577 research outputs found

    Subsumption in Finitely Valued Fuzzy EL

    Get PDF
    Aus der Einleitung: Description Logics (DLs) are a family of knowledge representation formalisms that are successfully applied in many application domains. They provide the logical foundation for the Direct Semantics of the standard web ontology language OWL2. The light-weight DL EL, underlying the OWL2 EL profile, is of particular interest since all common reasoning problems are polynomial in this logic, and it is used in many prominent biomedical ontologies like SNOMEDCT and the Gene Ontology

    Fuzzy Description Logics with General Concept Inclusions

    Get PDF
    Description logics (DLs) are used to represent knowledge of an application domain and provide standard reasoning services to infer consequences of this knowledge. However, classical DLs are not suited to represent vagueness in the description of the knowledge. We consider a combination of DLs and Fuzzy Logics to address this task. In particular, we consider the t-norm-based semantics for fuzzy DLs introduced by Hájek in 2005. Since then, many tableau algorithms have been developed for reasoning in fuzzy DLs. Another popular approach is to reduce fuzzy ontologies to classical ones and use existing highly optimized classical reasoners to deal with them. However, a systematic study of the computational complexity of the different reasoning problems is so far missing from the literature on fuzzy DLs. Recently, some of the developed tableau algorithms have been shown to be incorrect in the presence of general concept inclusion axioms (GCIs). In some fuzzy DLs, reasoning with GCIs has even turned out to be undecidable. This work provides a rigorous analysis of the boundary between decidable and undecidable reasoning problems in t-norm-based fuzzy DLs, in particular for GCIs. Existing undecidability proofs are extended to cover large classes of fuzzy DLs, and decidability is shown for most of the remaining logics considered here. Additionally, the computational complexity of reasoning in fuzzy DLs with semantics based on finite lattices is analyzed. For most decidability results, tight complexity bounds can be derived

    Foundations of Fuzzy Logic and Semantic Web Languages

    Get PDF
    This book is the first to combine coverage of fuzzy logic and Semantic Web languages. It provides in-depth insight into fuzzy Semantic Web languages for non-fuzzy set theory and fuzzy logic experts. It also helps researchers of non-Semantic Web languages get a better understanding of the theoretical fundamentals of Semantic Web languages. The first part of the book covers all the theoretical and logical aspects of classical (two-valued) Semantic Web languages. The second part explains how to generalize these languages to cope with fuzzy set theory and fuzzy logic

    Foundations of Fuzzy Logic and Semantic Web Languages

    Get PDF
    This book is the first to combine coverage of fuzzy logic and Semantic Web languages. It provides in-depth insight into fuzzy Semantic Web languages for non-fuzzy set theory and fuzzy logic experts. It also helps researchers of non-Semantic Web languages get a better understanding of the theoretical fundamentals of Semantic Web languages. The first part of the book covers all the theoretical and logical aspects of classical (two-valued) Semantic Web languages. The second part explains how to generalize these languages to cope with fuzzy set theory and fuzzy logic

    Learning in Description Logics with Fuzzy Concrete Domains

    Get PDF
    Description Logics (DLs) are a family of logic-based Knowledge Representation (KR) formalisms, which are particularly suitable for representing incomplete yet precise structured knowledge. Several fuzzy extensions of DLs have been proposed in the KR field in order to handle imprecise knowledge which is particularly pervading in those domains where entities could be better described in natural language. Among the many approaches to fuzzification in DLs, a simple yet interesting one involves the use of fuzzy concrete domains. In this paper, we present a method for learning within the KR framework of fuzzy DLs. The method induces fuzzy DL inclusion axioms from any crisp DL knowledge base. Notably, the induced axioms may contain fuzzy concepts automatically generated from numerical concrete domains during the learning process. We discuss the results obtained on a popular learning problem in comparison with state-of-the-art DL learning algorithms, and on a test bed in order to evaluate the classification performance

    Adding Threshold Concepts to the Description Logic EL

    Get PDF
    We introduce an extension of the lightweight Description Logic EL that allows us to de_ne concepts in an approximate way. For this purpose, we use a graded membership function, which for each individual and concept yields a number in the interval [0, 1] expressing the degree to which the individual belongs to the concept. Threshold concepts C~t for ~ then collect all the individuals that belong to C with degree ~ t. We generalize a well-known characterization of membership in EL concepts to construct a specific graded membership function deg, and investigate the complexity of reasoning in the Description Logic Ď„EL(deg), which extends EL by threshold concepts defined using deg. We also compare the instance problem for threshold concepts of the form C>t in Ď„EL(deg) with the relaxed instance queries of Ecke et al

    Undecidability of Fuzzy Description Logics

    Get PDF
    Fuzzy description logics (DLs) have been investigated for over two decades, due to their capacity to formalize and reason with imprecise concepts. Very recently, it has been shown that for several fuzzy DLs, reasoning becomes undecidable. Although the proofs of these results differ in the details of each specific logic considered, they are all based on the same basic idea. In this report, we formalize this idea and provide sufficient conditions for proving undecidability of a fuzzy DL. We demonstrate the effectiveness of our approach by strengthening all previously-known undecidability results and providing new ones. In particular, we show that undecidability may arise even if only crisp axioms are considered

    A Fuzzy Extension to the OWL 2 RL Ontology Language

    Full text link
    • …
    corecore