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Abstract

Subsumption is used in knowledge representation and ontology to describe the
relationship between concepts. Concept A is subsumed by concept B if the exten-
sion of A is always a subset of the extension of B, irrespective of the interpretation.
The subsumption relation is also useful in other data analysis tasks such as pattern
recognition – for example in image analysis to detect objects in an image, and in
spectral data analysis to detect the presence of a reference pattern in a given spec-
trum. Sometimes the subsumption relation may not be 100% true, so it is useful to
quantify this relationship.

In this paper we study how to quantify subsumption for sequential patterns.
We review existing work on subsumption, give an axiomatic characterisation of
subsumption, and present one general approach to quantification in terms of set
intersection operation over concept extension. Constructing the concept extension
set explicitly is impossible without specifying the domain of discourse and the
interpretation. Instead, we focus on concept intension for sequences as patterns
and propose to represent concept intension of a sequence by its subsequences. We
further consider different types of concept intension set – subsequence set, subse-
quence multiset, embedding set and embedding set with constraints such as warp-
ing and selection. We then present a general algorithmic framework for computing
set intersections, and specific algorithms for computing different concept intension
sets. We also present an experimental evaluation of these algorithms with regard
to their runtime performance.

Keywords: Subsumption characterisation; Subsumption quantification; Sequence
and subsequence analysis; Sequence similarity; Grid algorithm

1 Introduction
According to Oxford Dictionaries, “[to] subsume is to include or absorb something
in something else”, and “subsumption is the act of subsuming or the state of being
subsumed”. Here “thing” can be anything but typically it is a concept, which is a set
of all objects that share a set of properties or, dually, a set of all properties that are
shared by a set of objects 1. The notion of subsumption is often used in knowledge
engineering, description logic and ontology, and formal concept analysis [8, 35, 11,
29, 22] to describe the generality relationship between concepts. Informally concept
A is ‘subsumed by’ concept B if A is ‘a kind of’ B. For example, a Chair is a kind
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of Furniture 2. Academic studies of subsumption usually use the notion of concept
intension and extension. Thus, concept A is subsumed by concept B if the extension
of A is always a subset of the extension of B, irrespective of the interpretation of the
concepts. This is achieved by the properties they possess or, simply, their intensions.

The subsumption relation is also useful in other applications such as chemometrics,
and pattern recognition when we need to check if some object of interest is present in a
sample under consideration. In chemometrics (aka spectral data analysis) [30], we may,
for example, want to know if hydrogen is present in Earth’s atmosphere. When light
travels through Earth’s atmosphere, it will be absorbed at some wavelength depending
on what atoms there are in the atmosphere. We can thus sense the atmosphere using
a spectrometer and represent the sensing result as the solar spectrum (called target
pattern). We can also represent hydrogen by its emission/absorption spectrum (called
reference pattern) (see Figure 1). We now want to check if the reference pattern is
included in the target pattern. It is clearly not appropriate to do so by measuring the
similarity of these two spectra. We believe it is appropriate to do so by measuring
the degree to which the reference pattern is included in the target pattern; or simply
the degree of subsumption. In another application, facial recognition [1], we need to
determine if a person is present in a scene3. We can sense the scene and the person’s
face by images, represent the scene image as a feature vector (such as LBP image
descriptor) (again, called target pattern) and represent the face image as another feature
vector using the same features (again, called reference pattern), and finally check if the
reference pattern (the person) is included in or subsumed by the target pattern (the
scene).

In general, a pattern is a salient combination of properties, the saliency deriving
from its frequency or from the way we use it to define classes. When a pattern is
interpreted as the set of all objects in a domain satisfying these properties, the pattern is
a concept in the sense of formal concept analysis [29]. The properties may be structured
or unstructured, as follows:

• (Unstructured: Set) The pattern consists of an unstructured set of properties,
for example, {x = 5, y > 18, z = −3}. This pattern can be represented as
{A,B,C}. Therefore pattern {A,B,C} is a subsumption of {A,B}, or {B,A}.

• (Structured: Vector) The pattern consists of an ordered set of properties where
the position index provides meanings for the property values, so the pattern rep-
resentation can be simplified. For example, pattern {x1 = 2, x2 = 1, x3 = 5}
can be represented simply as a vector< 2, 1, 5 > or< A,B,C > for short when
the position index provides meanings of the values A,B,C. Therefore pattern
< A,B,C > is a subsumption of < A,B, ∗ > but not < B,A, ∗ > where ∗
means any.

• (Structured: Sequence) The pattern consists of an ordered set of properties that
have a spatial or temporal ordering where the order of the properties provide
meanings for the property values. For example, an emission spectrum {x1 =

2We thank one anonymous reviewer for suggesting this example.
3We usually achieve this through machine learning: we gather a large number of images as the training

data set – some contain this person’s face and some do not. We train a (SVM, neural network, decision tree,
etc) model and use it to decide if the person is present or not. This approach needs a large set of images
for training, which is not always possible. For example, there is growing demand for computer systems to
help immigration officers at airports to verify identities of passengers by comparing photos on their passports
against their face images on the spot. There are not enough images about each passenger, and there is not
enough time to build a model in real time.
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Figure 1: A comparison of the hydrogen emission spectrum with the Fraunhofer ab-
sorption lines in the solar spectrum. The numbers at the bottom of the image corre-
spond to the wavelength of various kinds of light measured in Ångstroms (millionths
of a centimeter). The hydrogen emission lines are called (from right to left, or red
to violet) H-alpha, H-beta, H-gamma, and H-delta. The H-alpha and -beta emission
lines correspond exactly to the C and F Fraunhofer lines in the solar spectrum, and
the H-gamma and -delta emission lines correspond exactly to the f and h Fraunhofer
lines, thereby demonstrating the presence of hydrogen atoms in the solar atmosphere.
Source: https://cseligman.com/text/physics/absorptionemission.htm. To get a com-
puter to make this decision, hydrogen and Earth’s atmosphere should be represented
(here as spectra) and then calculate the degree of subsumption between the two repre-
sentations. If the degree is high enough, it can be concluded that hydrogen is present
in Earth’s atmosphere.

2, x2 = 1, x3 = 5} where xi means light intensity at wavelength i, a time series
{x1 = 2, x2 = 1, x3 = 5} where xi means price on day i. Such patterns
are called sequential patterns and are denoted by e.g. ABC. Therefore ABC
is a subsumption of AC but not CA. More real world examples of sequential
patterns can be found in [12, 28, 13].

The subsumption relation may not be perfect in cases such as the examples above,
so it is useful to quantify this relationship. The bulk of the (recent) literature related
to subsumption is in the field of fuzzy description logics where the problem of rea-
soning in the context of an ontology requires (preliminary) decisions about degree of
subsumption in ontology alignment or ontology integration. See e.g. Borgwardt &
Penaloza [9, 6]. Lots of applications can be found in the field of medical ontologies
where vague terminology is abundant (e.g. about discolorations and deformations of
skin or other tissues, life periods like “perinatal”, “infanthood” and “adolescence”. In
navigating in fuzzy ontologies and in aligning different ontologies, the degree of sub-
sumption is important. Bobillo and Straccia (2008) pointed out [7] : “all instances of
a concept C are instances of a concept D to degree . . . ”.

