5,872 research outputs found

    Effects of dance therapy on balance, gait and neuro-psychological performances in patients with Parkinson's disease and postural instability

    Get PDF
    Postural Instability (PI) is a core feature of Parkinson’s Disease (PD) and a major cause of falls and disabilities. Impairment of executive functions has been called as an aggravating factor on motor performances. Dance therapy has been shown effective for improving gait and has been suggested as an alternative rehabilitative method. To evaluate gait performance, spatial-temporal (S-T) gait parameters and cognitive performances in a cohort of patients with PD and PI modifications in balance after a cycle of dance therapy

    A systematic review of digital technology to evaluate motor function and disease progression in motor neuron disease

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is the most common subtype of motor neuron disease (MND). The current gold-standard measure of progression is the ALS Functional Rating Scale—Revised (ALS-FRS(R)), a clinician-administered questionnaire providing a composite score on physical functioning. Technology offers a potential alternative for assessing motor progression in both a clinical and research capacity that is more sensitive to detecting smaller changes in function. We reviewed studies evaluating the utility and suitability of these devices to evaluate motor function and disease progression in people with MND (pwMND). We systematically searched Google Scholar, PubMed and EMBASE applying no language or date restrictions. We extracted information on devices used and additional assessments undertaken. Twenty studies, involving 1275 (median 28 and ranging 6–584) pwMND, were included. Sensor type included accelerometers (n = 9), activity monitors (n = 4), smartphone apps (n = 4), gait (n = 3), kinetic sensors (n = 3), electrical impedance myography (n = 1) and dynamometers (n = 2). Seventeen (85%) of studies used the ALS-FRS(R) to evaluate concurrent validity. Participant feedback on device utility was generally positive, where evaluated in 25% of studies. All studies showed initial feasibility, warranting larger longitudinal studies to compare device sensitivity and validity beyond ALS-FRS(R). Risk of bias in the included studies was high, with a large amount of information to determine study quality unclear. Measurement of motor pathology and progression using technology is an emerging, and promising, area of MND research. Further well-powered longitudinal validation studies are needed. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00415-022-11312-7

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 335)

    Get PDF
    This bibliography lists 143 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during March, 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies

    The impact of temporal synchronisation imprecision on TRF analyses

    Get PDF
    Human sensory perception requires our brains to extract, encode, and process multiple properties of the sensory input. In the context of continuous sensory signals, such as speech and music, the measured electrical neural activity synchronises to properties such as the acoustic envelope, a phenomenon referred to as neural tracking. The ability of measuring neural tracking with non-invasive neurophysiology constitutes an exciting new opportunity for applied research. For example, it enables the objective assessment of cognitive functions in challenging cohorts and environments by using pleasant, everyday tasks, such as watching videos. However, neural tracking has been mostly studied in controlled, laboratory environments guaranteeing precise synchronisation between the neural signal and the corresponding labels (e.g., speech envelope). There exist various challenges that could impact such a temporal precision in, for instance, out-of-lab scenarios, such as technology (e.g., wireless data acquisition), mobility requirements (e.g., clinical scenarios), and the task (e.g., imagery). Aiming to address this type of challenge, we focus on the predominant scenario of continuous sensory experiments involving listening to speech and music. First a temporal response function analysis is presented on two different datasets to assess the impact of trigger imprecision. Second, a proof-of-concept re-alignment methodology is proposed to determine potential issues with the temporal synchronisation. Finally, a use-case study is presented that demonstrates neural tracking measurements in a challenging scenario involving older individuals with neurocognitive decline in care homes. Significance Statement Human cognitive functions can be studied by measuring neural tracking with non-invasive neurophysiology as participants perform pleasant, everyday tasks, such as listening to music. However, while recent work has encouraged the use of this approach in applied research, it remains unclear how robust neural tracking measurements can be when considering the methodological constraints of applied scenarios. This study determines the impact of a key factor for the measurement of neural tracking: the temporal precision of the neural recording. The results provide clear guidelines for future research, indicating what level of imprecision can be tolerated for measuring neural tracking with speech and music listening tasks in both laboratory and applied settings. Furthermore, the study provides a strategy to assess the impact of imprecision in the synchronisation of the neural recording, thus developing new tools for applied neuroscience

    The Role of Movement Analysis in Diagnosing and Monitoring Neurodegenerative Conditions: Insights from Gait and Postural Control

    Get PDF
    Quantifying gait and postural control adds valuable information that aids in understanding neurological conditions where motor symptoms predominate and cause considerable functional impairment. Disease-specific clinical scales exist; however, they are often susceptible to subjectivity, and can lack sensitivity when identifying subtle gait and postural impairments in prodromal cohorts and longitudinally to document disease progression. Numerous devices are available to objectively quantify a range of measurement outcomes pertaining to gait and postural control; however, efforts are required to standardise and harmonise approaches that are specific to the neurological condition and clinical assessment. Tools are urgently needed that address a number of unmet needs in neurological practice. Namely, these include timely and accurate diagnosis; disease stratification; risk prediction; tracking disease progression; and decision making for intervention optimisation and maximising therapeutic response (such as medication selection, disease staging, and targeted support). Using some recent examples of research across a range of relevant neurological conditions—including Parkinson’s disease, ataxia, and dementia— we will illustrate evidence that supports progress against these unmet clinical needs. We summarise the novel ‘big data’ approaches that utilise data mining and machine learning techniques to improve disease classification and risk prediction, and conclude with recommendations for future direction

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies

    Consensus Paper: Neurophysiological Assessments of Ataxias in Daily Practice

    Full text link
    The purpose of this consensus paper is to review electrophysiological abnormalities and to provide a guideline of neurophysiological assessments in cerebellar ataxias. All authors agree that standard electrophysiological methods should be systematically applied in all cases of ataxia to reveal accompanying peripheral neuropathy, the involvement of the dorsal columns, pyramidal tracts and the brainstem. Electroencephalography should also be considered, although findings are frequently non-specific. Electrophysiology helps define the neuronal systems affected by the disease in an individual patient and to understand the phenotypes of the different types of ataxia on a more general level. As yet, there is no established electrophysiological measure which is sensitive and specific of cerebellar dysfunction in ataxias. The authors agree that cerebellar brain inhibition (CBI), which is based on a paired-pulse transcranial magnetic stimulation (TMS) paradigm assessing cerebellar-cortical connectivity, is likely a useful measure of cerebellar function. Although its role in the investigation and diagnoses of different types of ataxias is unclear, it will be of interest to study its utility in this type of conditions. The authors agree that detailed clinical examination reveals core features of ataxia (i.e., dysarthria, truncal, gait and limb ataxia, oculomotor dysfunction) and is sufficient for formulating a differential diagnosis. Clinical assessment of oculomotor function, especially saccades and the vestibulo-ocular reflex (VOR) which are most easily examined both at the bedside and with quantitative testing techniques, is of particular help for differential diagnosis in many cases. Pure clinical measures, however, are not sensitive enough to reveal minute fluctuations or early treatment response as most relevant for pre-clinical stages of disease which might be amenable to study in future intervention trials. The authors agree that quantitative measures of ataxia are desirable as biomarkers. Methods are discussed that allow quantification of ataxia in laboratory as well as in clinical and real-life settings, for instance at the patients' home. Future studies are needed to demonstrate their usefulness as biomarkers in pharmaceutical or rehabilitation trials
    corecore