731 research outputs found

    Loo.py: transformation-based code generation for GPUs and CPUs

    Full text link
    Today's highly heterogeneous computing landscape places a burden on programmers wanting to achieve high performance on a reasonably broad cross-section of machines. To do so, computations need to be expressed in many different but mathematically equivalent ways, with, in the worst case, one variant per target machine. Loo.py, a programming system embedded in Python, meets this challenge by defining a data model for array-style computations and a library of transformations that operate on this model. Offering transformations such as loop tiling, vectorization, storage management, unrolling, instruction-level parallelism, change of data layout, and many more, it provides a convenient way to capture, parametrize, and re-unify the growth among code variants. Optional, deep integration with numpy and PyOpenCL provides a convenient computing environment where the transition from prototype to high-performance implementation can occur in a gradual, machine-assisted form

    Actors: The Ideal Abstraction for Programming Kernel-Based Concurrency

    Get PDF
    GPU and multicore hardware architectures are commonly used in many different application areas to accelerate problem solutions relative to single CPU architectures. The typical approach to accessing these hardware architectures requires embedding logic into the programming language used to construct the application; the two primary forms of embedding are: calls to API routines to access the concurrent functionality, or pragmas providing concurrency hints to a language compiler such that particular blocks of code are targeted to the concurrent functionality. The former approach is verbose and semantically bankrupt, while the success of the latter approach is restricted to simple, static uses of the functionality. Actor-based applications are constructed from independent, encapsulated actors that interact through strongly-typed channels. This paper presents a first attempt at using actors to program kernels targeted at such concurrent hardware. Besides the glove-like fit of a kernel to the actor abstraction, quantitative code analysis shows that actor-based kernels are always significantly simpler than API-based coding, and generally simpler than pragma-based coding. Additionally, performance measurements show that the overheads of actor-based kernels are commensurate to API-based kernels, and range from equivalent to vastly improved for pragma-based annotations, both for sample and real-world applications

    Loo.py: From Fortran to performance via transformation and substitution rules

    Full text link
    A large amount of numerically-oriented code is written and is being written in legacy languages. Much of this code could, in principle, make good use of data-parallel throughput-oriented computer architectures. Loo.py, a transformation-based programming system targeted at GPUs and general data-parallel architectures, provides a mechanism for user-controlled transformation of array programs. This transformation capability is designed to not just apply to programs written specifically for Loo.py, but also those imported from other languages such as Fortran. It eases the trade-off between achieving high performance, portability, and programmability by allowing the user to apply a large and growing family of transformations to an input program. These transformations are expressed in and used from Python and may be applied from a variety of settings, including a pragma-like manner from other languages.Comment: ARRAY 2015 - 2nd ACM SIGPLAN International Workshop on Libraries, Languages and Compilers for Array Programming (ARRAY 2015

    Tem_357 Harnessing the Power of Digital Transformation, Artificial Intelligence and Big Data Analytics with Parallel Computing

    Get PDF
    Traditionally, 2D and especially 3D forward modeling and inversion of large geophysical datasets are performed on supercomputing clusters. This was due to the fact computing time taken by using PC was too time consuming. With the introduction of parallel computing, attempts have been made to perform computationally intensive tasks on PC or clusters of personal computers where the computing power was based on Central Processing Unit (CPU). It is further enhanced with Graphical Processing Unit (GPU) as the GPU has become affordable with the launch of GPU based computing devices. Therefore this paper presents a didactic concept in learning and applying parallel computing with the use of General Purpose Graphical Processing Unit (GPGPU) was carried out and perform preliminary testing in migrating existing sequential codes for solving initially 2D forward modeling of geophysical dataset. There are many challenges in performing these tasks mainly due to lack of some necessary development software tools, but the preliminary findings are promising. Traditionally, 2D and especially 3D forward modeling and inversion of large geophysical datasets are performed on supercomputing clusters. This was due to the fact computing time taken by using PC was too time consuming. With the introduction of parallel computing, attempts have been made to perform computationally intensive tasks on PC or clusters of personal computers where the computing power was based on Central Processing Unit (CPU). It is further enhanced with Graphical Processing Unit (GPU) as the GPU has become affordable with the launch of GPU based computing devices. Therefore this paper presents a didactic concept in learning and applying parallel computing with the use of General Purpose Graphical Processing Unit (GPGPU) was carried out and perform preliminary testing in migrating existing sequential codes for solving initially 2D forward modeling of geophysical dataset. There are many challenges in performing these tasks mainly due to lack of some necessary development software tools, but the preliminary findings are promising.Traditionally, 2D and especially 3D forward modeling and inversion of large geophysical datasets are performed on supercomputing clusters. This was due to the fact computing time taken by using PC was too time consuming. With the introduction of parallel computing, attempts have been made to perform computationally intensive tasks on PC or clusters of personal computers where the computing power was based on Central Processing Unit (CPU). It is further enhanced with Graphical Processing Unit (GPU) as the GPU has become affordable with the launch of GPU based computing devices. Therefore this paper presents a didactic concept in learning and applying parallel computing with the use of General Purpose Graphical Processing Unit (GPGPU) was carried out and perform preliminary testing in migrating existing sequential codes for solving initially 2D forward modeling of geophysical dataset. There are many challenges in performing these tasks mainly due to lack of some necessary development software tools, but the preliminary findings are promising

    Seeing Shapes in Clouds: On the Performance-Cost trade-off for Heterogeneous Infrastructure-as-a-Service

    Full text link
    In the near future FPGAs will be available by the hour, however this new Infrastructure as a Service (IaaS) usage mode presents both an opportunity and a challenge: The opportunity is that programmers can potentially trade resources for performance on a much larger scale, for much shorter periods of time than before. The challenge is in finding and traversing the trade-off for heterogeneous IaaS that guarantees increased resources result in the greatest possible increased performance. Such a trade-off is Pareto optimal. The Pareto optimal trade-off for clusters of heterogeneous resources can be found by solving multiple, multi-objective optimisation problems, resulting in an optimal allocation of tasks to the available platforms. Solving these optimisation programs can be done using simple heuristic approaches or formal Mixed Integer Linear Programming (MILP) techniques. When pricing 128 financial options using a Monte Carlo algorithm upon a heterogeneous cluster of Multicore CPU, GPU and FPGA platforms, the MILP approach produces a trade-off that is up to 110% faster than a heuristic approach, and over 50% cheaper. These results suggest that high quality performance-resource trade-offs of heterogeneous IaaS are best realised through a formal optimisation approach.Comment: Presented at Second International Workshop on FPGAs for Software Programmers (FSP 2015) (arXiv:1508.06320
    • …
    corecore