As far as the authors are aware, there is no work in the literature on quantification
of subsumption. Any quantification must be done in a specific setting. This paper aims
to fill this gap in a specific setting where the properties in a pattern are ordered or, in
other words, the patterns are sequences of properties. This setting is quite broad. In the
case of image analysis, images (reference or target) can be represented as vectors of
properties (using image descriptors such as LBP or HOG [4]) which may be viewed as
sequences if the chosen descriptors are ordered, e.g. the LBP patterns corresponding to
different radii/scales. In the case of spectral data analysis, spectra can be represented as
sequences – intensity values arranged in the order of their corresponding wavelengths.
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This setting is potentially valid for many other applications where sampling at different
spatial and temporal scales is used in data representation.

To present our proposal, we organise this paper as follows. In the next section we
give an overview of subsumption including a review, an axiomatic characterisation and
a quantification in terms of set inclusion and set intersection operations, with differ-
ent interpretations. We then provide formulation of subsumption for a particular case
where concepts/patterns can be viewed as sequences. We also provide efficient algo-
rithms for calculating subsequence set intersections. Finally we present an evaluation
of the algorithms in terms of their runtimes.

2 Subsumption
In this section we present a review of subsumption and characterisations of subsump-
tion in the contexts of sets and sequences.

2.1 A review of subsumption
The notion of subsumption is often used in knowledge engineering, description logic
and ontology [8, 35, 11, 3] to describe the generality relationship between concepts.
Informally concept A is subsumed by concept B if the extension of A is always a subset
of the extension of B, irrespective of the interpretation. A more formal definition can
be given in terms of model theory and formal language [34].

From a computer science point of view, model theory is the study of models of
theories in a formal language. A set of sentences in a formal language (such as first
order logic) is a theory; a model of a theory is a structure (e.g. groups, fields, graphs,
universes of set theory) that satisfies the sentences of that theory through an interpre-
tation. A formal language describes the world in terms of instances which are things
with individual identities, properties of instances that distinguish them from other in-
stances, and relations that hold among sets of instances. First Order Logic is a formal
language, consisting of terms (including constants and variables) and sentences (pred-
icates applied to zero or more terms, simple or compound). An interpretation is a
function that maps a term to an instance in the domain of discourse and a predicate to
a relation in the domain. If a predicate has only one argument (i.e., it is applied to only
one term), it is then mapped to a unary relation which is a set of instances.

Concepts can be formally described by a formal language as predicates. The in-
tension of a concept is the description of the predicate, and the extension is given by
a model-theoretic interpretation of the predicate (i.e. a unary relation). The extension
of a concept consists of the instances in the domain to which the concept applies, and
its intension consists of the properties that are possessed by all the instances in the
extension.

There are various formal definitions of subsumption. Perhaps the best definition of
subsumption is that of William Woods [34]. He gives definitions of 5 different versions
of subsumption: extensional, structural, recorded, axiomatic and deduced. The first
two versions are relevant, so we quote and paraphrase them here.

Definition 1 (Extensional subsumption [34]). One concept A is said to subsume an-
other concept B if the extension of the subsuming concept A contains the extension of
the subsumed concept B.
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Definition 2 (Structural Subsumption [34]). The subsuming concept is more general
than the subsumed concept by virtue of the formally specified subsumption criteria
applied to the structure of the descriptions of the concepts.

One view is that subsumption is fundamentally extensional, but extensional sub-
sumption can be established through an inspection of the structure of the descriptions
of the concepts.

Falquet [20] and Ferilli et al. [21] provide definition of subsumption in the context
of description logic and ontology, which is quoted and paraphrased below.

Definition 3 (Subsumption [20, 21]). Let U be a domain of discourse (i.e., the set of
all instances in the world of interest), let C be the set of concepts, and let f : C → 2U

be an interpretation function. Let r, t ∈ C be two concepts. r is subsumed by t iff for
any U and any interpretation function f ,

f(r) ⊆ f(t).

Other definitions of subsumption in the context of ontology are provided in [23, 27].
Subsumption is traditionally used in term subsumption languages [35, 11]. Brach-

man and Levesque [11] described a simple term subsumption language that has a sound
and complete algorithm for the subsumption test, and has a well defined logic-based
semantics. Due to its formal semantics, a term subsumption system can automatically
infer the subsumption relationship between concepts defined in the system. He pro-
vides the following definition, which is both extensional and structural.

Definition 4 (Term subsumption [11]). Type A subsumes type B if, by virtue of the
form of A and B, every instance of B must be an instance of A. In other words, it can be
determined that being a B is implicit in being an A, based only on the structure of the
two terms.

For example, without any world knowledge, we can determine that the type (or con-
cept) ‘person’ subsumes the type (or concept) ‘person each of whose male friends is a
doctor’.

Subsumption test is a major operation in a term subsumption system, which deter-
mines whether a concept subsumes (i.e., is more general than) another. John Yen [35]
generalises term subsumption languages to using fuzzy logic, where concept c1 sub-
sumes concept c2 if and only if the extension of c1 is a fuzzy superset of the extension
of c2.

Borgwardt et al. [8, 9, 10] study the complexity of subsumption reasoning in de-
scription logics (DLs) and fuzzy DLs. It was shown that the complexity of reasoning in
finitely valued fuzzy DLs is often not higher than that of the underlying classical DL.
However this does not hold for fuzzy extensions of the light-weight DL EL, which is
used in many biomedical ontologies such as SNOMED CT and Gene Ontology. The
complexity of reasoning increases from polynomial to exponential, even if only one
additional truth value is introduced.

2.2 Axiomatic characterisation of subsumption
Let r, t ∈ C be any two concepts and f : C → 2U be an interpretation. Accord-
ing to the definition of subsumption (Def. 3), we have that t subsumes r, precisely
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when f(r) ⊆ f(t); otherwise, there is no such subsumption. Now let us consider the
following truth-function:

T (t subsumes r) =

{
1 if f(r) ⊆ f(t)

0 if f(r) 6⊆ f(t)
, (1)

which is equivalent to stating that

T (t subsumes r) =

{
1 if f(r) ∩ f(t) = f(r)

0 if f(r) ∩ f(t) ⊂ f(r)
, (2)

Apparently, the value of the binary truth-function depends on the nature of the inter-
section of the extensions of r and t. Quantifying “imperfect” subsumption is intended
to take into account that some but not all elements of f(r) are also elements of f(t),
that there is a wide range of possibilities between the extremes f(r) ∩ f(t) = ∅ and
f(r) ∩ f(t) = f(r). This is accomplished by creating a multi-valued “truth-function”
s(r, t) : |f(r) ∩ f(t)| → [0, 1] that satisfies the following properties, which are collec-
tively called Axioms of Subsumption:

Axiom 1 (Axioms of Subsumption).

1. s(r, t) = 1 if f(r) ∩ f(t) = f(r)

2. 0 < s(p, t) < s(r, t) < 1 if |f(p) ∩ f(t)| < |f(r) ∩ f(t)|

3. s(r, t) = 0 if f(r) ∩ f(t) = ∅

Of course, there are many such truth functions that satisfy the above requirements.
For example

s(r, t) =

(
|f(r) ∩ f(t)|
|f(r)|

)w

, w > 0, (3)

s(r, t) =

{
1 if f(r) ∩ f(t) = f(r)
|f(r)∩f(t)|

c+|f(r)∩f(t)| otherwise
. (4)

and

s(r, t) =

{
1 if f(r) ∩ f(t) = f(r)

1− e−|f(r)∩f(t)| otherwise
. (5)

each satisfy the above requirements.

