179 research outputs found

    Arabic Query Expansion Using WordNet and Association Rules

    Get PDF
    Query expansion is the process of adding additional relevant terms to the original queries to improve the performance of information retrieval systems. However, previous studies showed that automatic query expansion using WordNet do not lead to an improvement in the performance. One of the main challenges of query expansion is the selection of appropriate terms. In this paper, we review this problem using Arabic WordNet and Association Rules within the context of Arabic Language. The results obtained confirmed that with an appropriate selection method, we are able to exploit Arabic WordNet to improve the retrieval performance. Our empirical results on a sub-corpus from the Xinhua collection showed that our automatic selection method has achieved a significant performance improvement in terms of MAP and recall and a better precision with the first top retrieved documents

    Semantic image retrieval using relevance feedback and transaction logs

    Get PDF
    Due to the recent improvements in digital photography and storage capacity, storing large amounts of images has been made possible, and efficient means to retrieve images matching a user’s query are needed. Content-based Image Retrieval (CBIR) systems automatically extract image contents based on image features, i.e. color, texture, and shape. Relevance feedback methods are applied to CBIR to integrate users’ perceptions and reduce the gap between high-level image semantics and low-level image features. The precision of a CBIR system in retrieving semantically rich (complex) images is improved in this dissertation work by making advancements in three areas of a CBIR system: input, process, and output. The input of the system includes a mechanism that provides the user with required tools to build and modify her query through feedbacks. Users behavioral in CBIR environments are studied, and a new feedback methodology is presented to efficiently capture users’ image perceptions. The process element includes image learning and retrieval algorithms. A Long-term image retrieval algorithm (LTL), which learns image semantics from prior search results available in the system’s transaction history, is developed using Factor Analysis. Another algorithm, a short-term learner (STL) that captures user’s image perceptions based on image features and user’s feedbacks in the on-going transaction, is developed based on Linear Discriminant Analysis. Then, a mechanism is introduced to integrate these two algorithms to one retrieval procedure. Finally, a retrieval strategy that includes learning and searching phases is defined for arranging images in the output of the system. The developed relevance feedback methodology proved to reduce the effect of human subjectivity in providing feedbacks for complex images. Retrieval algorithms were applied to images with different degrees of complexity. LTL is efficient in extracting the semantics of complex images that have a history in the system. STL is suitable for query and images that can be effectively represented by their image features. Therefore, the performance of the system in retrieving images with visual and conceptual complexities was improved when both algorithms were applied simultaneously. Finally, the strategy of retrieval phases demonstrated promising results when the query complexity increases

    A Belief-Based Approach to Measuring Message Acceptability

    Get PDF
    International audienceWe propose a formal framework to support belief revision based on a cognitive model of credibility and trust. In this framework, the acceptance of information coming from a source depends on (i) the agent's goals and beliefs about the source's goals, (ii) the credibility, for the agent, of incoming information, and (iii) the agent's beliefs about the context in which it operates. This makes it possible to approach belief revision in a setting where new incoming information is associated with an acceptance degree. In particular, such degree may be used as input weight for any possibilistic conditioning operator with uncertain input (i.e., weighted belief revision operator)

    A Knowledge Graph Based Approach to Social Science Surveys

    Get PDF
    Recent success of knowledge graphs has spurred interest in applying them in open science, such as on intelligent survey systems for scientists. However, efforts to understand the quality of candidate survey questions provided by these methods have been limited. Indeed, existing methods do not consider the type of on-the-fly content planning that is possible for face-to-face surveys and hence do not guarantee that selection of subsequent questions is based on response to previous questions in a survey. To address this limitation, we propose a dynamic and informative solution for an intelligent survey system that is based on knowledge graphs. To illustrate our proposal, we look into social science surveys, focusing on ordering the questions of a questionnaire component by their level of acceptance, along with conditional triggers that further customise participants' experience. Our main findings are: (i) evaluation of the proposed approach shows that the dynamic component can be beneficial in terms of lowering the number of questions asked per variable, thus allowing more informative data to be collected in a survey of equivalent length; and (ii) a primary advantage of the proposed approach is that it enables grouping of participants according to their responses, so that participants are not only served appropriate follow-up questions, but their responses to these questions may be analysed in the context of some initial categorisation. We believe that the proposed approach can easily be applied to other social science surveys based on grouping definitions in their contexts. The knowledge-graph-based intelligent survey approach proposed in our work allows online questionnaires to approach face-to-face interaction in their level of informativity and responsiveness, as well as duplicating certain advantages of interview-based data collection

    Statistical user model supported by R-Tree structure

    Get PDF
    This paper is about developing a group user model able to predict unknown features (attributes, preferences, or behaviors) of any interlocutor. Specifically, for systems where there are features that cannot be modeled by a domain expert within the human computer interaction. In such cases, statistical models are applied instead of stereotype user models. The time consumption of these models is high, and when a requisite of bounded response time is added most common solution involves summarizing knowledge. Summarization involves deleting knowledge from the knowledge base and probably losing accuracy in the medium-term. This proposal provides all the advantages of statistical user models and avoids knowledge loss by using an R-Tree structure and various search spaces (universes of users) of diverse granularity for solving inferences with enhanced success rates. Along with the formalization and evaluation of the approach, main advantages will be discussed, and a perspective for its future evolution is provided. In addition, this paper provides a framework to evaluate statistical user models and to enable performance comparison among different statistical user models.This proposal development belongs to the research projects Thuban (TIN2008-02711), MA2VICMR (S2009/TIC- 1542) and Cadooh (TSI-020302-2011-21), supported respectively by the Spanish Ministry of Education and the Spanish Ministry of Industry, Tourism and Commerce.Publicad

    Viewpoints on emergent semantics

    Get PDF
    Authors include:Philippe Cudr´e-Mauroux, and Karl Aberer (editors), Alia I. Abdelmoty, Tiziana Catarci, Ernesto Damiani, Arantxa Illaramendi, Robert Meersman, Erich J. Neuhold, Christine Parent, Kai-Uwe Sattler, Monica Scannapieco, Stefano Spaccapietra, Peter Spyns, and Guy De Tr´eWe introduce a novel view on how to deal with the problems of semantic interoperability in distributed systems. This view is based on the concept of emergent semantics, which sees both the representation of semantics and the discovery of the proper interpretation of symbols as the result of a self-organizing process performed by distributed agents exchanging symbols and having utilities dependent on the proper interpretation of the symbols. This is a complex systems perspective on the problem of dealing with semantics. We highlight some of the distinctive features of our vision and point out preliminary examples of its applicatio

    PPP - personalized plan-based presenter

    Get PDF

    Case-Based Reasoning on E-Community Knowledge

    Get PDF
    International audienceThis paper presents MKM, a meta-knowledge model to manage knowledge reliability, in order to extend a CBR system so that it can reason on partially reliable, non expert, knowledge from the Web. Knowledge reliability is considered from the point of view of the decision maker using the CBR system. It is captured by the MKM model including notions such as belief, trust, reputation and quality, as well as their relationships and rules to evaluate knowledge reliability. We detail both the model and the associated approach to extend CBR. Given a problem to solve for a specific user, reliability estimation is used to filter knowledge with high reliability as well as to rank the results produced by the CBR system, ensuring the quality of results
    • …
    corecore