioms
some pieces of informations about them, such as constraints on their fuzzy truth
values.

(FA) is based on the same idea as (FAX), except that it concerns assertions (i.e.,
specifications on particular instances) and not concepts.

Finally, as table 1 shows, combinations of the ways of introducing fuzziness into
DLs can be done.

5.2 Introduction of Fuzziness into OWL DL

OWL DL can be seen as an expressive DL designed to be the standard language
for representing ontologies in the semantic Web. It is a “semantic Web DL” which
involves some particular features that must be taken into account in the building of
a fuzzy extension for this formalism:

• OWL is standard. It has the status of a W3C recommendation.
• There exist open, stable and efficient systems that are actually used for reasoning

with OWL.
• OWL is divided into sub-languages (Lite, DL and Full) that differ in their level
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of complexity, and in the expected usage of the included constructors in practical
applications.

The syntax and the semantics of OWL are defined in a recommendation of the W3C
(World Wide Web Consortium) [2]. This means that it is a standard language and
so, that an OWL ontology must be considered in the same way, i.e. leads to the same
behavior, in different OWL implementations. Being a standard also constraints the
language to be stable in time: the extension of a standard technology has to be com-
patible with the extended technology (principle of backward compatibility). Con-
sidering a fuzzy extension of OWL, any ontology described in the classical OWL
formalism must also be an ontology in the fuzzy OWL formalism and so, must lead
to the same inferences in the two languages. This constraint is fulfilled by the fuzzy
extension proposed in this paper. Indeed, on the basis of XML Schema datatypes,
datatype definitions are extended for introducing fuzziness in our framework. Since
the OWL recommendation is not directly concerned with datatype definitions, the
actual syntax of the OWL formalism remains the same. Moreover, the semantics in-
troduced to take into account fuzzy datatypes in OWL DL is fully compatible with
ontologies made to be interpreted in a classical way, using the classical semantics.
For example, if C and D are two concepts of an ontology that does not use any fuzzy
datatype, then C is subsumed by D in the classical sense, iff C is subsumed by D in
the fuzzy sense.

Several systems have been developed for reasoning on SHOIN (D), the OWL DL
underlying description logic (e.g., FACT, PELLET and RACER [12; 21; 8]). Since
these systems are open, stable and efficient, the development of a reasoner for
OWL DL with fuzzy datatypes can benefit from reusing them. As said in sec-
tion 4.2, datatype reasoning and concept reasoning are two distinct parts of an
OWL DL reasoner. In this way, the reasoner for OWL DL with fuzzy datatypes
can be built on top of an existing concept reasoner without modifying it and so, can
have benefit of its efficiency.

Furthermore, this layered architecture comes in complement of the existing layers
of OWL (Lite, DL and Full), and fuzzy datatypes can be used in any sub-language
of OWL. Moreover, in the same way that the constructors included in OWL Lite
provide “a minimal useful subset of language features, that are relatively straight-
forward for tool developers to support” [2], using fuzzy datatypes seems to be a
simple and useful way of introducing fuzziness in OWL. Indeed, in our application
for oncology, this choice is motivated by requirements concerning the representa-
tion of medical decision protocols. In many other applications, the need to define
fuzzy knowledge elements also comes from thresholds on concrete data (most of-
ten numeric data). For this reason, the proposed extension of OWL with fuzzy
datatypes and the future associated reasoner, should provide a simple answer to the
need for fuzzy representation in many semantic Web applications.
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6 Conclusion

This paper presents three systems that are fully implemented (including user in-
terfaces), and a proposal for a fourth one. KASIMIR is a knowledge-based system
using an ad hoc formalism similar to a simple description logic with concrete do-
mains which is used for representing decision protocols in oncology. FUZZY-KA-
SIMIR is an extension of KASIMIR with fuzzy concrete domains taking into account
discontinuities in the decision that are due to numerical thresholds. Another exten-
sion of KASIMIR has led to embed it into a semantic portal for oncology, which
has been motivated by the need to share knowledge for geographically distributed
physicians and has led to change the ad hoc formalism to the standard OWL DL.
A combination of these two extensions of KASIMIR (FUZZY-KASIMIR and the se-
mantic portal for oncology) is currently under implementation and will lead to a
semantic portal for oncology with fuzzy datatypes. The implementation of this new
portal follows the principles of the semantic Web (in particular, backward compat-
ibility) and is based on the decomposition of an OWL DL reasoner into a concept
reasoner and a datatype reasoner. The inferences that are studied are the subsump-
tion, the α-subsumption and the degree of subsumption between OWL DL classes
with fuzzy datatypes.
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