2.3 Subsumption and operations on sets
We have shown that subsumption can be formulated through the notion of set-inclusion
⊆, and quantified through the notion of set-intersection ∩. Therefore, the notions of set
and set-operations are crucial to the understanding and quantification of subsumption.
It is thus worthwhile to be a bit more precise about what exactly is meant by using these
notions of sets and set-operators. Sets can be specified, relative to some universe U ,
through their generating function: every set A is determined by a generating function
1A that is defined as

∀x ∈ U : 1A(x) =

{
1 if x ∈ A,
0 otherwise
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with |A| =
∑

x∈U 1A(x). Set inclusion is decided by A ⊆ B iff ∀x ∈ A : 1A(x) ≤
1B(x). The intersection A∩B is generated by the pointwise product 1A∩B = 1A · 1B
and, analogously,

|A ∩B| =
∑
x

1A(x) · 1B(x)
def
= φ(A,B). (6)

An alternative but equivalent definition of the intersection generating function is the
pointwise 1A∩B = min{1A, 1B}.

However, this concept of the simple set may not be adequate for the application of
subsumption in the context of, for example, face recognition or spectral analysis. One
reason is that often certain features have multiple occurrences like moles and scars in
a face or patterns of energy peaks along the wavelength axis. Therefore, it seems wise
to consider f(t) and g(t) as multisets 4 [5, 32]: pairs of a simple set and a multiplicity
function χ. For example, the multiset {2,1,2,2,3,3,5,5,1,5,5} consists of the (simple)
set {1,2,3,5} and the multiplicity function defined by χ(1) = 2,χ(2) = 3, . . .

If A is a set and χ : A 7→ N is a function, the pair (A,χA) is a multiset; the simple
set A is a special case since (A, 1A) is a multiset too. A is called the domain or support
of the multiset. If the extensions f(r) and f(t) are interpreted as multisets, we need to
say something about multiset inclusion and multiset intersection.

To define set inclusion, we generalize the definition for simple sets: let A =
(A,χA) and B = (B,χB) denote multisets, then A ⊆ B iff ∀x ∈ B : χB(x) ≤
χA(x). For set intersection the generalization of the different constructions for simple
sets lead to quite different results. The first construction, 1A∩B = 1A ·1B , is congruent
with the truth function τ for logical conjunction ∧ as can be seen from

τ(x ∈ B) = 1B(x)
0 1

τ(x ∈ A) = 1A(x) 0 0 0
1 0 1

Extending this construction to multisets, we write χA∩B = χA · χB:

χB
0 χB(x)

χA 0 0 0
χA(x) 0 χA · χB(x)

The quantity χA(x)·χB(x) equals the number of matches of elements of “type x” when
we compare each element of A with each element of B. Under this interpretation, we
have that

|A ∩ B| =
∑
x

χA(x) · χB(x)
def
= µ(A,B) (7)

So, this generalization through extending the truth-function from binary to multi-valued,
yields a “count of matches”.

The second construction to generate the intersection of sets, 1A∩B = min{1A, 1B},
is also straightforward to generalize as 1A∩B = min{χA, χB} with

|A ∩ B| =
∑
x

min{χA(x), χB(x)} def
= ψ(A,B) (8)

4In computer science, multisets are also known as “bags”, “heaps” or “assemblies”.
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and the latter construction yields a “count of shared elements”, numerically quite dif-
ferent from the above “count of matches”. Although conceptually and numerically
quite different, the reader notes that

φ(A,B) = 0 iff ψ(A,B) = 0 iff µ(A,B) = 0, (9)

φ(A,B) ≤ ψ(A,B) ≤ µ(A,B). (10)

The count ψ has, for good reasons, become the standard way of gauging multiset-
intersection. But the decision which of the above counts, φ, ψ or µ, to use in an actual
application should not be justified by that fact: such a decision should be based on the
requirements of the application at hand.

2.4 What’s next?
Subsumption has been formally characterised in terms of concept extension. In prac-
tice, however, concept extensions are not accessible without a specification of the do-
main of discourse and the interpretation function. We will need to establish the sub-
sumption relation ‘by virtue of concept descriptions’.

In the rest of this paper we consider a particular case where a concept (i.e. pattern)
is represented by an ordered set of properties or feature values – a sequence. We show
that, instead of using concept extension, we can use subsequence relation to determine
subsumption. The set intersection operation, needed to quantify subsumption, can be
computed efficiently by the algorithms presented in this paper.

3 Subsumption based on sequences
In this section we consider the case where the concepts are (described or represented
by) sequences. So, we introduce some concepts and notation pertaining to sequences
and subsequences. Then we will specialise subsumption in this specific case. Finally,
we will focus on various ways to adapt or constrain straightforward counts of intersec-
tions to the needs of specific applications.

3.1 Preliminaries on sequences
Let Σ = {σ1, . . . , σd} be a finite alphabet of symbols, and let Σ? denote its Kleene
closure [2] that is constructed from the symbols of Σ by concatenation. We say that
a string x = x1 · · ·xn has length |x| = n or that x is n-long if it consists of n, not
necessarily distinct, symbols from Σ. The empty string, which has a length of zero,
is denoted by λ. If a string x is n-long, it has n prefixes xi = x1 . . . xi (in particular,
xn = x), and the empty prefix x0 = λ. A string y is a substring of another string
x if there exist not necessarily distinct and possibly empty strings v1, v2 ∈ Σ? such
that v1yv2 = x. A k-long string y = y1 . . . yk is a subsequence of x if there exist
k+ 1, not necessarily distinct and possibly empty, strings v1, . . . , vk+1 ∈ Σ? such that
v1y1 . . . vkykvk+1 = x and we write y v x to denote this fact. If y is a subsequence
of x, then x is a supersequence of y. Clearly, if y = xi1 . . . xik is a substring of x,
then ij+1 − ij = 1 for all j, i.e., the symbols that are adjacent in y are adjacent in x
too. This is not required if y is a subsequence of x. The set of all subsequences of x is
denoted by S(x). If u v x and u v y, u is a common subsequence of x and y. The set
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of all common subsequences of x and y is denoted by S(x, y). Let x = x1x2 · · ·xn.
If u v x, we say that u is embeddable in x; we then have u = xi1xi2 · · ·xi|u| . We call
the integer sequence ix(u) = i1, i2, · · · , i|u| an embedding of u in x. Some sequences
may be embeddable more than once in another sequence; for example u = ac is twice
embeddable in x = abac. We denote the number of embeddings of u v x as |x|u; so,
|x|ac = 2.

3.2 Specialisation of subsumption for sequences
Here we consider subsumption for a special case where a concept can be represented
as a sequence. We call this type of concept sequential concept and this type of sub-
sumption sequential subsumption.

A property is taken as an attribute-value pair. A sequential concept is a set of
homogeneous properties arranged in an order, where the attributes of the properties are
of the same type so the values of the properties are directly comparable. For example, a
sequential concept may be a colour histogram which is a sequence of frequency values
for a range of colours in an image. A sequential concept may also be a spectrum which
is a sequence of light intensity values at a range of wavelengths. For brevity we will
call sequential concepts simply as sequences. More formally,

Definition 5 (Sequential concept). A sequential concept is a sequence x =< p1, p2, · · · , pn >
where pi = (ai, vi) is a property such that ai is an attribute and vi is a single value
or a range of values. All attributes have the same domain, so the properties are homo-
geneous. For brevity we write this concept as v1v2 · · · vn. These properties together
serve as the intension of the sequential concept.

The role of ‘attribute’ here is a bridge between the general notion of concept and a
specialised one – sequential concept, where the attributes can be safely dropped with
only values left. Thus, a sequential concept can be simply represented as a sequence of
values.

