7,099 research outputs found

    A Survey on Joint Object Detection and Pose Estimation using Monocular Vision

    Get PDF
    In this survey we present a complete landscape of joint object detection and pose estimation methods that use monocular vision. Descriptions of traditional approaches that involve descriptors or models and various estimation methods have been provided. These descriptors or models include chordiograms, shape-aware deformable parts model, bag of boundaries, distance transform templates, natural 3D markers and facet features whereas the estimation methods include iterative clustering estimation, probabilistic networks and iterative genetic matching. Hybrid approaches that use handcrafted feature extraction followed by estimation by deep learning methods have been outlined. We have investigated and compared, wherever possible, pure deep learning based approaches (single stage and multi stage) for this problem. Comprehensive details of the various accuracy measures and metrics have been illustrated. For the purpose of giving a clear overview, the characteristics of relevant datasets are discussed. The trends that prevailed from the infancy of this problem until now have also been highlighted.Comment: Accepted at the International Joint Conference on Computer Vision and Pattern Recognition (CCVPR) 201

    Automatic landmark annotation and dense correspondence registration for 3D human facial images

    Full text link
    Dense surface registration of three-dimensional (3D) human facial images holds great potential for studies of human trait diversity, disease genetics, and forensics. Non-rigid registration is particularly useful for establishing dense anatomical correspondences between faces. Here we describe a novel non-rigid registration method for fully automatic 3D facial image mapping. This method comprises two steps: first, seventeen facial landmarks are automatically annotated, mainly via PCA-based feature recognition following 3D-to-2D data transformation. Second, an efficient thin-plate spline (TPS) protocol is used to establish the dense anatomical correspondence between facial images, under the guidance of the predefined landmarks. We demonstrate that this method is robust and highly accurate, even for different ethnicities. The average face is calculated for individuals of Han Chinese and Uyghur origins. While fully automatic and computationally efficient, this method enables high-throughput analysis of human facial feature variation.Comment: 33 pages, 6 figures, 1 tabl

    Off-Line Camera-Based Calibration for Optical See-Through Head-Mounted Displays

    Get PDF
    In recent years, the entry into the market of self contained optical see-through headsets with integrated multi-sensor capabilities has led the way to innovative and technology driven augmented reality applications and has encouraged the adoption of these devices also across highly challenging medical and industrial settings. Despite this, the display calibration process of consumer level systems is still sub-optimal, particularly for those applications that require high accuracy in the spatial alignment between computer generated elements and a real-world scene. State-of-the-art manual and automated calibration procedures designed to estimate all the projection parameters are too complex for real application cases outside laboratory environments. This paper describes an off-line fast calibration procedure that only requires a camera to observe a planar pattern displayed on the see-through display. The camera that replaces the user’s eye must be placed within the eye-motion-box of the see-through display. The method exploits standard camera calibration and computer vision techniques to estimate the projection parameters of the display model for a generic position of the camera. At execution time, the projection parameters can then be refined through a planar homography that encapsulates the shift and scaling effect associated with the estimated relative translation from the old camera position to the current user’s eye position. Compared to classical SPAAM techniques that still rely on the human element and to other camera based calibration procedures, the proposed technique is flexible and easy to replicate in both laboratory environments and real-world settings

    Facial Asymmetry Analysis Based on 3-D Dynamic Scans

    Get PDF
    Facial dysfunction is a fundamental symptom which often relates to many neurological illnesses, such as stroke, Bell’s palsy, Parkinson’s disease, etc. The current methods for detecting and assessing facial dysfunctions mainly rely on the trained practitioners which have significant limitations as they are often subjective. This paper presents a computer-based methodology of facial asymmetry analysis which aims for automatically detecting facial dysfunctions. The method is based on dynamic 3-D scans of human faces. The preliminary evaluation results testing on facial sequences from Hi4D-ADSIP database suggest that the proposed method is able to assist in the quantification and diagnosis of facial dysfunctions for neurological patients

    Resource saving Approach of visual tracking fiducial marker recognition for unmanned aerial vehicle

    Get PDF
    Unmanned aerial vehicle (UAV) tracking fiducial marker is a challenging problem, because of camera system vibration, which causes visible frame-to-frame jitter in the airborne videos and unclear marker vision. Multirotors have very limited weight carrying, controller, and battery power resources. While obtaining and processing motion blurred images, which have no useful information, requires much more image processing subsystem resources. The paper presents blurry image frame elimination based approach of UAV resource saving fiducial marker visual tracking. The proposed approach integrates accelerometer and visual data processing algorithms to predict image blur and skip blurred frames. Experiments have been performed to verify the validity of the proposed approach

    Evolved embodied phase coordination enables robust quadruped robot locomotion

    Full text link
    Overcoming robotics challenges in the real world requires resilient control systems capable of handling a multitude of environments and unforeseen events. Evolutionary optimization using simulations is a promising way to automatically design such control systems, however, if the disparity between simulation and the real world becomes too large, the optimization process may result in dysfunctional real-world behaviors. In this paper, we address this challenge by considering embodied phase coordination in the evolutionary optimization of a quadruped robot controller based on central pattern generators. With this method, leg phases, and indirectly also inter-leg coordination, are influenced by sensor feedback.By comparing two very similar control systems we gain insight into how the sensory feedback approach affects the evolved parameters of the control system, and how the performances differs in simulation, in transferal to the real world, and to different real-world environments. We show that evolution enables the design of a control system with embodied phase coordination which is more complex than previously seen approaches, and that this system is capable of controlling a real-world multi-jointed quadruped robot.The approach reduces the performance discrepancy between simulation and the real world, and displays robustness towards new environments.Comment: 9 page

    A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and Performance Evaluation Methods in Consumer Platforms

    Full text link
    In this paper a review is presented of the research on eye gaze estimation techniques and applications, that has progressed in diverse ways over the past two decades. Several generic eye gaze use-cases are identified: desktop, TV, head-mounted, automotive and handheld devices. Analysis of the literature leads to the identification of several platform specific factors that influence gaze tracking accuracy. A key outcome from this review is the realization of a need to develop standardized methodologies for performance evaluation of gaze tracking systems and achieve consistency in their specification and comparative evaluation. To address this need, the concept of a methodological framework for practical evaluation of different gaze tracking systems is proposed.Comment: 25 pages, 13 figures, Accepted for publication in IEEE Access in July 201
    • …
    corecore