Given a sequential concept x an interpretation f(x) is the set of all instances in the
domain of discourse U such that each instance can be represented as a sequence which
is x or a supersequence 5 of x. For example, if x is a colour histogram representing an
image of interest, then an instance in f(x) is any image whose colour histogram y is
equal to x or is a supersequence of x (e.g. by way of including more colours). Clearly,
being identical is difficult so we can try to quantify their relationship by similarity or
subsumption. More formally, we have

Definition 6 (Interpretation and representation). Let U be a domain of discourse and
let x be a sequential concept. Then an interpretation of x is a set

fg(x) = {e ∈ U : g(e) wC x} (11)

Here g is a representation function that maps an element of U to a sequence v1 . . . vk.
wC means supersequence relation under constraint C.

Clearly, the interpretation depends upon the nature of the representation function g.
It also depends on the constraint C imposed on the supersequence relation wC . For
brevity we will drop C from the supersequence relation w unless this is necessary. See
Section 3.3 for some examples of the constraint. Again, for brevity we will drop g
unless this is necessary.

5Note that if y is a supersequence of x then x is a subsequence of y.
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The following theorem establishes 1-1 mapping between extensional subsumption,
as defined in the domain of discourse (Def. 3), and embedding of sequential represen-
tation using g.

Theorem 1. Let U be a domain of discourse; x and y be two sequential concepts; and
g be a representation function used in the construction of interpretations. Then x v y
iff fg(x) ⊇ fg(y).

Proof. (i) Suppose x v y. Suppose further that U 3 e ∈ fg(y). Then g(e) w y and by
the transitivity of w, g(e) w x. This is true for any U 3 e ∈ fg(y) and any g, so we
conclude that fg(x) ⊇ fg(y) if x v y.

(ii) Suppose that fg(x) ⊇ fg(y) for some concepts x and y and some representation
function g. Let U 3 e ∈ fg(y). Then e ∈ fg(x) and hence g(e) w x. As this is true
∀e ∈ fg(y), it must also be true for u ∈ U : g(u) = y since u ∈ fg(y) too and hence
y w x. So, we conclude that x v y if fg(x) ⊇ fg(y).

According to the above theorem and Def. 3, in order to determine subsumption
relationship between sequences, it suffices to check if they have subsequence relation.
Furthermore, in order to quantify subsumption, we need to use the set of subsequences
S(x) of sequence x .

Corollary 1. Let x, y be two sequences. S(x) ⊆ S(y) if and only if f(x) ⊇ f(y) for
any interpretation function f .

Thus the more general Axiom 1 can be made more specific as follows:

Axiom 2 (Axiom of Subsumption for Sequences).

1. s(r, t) = 1 if S(r) ∩ S(t) = S(t)

2. 0 < s(p, t) < s(r, t) < 1 if |S(p) ∩ S(t)| < |S(r) ∩ S(t)|

3. s(r, t) = 0 if S(r) ∩ S(t) = ∅

One such function is the following:

s(r, t) =

(
|S(r) ∩ S(t)|
|S(t)|

)w

, w > 0, (12)

In a sequential context, gauging |S(r) ∩ S(t)| amounts to counting the elements
of the set of all common subsequences of r and t and, i.e., S(r, t), depending on the
∩-operator chosen, determining the joint multiplicity or embedding-frequency of the
elements of that set. In this context, the counts φ, ψ and µ as discussed in subsection
2.3 on set operations are now reformulated as

φ(r, t) =
∑

u∈S(r,t)

1, (13)

ψ(r, t) =
∑

u∈S(r,t)

min{|r|u, |t|u}, (14)

µ(r, t) =
∑

u∈S(r,t)

|r|u · |t|u, (15)

10



wherein the embedding frequencies |r|u and |t|u are the multiplicity functions of the
multisets (S(r), |r|·) and (S(t), |t|·) that live in the universe of the free monoid Σ∗.
However, depending on the application, such counts may be weighted or constrained
in various ways. Here, we discuss such constraints in a qualitative way. When we turn
to algorithms, we will be more precise and formal about some of these constraints.

3.3 Constraints on special cases
3.3.1 Constraints on matching

To construct and gauge the set S(x, y), we have to somehow compare the subsequences
of r to those of t. If the subsequences match, they add to the count of |S(r, t)|. How-
ever, depending upon the constituting symbols, the subsequences may not be equally
important and thus should not equally add to the total count: the matches between
subsequences are then weighted, depending on the symbols involved. Furthermore,
matching of subsequences may be “soft” in the sense that some symbols may be more
similar to each other than others. So, instead of “hard”, binary matching, one might
opt for accounting for the degree of “similarity” between subsequences. Weighing sub-
sequences depending on their content and soft-matching are options in the algorithms
that we will present in the sequel.

3.3.2 Constraints on gap-widths

Subsequences may have gaps in the sense that its constituting adjacent symbols may
not be adjacent in either or both of r and t. Some subsequences in, say, r may have
many more or less gaps than the same subsequences in t or the gaps may be of different
sizes. Depending on the application, the significance of gaps may vary, depending on
their size. Such considerations invite for a kind of gap-penalizing that is either hard,
i.e not accepting subsequences that have gap-widths beyond a certain limit, or soft, i.e.
the penalty depends on the width of the gap.

On the other hand, particular gap-patterns might be interesting or even mandatory
and then one accounts for (the degree of) uniform warping of time or space. For exam-
ple, gap-width might or should vary linearly with gap-position. In the sequel, we will
discuss algorithms that specifically account for some forms of warping.

3.3.3 Constraints on subsequence lengths

Sometimes only longer subsequences are interesting since shorter subsequences are
likely to occur anyway. In such applications, subsequences could be weighted accord-
ing to their length. An extreme way of doing this is confining to the longest common
subsequences as is done in edit-based algorithms on strings.

In light of the fact that the constraint may be different from one application to
another and the subsumption test is a service in applications, we need an algorithm to
measure subsumption that is fast, can accommodate a broad range of constraints and
can be easily extended to numerical sequences.

11



Figure 2: The sequence x = abac mapped to G4. The dashed arrows represent the
subsequences aa, ac and bc as tickets (the corresponding minors and representing paths
are not shown).

x = abac 7→ G4:
a b a c

4 Computing subsequence intersection

4.1 Intersection as a product graph: the Grid
When quantifying subsumption in a sequential context, we have to evaluate the number
and nature of the common subsequences of r and t. An important class of algorithms to
do just that is known as Grid-algorithms: these algorithms use the direct product of the
graph representations of the sequences involved. Therefore, we discuss these graphs,
their direct product and the Grid.

An n-long sequence x = x1, . . . , xn can be represented as digraphGn = (V,A,L)
along n vertices V = {v1 . . . , vn} through 2n−1 arcsA = {vivj : (vi, vj ∈ V )∧((j =
i + 1) ∨ (i = j))} and vertex-labels L = {l(v1), . . . , l(vn)} that correspond to the
symbols xi ∈ Σ. Then substrings of x are represented as directed paths on Gn with
terminals vi and vj with 1 ≤ i ≤ j ≤ n. As the symbols themselves are substrings
of the sequence, it is convenient to assign an arc on itself to each vertex: if vi ∈ V ,
(vi, vi) ∈ A. Subsequences that are not substrings of x are paths on minors M(Gn)
of Gn that arise by contracting one or more arcs and eliminating pertaining vertices
[14]; such paths on M(Gn) are called ”tickets” on Gn [17]. These ideas are illustrated
in Figure 2. Now suppose that we have two sequences, say r and t with representing
graphs Gr = (Vr, Ar, Lr) and Gt = (Vt, At, Lt). Then the direct product graph
Grt = (Vrt, Art, Lrt) of these sequences is defined as [24]:

Vrt = {(vr, vt) : (vr ∈ Vr) ∧ (vt ∈ Vt) ∧ (l(vr) = l(vt))} (16)
Art = {((vr, vt), (v′r, v′t)) ∈ Vr × Vt : ((vr, v

′
r) ∈ Ar) ∧ ((vt, v

′
t) ∈ At)} (17)

Lrt = Lr ∩ Lt (18)

In Figure 3, we present two visualizations of the direct product graph of the sequences
r = baca and t = abdac: one arbitrary and one embedded in a grid that is spanned by
the sequence-graphs: the (r× t)-grid. The reader will note that in the grid-embedding,
all arcs and tickets point “South-East”, i.e. they represent the common subsequences
of r and t and thus reflect the sequential character of the factors. The reader also notes
that some subsequences are represented by two arcs; for example, there are two arcs
connecting vertices labeled b and a because the common subsequence ba is embedded
twice in r and just once in t.

The grid-representation of the graph Grt is complete in the sense that all paths of

12



Figure 3: Two visual representations of the direct product graph of the sequences r =
baca and t = abdac and the ticket (dashed) bc on that graph. The left representation
respects the adjacencies but is arbitrary otherwise. The representation on the right side
shows an embedding in a grid that is spanned by the sequence graphs. Black points
(the nodes) are placed at grid-locations that have the same symbols as coordinates

a

a

b

c

a
a

a

c

a

b

a b d a c

the graph are embedded. So, the grid-representation shows all common substrings
but, unfortunately, not all common subsequences since the latter may contain symbols
that are not adjacent in either or both of the sequences. So, if we want to evaluate
f(r) ∩ f(t) = S(r, t) through a graph-embedding on the (r × t)-grid, we implicitly
use tickets on Grt. Evaluating the intersection f(r) ∩ f(t) amounts to counting all
paths and tickets and adding the counts. This is accomplished through using what was
called a “Grid-algorithm” [19]. The next sections discuss the Grid-algorithm and some
relevant parameterizations.

4.2 The Grid-algorithm and its tuning
The Grid-algorithm operates on the r × t-grid and counts all paths and tickets in an
orderly fashion. Clearly, the set of all nonempty common subsequences may be parti-
tioned as the disjoint union of sets of common subsequences of equal length:

S(x, y) =

min{|x|,|y|}⋃
i=1

S(x, y : i) (19)

wherein S(x, y : i) denotes the set of all common subsequences of length i. As these
sets are disjoint, we must have that

|f(r) ∩ f(t)| = |S(x, y)| =
min{|x|,|y|}∑

i=1

|S(x, y : i)|. (20)

All parameterizations of the Grid-algorithm calculate the above sum, proceeding through
i = 1, 2, . . . ,min{|x|, |y|}. Here we discuss the most simple parameterization as first
published in [15] and illustrated in Figure 4.
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The common subsequences of length 1 are represented by paths of length zero, i.e
the loops on the grid. Common subsequences of length two (consisting of two symbols)
are created by defining arcs from each vertex to all other vertices that are located to the
South-East. Counting these arcs then yields the number of 1-long paths. Next, for each
vertex, the arcs are counted that leave the vertices that are located to the South-East:
the number of 2-long paths from each of the vertices since they elongate the 1-long
paths. This process of counting elongations stops when none of the paths counted can
be elongated any more.

So, we see that the embedding of the direct product graph in the r × t-grid allows
us to count ever longer common paths and tickets on Grt since moving simultaneously
along the prefixes of the pertaining sequences amounts to moving in South-Easterly
direction on the grid-embedded product graph. The reader notes that in the example of
Figure 4, the 2-long common subsequence ba is embedded once in r = abac and thrice
in t = babcac and thus all three corresponding arcs in Grt are counted: the number of
times that an occurrence of ba in one sequence is matched by occurrences in the other
sequence. Hence, in its basic guise, the Grid-algorithm counts the number of matching
subsequences µ(r, t):

µ(r, t) =
∑

u∈S(r,t)

|r|u · |t|u (21)

which implies a specific definition of the intersection of multisets. Fortunately, the
Grid-algorithm can be adapted such that different definitions of multiset intersection
can be used in determining the size of the intersection |f(r) ∩ f(t)| of the reference
and the target.

We now formulate the basic version in the theorem below and then generalize it to
a guise that allows for a systematic discussion of the variants that are relevant to the
quantification of subsumption.

Theorem 2. [16] Let x, y ∈ Σ∗ be represented as x = x1 . . . xn and y = y1 . . . ym.
Let M1 = {m1

ij} denote a n×m - matrix defined through

m1
ij =

{
1 iff xi = yj

0 otherwise
(22)

Let the (n×m)-matrices Mk = {mk
ij} be recursively defined for k ≥ 2 through

mk
ij = m1

ij

∑
a>i,b>j

mk−1
ab . (23)

Then
µ(x, y) =

∑
k

µk(x, y). (24)

where µk(x, y) =
∑

ij m
k
ij .

Clearly, in Eq. (22), the algorithm is initialized by defining the 0-long paths. Then
follows the recursion of Eq. (23) of counting ever longer paths and tickets in parts of
the grid that are defined by the range of summation in Eq. (23). Finally, there is the
way that the results for subsequences are aggregated into the final result, i.e. Eq. (24).

To allow for discussing interesting variants, Theorem 2 is generalised to a general
Grid-algorithm, the Grid-based Algorithmic Framework (GAF), as follows:
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Theorem 3. Let x, y ∈ Σ∗ be represented as x = x1 . . . xn and y = y1 . . . ym. Let
M1 = {m1

ij} denote a n×m - matrix defined through

m1
ij = F (xi, yj) (25)

Let F , H , K and J denote functions to some number field. Let the (n ×m)-matrices
Mk = {mk

ij} be recursively defined for k ≥ 2 through

mk
ij = m1

ij

∑
K(i,j)

H(Mk−1). (26)

Then ωk(x, y) =
∑

ij m
k
ij and

ω(x, y) = J
(
{ωk(x, y)}

)
. (27)

F , H , K and J are functions that need to be specified in practice to take into
account specific constraints. Once these functions are specified, the GAF provides for
a specific algorithm to calculate the quantity ω(x, y), which subsequently obtains its
specific meaning. Therefore, the GAF provides a framework for designing algorithms
to calculate set intersections, i.e. ω(x, y), allowing for the consideration of different
constraints.

Figure 4: The basic Grid-algorithm (Theorem 2) operating on the grid spanned by
r = abac and t = babcac. The four embeddings show minors of the direct product
graph. Upper left panel: all vertices with 1-long paths (8), upper right panel: all vertices
with 2-long paths (15), lower-left panel: all 3-long paths (8), lower-right panel: and all
4-long paths (1). Each n-long path represents an n-long common subsequence of r and
t.
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For example, Theorem 2 can be derived from the GAF with the following specifi-
cations:

F (xi, yi) =

{
1 if xi = yj

0 otherwise
,

H(Mk−1) = mk−1
ab ,

K(i, j) = {(a, b) : (i < a ≤ n) ∧ (j < b ≤ m)},

J
(
{ωk(x, y)}

)
=
∑
k

ωk(xi, yj)

and then ω is interpretable as the number µ of matching nonempty subsequences.
It should be noted that each of these functions can be changed independently from

the others and some of these modifications have sensible interpretations. We mention
some examples of such modifications, taken from [18]:
Setting

F (xi, yj) =

{
1 if xi = yj

0 ≤ u(xi, yj) < 1 otherwise

changes M1 from a binary diagonal “hard-matching” matrix to a full “soft-matching”
similarity matrix.
Setting

H(Mk−1) =
∑

a>i,b>j

v(a− i, b− j)mk−1
ab

yields a way for soft-penalizing for gap-width and setting

K(i, j) = {(a, b) : (i < a ≤ h < n) ∧ (j < b ≤ h < m)}

amounts to hard-penalizing gaps bigger than h. Finally, setting

J
(
{ωk(x, y)}

)
=
∑
k

w(k)ωk(xi, yj)

allows one to weigh for the length of the common subsequences, probably assigning a
bigger weight to longer subsequences.

4.3 Scaling objects: Tuning the Grid-algorithm to warping
Warping is useful when one wants to compare objects that have the same shape but
differ in scale. Here we consider linear warping. More specifically, let u v x with
u = u1, . . . , u|u| and let ix(u) = i1, . . . , i|u| denote an embedding of u in x such that,
for nonnegative integers p and q, ij = p+q× ij−1. Note that p is a time-origin and q is
a time-scale. Then we say that u (or x) is a (p, q)-linear warp of x (or u). For example,
let x = abcdefghijk. Then u = abc is a subsequence under this constraint, where
p = 1 and q = 0; so is u = aceg where p = 2 and q = 0. Furthermore, u = acfj is
also subsequence under this constraint, where p = 2 and q = 1.

Matching subsequences under this linear warping constraint can be characterised
in the following corollary, which is derived from Theorem 3.
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(c) 1-linear warping

Figure 5: Count matching subsequences of r = abcd in t = babccad under p-linear
warping as constraint: (a) Initialize the algorithm of Corollary 2 to calculate the ma-
trix M(1). (b) Count 2- and 3-long matching subsequences under 0-linear warping via
calculating the matrices M(2) and M(3). M(4) contains only zeros since there are no
4-long common subsequences. (c) Count 2- and 3-long matching subsequences under
1-linear warping.

Corollary 2. Let x, y ∈ Σ∗ be represented as x = x1 . . . xn and y = y1 . . . ym. Let
M1 = {m1

ij} denote a n×m - matrix defined through

m1
ij =

{
1 iff xi = yj

0 otherwise
(28)

Let the (n×m)-matrices Mk = {mk
ij} be recursively defined for k ≥ 2 through

mk
ij = m1

ij

∑
a>i,b=j+(a−i)×(1+p+q)

mk−1
ab . (29)

Then µk(x, y) =
∑

ij m
k
ij and µ(x, y) =

∑
k µ

k(x, y).

An illustration of Corollary 2 is presented in Figure 5. An algorithm for counting
matching subsequences under linear warping is presented in Algorithm 1. It is clear the
time complexity of the algorithm is O(|r| × |t| × LCS(r, t)), where LCS(r, t) is the
length of a longest common subsequence of r and t. Faster algorithms can be derived
for specific types of constraint, making better use of the fact that we only need to check
certain cells of the matrices.

Under the linear warping constraint, a special case arises when some position in a
sequence can be any symbol. For example, in an image retrieval task, we are interested
in BMW X5 and want to retrieve all images that contains X5. We can represent an
image by the vertical and horizontal projections (or profiles), and we know the back-
ground parts of the projection vectors are useless for recognising X5. Therefore these
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parts can be filled by any values. More specifically, consider the example in Figure
5 where r = abcd and t = t1t2 · · · t7 = babccad. We want to count the matching
subsequences of r in t under the constraint that the second position in the reference
may be any symbol but its position is important. This constraint can be coded in by
r = a cd, where the symbol means it can be any symbol. If p = 0, then one matching
subsequence is t2t3t4 = abc. If p = 1, then one matching subsequence is t5t7 = cd.
We call this constraint selective linear warping.

The following corollary provides for a systematic way of counting matching sub-
sequences under this constraint, which is derived from Theorem 3.

Corollary 3. The same as Corollary 2 except for the way to construct M1 = (m1
ij).

We replace Eq. (28) by the following:

m1
ij =

{
1, if ri = or ri = tj

0, otherwise

An illustration of Corollary 3 is presented in Figures 6a and 6b. An algorithm
for counting matching subsequences under the selective warping constraint can be ob-
tained by changing the conditional statement 4 in Algorithm 1 to the following:

if ri = or ri = tj then

b a b c c a d

a • dd • dd

• dd • dd • dd • dd • dd • dd • dd

c • dd • dd

d • dd
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1 1

1 1 1 1 1 1 1
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(a) Initialization
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(b) 0-linear warping

Figure 6: Count matching subsequences of r = a cd in t = babccad under selective
warping as constraint: (a) Initialize the algorithm of Corollary 3 by computing the
matrix M(1). (b) Count 2- and 3-long matching subsequences via computing matrices
M(2) and M(3).
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Algorithm 1 An algorithm to count matching subsequences under the (p, q)-linear
warping constraint and to find length of longest matching subsequence, which is based
on Corollary 2.

Require: Input r = r1r2 · · · rm and t = t1t2 · · · tn
Ensure: Output the number of all matching subsequences, and the length of the

longest matching subsequence
1: δ ← 0
2: for i = 1 to m do
3: for j = 1 to n do
4: if ri = tj then
5: e1ij ← 1, eij ← 1, δ ← δ + 1
6: end if
7: end for
8: end for
9: if δ = 0 then

10: return 1
11: end if
12: φ = δ
13: k = 1
14: while k ≤ m do
15: for i = 1 to m− 1 do
16: for j = n− 1− p− q to 1 do
17: ii = i+ 1, jj = j + 1 + p+ q, ei,j ← eii,jj
18: end for
19: end for
20: δ ← 0
21: for i = 1 to m do
22: for j = 1 to n do
23: ei,j ← ei,j × e1i,j
24: δ ← δ + ei,j
25: end for
26: end for
27: if δ = 0 then
28: return φ+ 1
29: end if
30: φ← φ+ δ
31: k ← k + 1
32: end while
33: return φ+ 1, and k
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5 Set-intersection and run-lengths
In this section we deal with algorithms that calculate the size of the three different forms
of set intersection that we discussed previously. Thereto, it is convenient to extend the
Grid algorithm such that it can handle a specific form of a quantified property of the
the characters in the sequence: their run-lengths. So far, we treated the Grid-algorithm
as operating on a (direct-product) graph with vertices that are labeled by pairs from the
character set Σ - now we will extend this labeling to the run-lengths.
A run is a substring that consists of a repetition of one and the same character and that
cannot be extended in either direction without introducing at least one new, extra char-
acter. For example, the substring aaa is a run from the sequence bbaaac: it consists of
a repetition of the same character and it cannot be extended in either direction without
introducing either or both of b and c.

Instead of writing a sequence x as x = x1, . . . , x|x|, we may write the sequence in
so-called run-length notation: we write x = xr11 . . . xrmm wherein each xrii denotes an
ri-long substring of x that consists of the same symbol xi and such that xi−1 6= xi 6=
xi+1. For example, we write x = a2b3c1b2 to denote the sequence x = aabbbcbb.
Encoding an n-long sequence in run-length notation is of complexity O(n) and run-
length encoding is widely used in e.g. image-processing [26] and in the construction of
holograms [25]. We say that runs xrii from x and ysjj from sequence y match, precisely
when the characters match, i.e. when xi = yj .

As there are some useful relations between the runs and the subsequences of a
sequence and we discuss these here.

A run xrii consists of other runs and these runs are subsequences of the run and
therefore, of the sequence x: xji v xrii v x for ∀j ∈ [ri]. For example, a3 contains
a1 = a, a2 = aa and a3 = aaa and all are subsequences of a3b2.

If xi = xj and both xrii and xrjj are distinct runs of x, then x contains ri + rj
distinct subsequences that only consist of k ∈ [ri + rj ] symbols xi = xj . Hence, if
x and y are sequences and xi = yj = σ ∈ Σ, then there exist (at least) min{ri, rj}
common subsequences that consist of the symbol σ only. If we define M1 = {m1

ij}
with m1

ij = min{ri, rj} if xi = yj and m1
ij = 0 otherwise, we have that

∑
ij m

1
ij

equals the sum of all subsequences contained in just one common run.
If xi 6= xj and xrii and xrjj are runs of x, then x contains at least ri × rj subse-

quences of the form xki x
`
j , one for each pair (k, `) with k ∈ [ri] and ` ∈ [rj ]. At least,

since x may contain other runs xraa and xrbb with xi = xa and/or xj = xb.

5.1 Multiset intersection as matching subsequences
First, we adapt the Grid-algorithm of Theorem 2 to deal with sequences in run-length
notation. So we set out to calculate the intersection µ(x, y) =

∑
u∈S(x,y) |x|u · |y|u.

Thereto, we formulate the next

Theorem 4. Let the sequences x, y ∈ Σ∗ be represented in run-length notation as
x = xr11 , . . . , x

rnx
nx and y = ys11 , . . . , y

sny
ny . Let M1 = {m1

ij} with i ∈ [rnx ] and
j ∈ [sny ] denote an (rnx × sny )-matrix defined through

m1
ij =

{∑
k=1

(
ri
k

)(
sj
k

)
if xi = yj

0 otherwise
. (30)
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Furthermore, for k > 1, let Mk = {mk
ij} denote an (rnx × sny )-matrix, defined by

mk
ij = mk−1

ij

∑
a>i
b>j

∑
q=1

(
ra
q

)(
sb
q

)
. (31)

Then µk(x, y) =
∑

ij m
k
ij and µ(x, y) =

∑
k µ

k(x, y).

The reader notes that the meaning of the number m1
ij as defined in Eq. (30) differs

from the meaning of that number in Eq. (22) of Theorem 2: here, m1
ij equals the num-

ber of matching subsequences that are contained in the pair of common runs (xrii , y
sj
j ).

As the characters of these runs match, each
(
ri
k

)
k-tuples taken from xrii matches to

each of the
(
sj
k

)
k-tuples taken from y

sj
j hence Eq. (30) follows. Eq. (31) follows from

analogous reasoning.
Interestingly, in Theorem 4 we have that the mk

ij do not only, like in Theorem
2, depend on (the matching of) xi and yj but also on the the run lengths: m1

ij =
F (xi, yj , ri, sj). Hence Theorem 4 extends Theorem 3. The reader also notes that,
in practice, sequences in run-length notation will be much shorter than the same se-
quences in a character-by-character notation. Hence, we expect that the runtime of
the algorithm implied by Theorem 4 is better than that of the algorithm implied by
Theorem 2, provided that the pertaining binomials are effectively evaluated, e.g. by
constructing Pascal’s triangle on the fly. The reader also notes from the binomials that
appear in Theorem 4, that calculating µ(x, y) may require big integer arithmetic.

5.2 Multiset intersection as shared subsequences
Here, we consider the case in Eq. (14), where the intersection is multiset based and the
multiplicity function is

χA∩B(x) = min{χA(x), χB(x)} (32)

In other words, we count shared subsequences, i.eψ(x, y) =
∑

u∈S(x,y) min{|x|u, |y|u}.

Theorem 5. Let x, y ∈ Σ∗ be represented in run-length notation as x = xr11 . . . xrnn
and y = ys11 . . . ysmm . Let M1 = {m1

ij} denote a (n×m)-matrix defined through

m1
ij =

{
2min{ri,sj} − 1 iff xi = yj

0 otherwise
(33)

Let the (n×m)-matrices Mk = {mk
ij} be recursively defined for k ≥ 2 through

mk
ij =

∑
a>i,b>j

mk−1
ab · (2

min{ra,rb} − 1). (34)

Then, for k > 1, ψk(x, y) =
∑

i,j m
k
ij and ψ(x, y) =

∑
k=1 ψk(x, y).

In Theorem 5, the numbersm1
ij store the number of common subsequences, shared

by the runs xrii and ysjj . If the runs do not match, that number equals zero. A run
of length r consists of r distinct subsequences that have

∑
k

(
r
k

)
= 2r − 1 different

embeddings; this justifies Eq. (33). Analogous reasoning yields Eq. (34).
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5.3 Set intersection as common distinct subsequences
Here we discuss an adaptation for the simple, set based intersection, i.e. we just count
number of common subsequences as |S(x, y)|.

Corollary 4. Let x, y ∈ Σ∗ be represented in run-length notation as x = xr11 . . . xrnn
and y = ys11 . . . ysmm . Let M1 = {m1

ij} denote a (n×m)-matrix defined through

m1
ij =

{
min{ri, sj} iff xi = yj

0 otherwise
(35)

Let the (n×m)-matrices Mk = {mk
ij} be recursively defined for k ≥ 2 through

mk
ij = m1

ij ×
∑

a>i,b>j

max{0, (mk−1
ab −m

k−1
lx(a,xi),ly(b,xi)

)} (36)

Then, for k > 1, φk(x, y) =
∑

i,j m
k
ij and φ(x, y) =

∑
k=1 φk(x, y). Variable

lx(k, σ) = max{i : (i < k) ∧ (xi = σ)} keeps track of the previous position of a
symbol σ ∈ A in a sequence.

A run of length r has only r distinct nonempty subsequences. So m1
ij in Eq. (35)

just counts the number of common distinct subsequences of the common runs. How-
ever, several distinct runs may use the same character so we have to discount for the
subsequences already counted in previous encounters with the same characters. This
reasoning derives from Lemma 6 in [16].

6 Experimental Evaluation of the Algorithms
It is known [16] that Grid-algorithms have an algorithmic complexity of O(|x| × |y| ×
min{|x|, |y|}) and that actual runtimes will vary, depending on the similarity of the
sequences involved. However, their performance in terms of actual runtimes was never
investigated. Therefore, we present a series of experiments to evaluate the performance
and limitation of some of the algorithms.

The actual runtime of each of the algorithms is dependent on the lengths of the two
strings and how similar they are. We want to find out how each algorithm performs
as the length of one string varies under two cases – lower similarity and higher one.
Here we use the length of the longest common subsequence as an indication of string
similarity.

For this we generated two artificial datasets. Each dataset consists of multiple pairs
of strings, each pair being a data object. In both datasets, the first string of every
data object consists of 100 characters with each character being selected at random
from the English alphabet (26x2 characters – 26 letters with two capitalisations). The
two datasets differ in how the second string is constructed, corresponding to the two
similarity cases:
Dataset I – low similarity: Each of the second strings has a length between 1 and 60,
and consists of characters also randomly selected from the same alphabet. Since both
the first and second strings are randomly constructed, their similarity is expected to be
low on average.
Dataset II – high similarity: Each of the second strings also has a length between 1
and 60 and is a substring of its first string counterpart. Clearly every pair of strings has
high similarity.
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Each algorithm was run through both of the datasets and the runtimes were recorded.
Each algorithm was run 1,000 times on a standard PC 6 in order to smooth out system
level interference (such as from context switches). The runtime average by each algo-
rithm on each pair of strings is plotted on a graph by the length of the second string,
along with a trend line (polynomial fit of order 3).

6.1 The Grid algorithm for counting set-based subsequences
The results of running the Grid algorithm for counting set-based subsequences on the
two datasets are shown in Figure 7. It is clear that the runtime of the algorithm does
not vary linearly with the lengths of the two strings. With r and t being the lengths of
the first and second strings respectively, the best case runtime is O(rt) which occurs
when the two strings do not share any common elements. The worst case runtime is
O(rtm) where m = max(r, t).

6.2 The Grid algorithm for counting multiset-based subsequences
The results of running the Grid algorithm for counting multiset-based subsequences
on the two datasets are shown in Figure 8. It should be noted that this algorithm was
not run on the full datasets. Due to the large values that the matrix cells can reach
some strings would overflow the underlying data types (64bit integer). To overcome
this issue the pairs of strings that could not be compared were excluded. The number
of compared pairs of strings was approximately 3440 and 3535 for the substring and
randomstring datasets respectively. It is clear from the charts that the working tests
provided a sufficient runtime profile of this algorithm.

6.3 The Grid algorithm for counting subsequence embeddings
The results of running the Grid algorithm for counting subsequence embeddings on the
two datasets can be seen in Figure 9. It is clear that the runtime profile of this algorithm
is broadly similar to the Grid (set) variant. In particular the same observed minimum
and maximum runtime bounds apply O(rt) and O(rtm).

6.4 The Grid algorithm for counting subsequence embeddings un-
der linear warping

The results of running this algorithm on the two datasets are shown in Figure 10. In
particular Figure 10(b) shows that the different lcs values have a distinct effect on
the runtime of the algorithm. Additionally, as noted previously the runtime for the
algorithm is proportional to r × t× lcs(r, t). Therefore it is useful to plot the runtime
against the value of r × t× lcs(r, t) to help check this. This is done on Figure 11.

We note that once a cell reaches 0 it is ’done’ in that it will never be given a different
value. We can exploit this observation to optimise the linear warping algorithm – when
a cell has a value of 0 we move on to the next cell. The results of running the optimised
linear warping algorithm are shown in Figure 12. As can be seen from this figure, the
runtime of the optimised algorithm becomes less consistent, but the overall runtime for
many cases is reduced. The worst case runtime of the optimised algorithm is under
0.07ms whereas the worst case runtime of the original algorithm is just over 0.1ms.

6Intel Core i7 CPU 920 @ 2.67 GHz, with 1 MB L1 cache and 8 MB L3 cache.
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6.5 Discussion
Summarizing, we can state that, overall, the algorithms performed well with regards to
speed - with most taking less than 50 milliseconds to complete with the longest strings
of 60 characters. The exception was the Grid algorithm for counting multiset based
common subsequences, which took seconds to run for each pair of strings and encoun-
tered, as expected, the integer overflow issue for long strings. The integer overflow
issue may provide a challenge to using this algorithm with long strings, and may need
to use big integer arithmetic to solve. The main memory requirement is the multiplica-
tion of two integers, the lengths of two strings. The memory requirement is unlikely to
ever be an issue on even modest systems.

7 Conclusions
In this paper we present work on how to quantify the subsumption relation in the spe-
cific context of sequences. Subsumption is commonly used in knowledge representa-
tion and ontology; if quantified, it can also be used in data analysis tasks such as pattern
recognition where data is usually represented as histograms (i.e. sequences of values)
– image analysis to detect objects in an image, and spectral data analysis to detect the
presence of a reference pattern in a given spectrum.

We give an axiomatic characterisation of subsumption, suggest a set-based quantifi-
cation and a sequence-based quantification in particular, present a general algorithmic
framework that can be used in computing subsumption in different cases, and present
an experimental evaluation of these algorithms.

We conclude the following:

• The generalized Grid-algorithm provides for a very flexible efficient tool to quan-
tify sequential subsumption in a variety of ways.

• Efficient algorithms exist for computing subsumption for various cases – when
set (canonical and multiset) is used, when embedding is considered, and when
only linear embedding is considered.

• These algorithms are all quadratic in the length of one sequence and linear in the
lengths of both sequences and their longest common subsequence.

• The Grid algorithm for multiset-based common subsequence counting returns
large integers so big integer arithmetic may be required in its implementation for
applications with long sequences.

Future work will include implementing the algorithms using big integer arithmetic
and applying the subsumption measure in various practical tasks such as object detec-
tion, substance detection, food authentication and spectral archive search. In the case
of food authentication [33, 31], a similarity measure is typically used to compare an
unknown sample and a known reference based on their spectra, usually after data pro-
cessing and perhaps feature extraction. This approach works well when the spectral
data are carefully collected without much noise so is suitable for use by professionals.
It is unfortunately not suitable for non-professionals as data collection conditions can
hardly be met. Subsumption could provide an alternative, perhaps better, approach.
The reference spectrum can be accurately obtained by professionals and the sample
spectrum can be obtained by non-professionals with relatively large degree of noise.
The comparison can be done by subsumption – to check if the sample spectrum is a
subsumption of the reference spectrum. This approach can thus potentially empower
consumers for food authentication.

24



The concept of subsumption can be used in deep learning to design new loss func-
tions. Instead of using distance (i.e. dis-similarity), which is symmetric, to define the
loss function, subsumption may be used, which is asymmetric. This could potentially
lead to completely different deep neural networks.
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local binary patterns: Application to face recognition. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 28(12):2037–2041, Dec 2006.

[2] Steve Awodey. Category Theory. Number 52 in Oxford Logic Guides. Oxford
University Press, Oxford, UK, 2nd edition, 2009.

[3] Frantz Baader, Ian Horrocks, and Ulrike Sattler. Description logics. In Steffen
Staab and Rudi Studer, editors, Handbook on Ontologies (2nd Edition), Interna-
tional Handbooks on Information Systems, pages 21–44. Springer, New York, 2
edition, 2009.

[4] Sugata Banerji, Atreyee Sinha, and Chengjiun Liu. New image descriptors based
on color, texture, shape and wavelets for object and scene image classification.
Neurocomputing, 117:173–185, 2013.

[5] Wayne Blizard. Multiset theory. Notre Dame Journal of Formal Logic, 30(1):36–
66, 1988.

[6] Fernando Bobillo, Carlos Bobed, and Eduardo Mena. On the generalization of
the discovery of subsumption relationships to the fuzzy case. 2017 IEEE Inter-
national Conference on Fuzzy Systems (FUZZ-IEEE), pages 1–6, 2017.

[7] Fernando Bobillo and Umberto Straccia. fuzzydl: An expressive fuzzy descrip-
tion logic reasoner. In Proc IEEE International Conference on Fuzzy Systems,
pages 923 – 930, 07 2008.

[8] Stefan Borgwardt, Marco Cerami, and Rafael Peñaloza. The complexity of sub-
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(a) On the 100-fixed-substrings dataset

(b) On the 100-fixed-randomstrings dataset

Figure 7: The Grid (set) algorithm
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(a) On the 100-fixed-substrings dataset

(b) On the 100-fixed-randomstrings dataset

Figure 8: The Grid (multiset) algorithm
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(a) On the 100-fixed-substrings dataset

(b) On the 100-fixed-randomstrings dataset

Figure 9: The Grid algorithm
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(a) On the 100-fixed-substrings dataset.

(b) On the 100-fixed-randomstrings dataset. The ‘lcs’ values are the length
of the longest common substring for each pair of strings.

Figure 10: The Linear Warping algorithm

Figure 11: The (p, q)-linear warping algorithm on the 100-fixed-randomstrings dataset,
where the X axis is the proposed runtime calculation for the algorithm.
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(a) On the 100-fixed-randomstrings dataset

(b) On the 100-fixed-randomstrings dataset

Figure 12: The Optimised Linear Warp Algorithm
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