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Abstract. GPU and multicore hardware architectures are commonly
used in many different application areas to accelerate problem solutions
relative to single CPU architectures. The typical approach to accessing
these hardware architectures requires embedding logic into the program-
ming language used to construct the application; the two primary forms
of embedding are: calls to API routines to access the concurrent func-
tionality, or pragmas providing concurrency hints to a language compiler
such that particular blocks of code are targeted to the concurrent func-
tionality. The former approach is verbose and semantically bankrupt,
while the success of the latter approach is restricted to simple, static
uses of the functionality.
Actor-based applications are constructed from independent, encapsu-
lated actors that interact through strongly-typed channels. This paper
presents a first attempt at using actors to program kernels targeted at
such concurrent hardware. Besides the glove-like fit of a kernel to the ac-
tor abstraction, quantitative code analysis shows that actor-based kernels
are always significantly simpler than API-based coding, and generally
simpler than pragma-based coding. Additionally, performance measure-
ments show that the overheads of actor-based kernels are commensurate
to API-based kernels, and range from equivalent to vastly improved for
pragma-based annotations, both for sample and real-world applications.

1 Introduction

Due to power consumption, heat dissipation, and clock propagation limits, mod-
ern hardware architectures are now designed with many, concurrent processing
elements, as opposed to single processing elements with increasing clock rates;
examples of such architectures include GPUs and multicore CPUs. These hard-
ware platforms are designed to provide the user with multiple physical threads
of execution, thus enabling many computations to occur simultaneously.

Software threads have traditionally been used to enable parallel execution,
on CPU architectures. However, due to the different nature of GPU hardware
architectures, a number of different programming techniques are used. OpenCL
is a standardised programming framework available for the main GPU vendors
(NVIDIA and AMD), as well as other parallel hardware architectures.

While the OpenCL API enables access to these architectures, there are three
main limitations. Firstly, the user is required to write large amounts of boilerplate
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code to create the OpenCL environment for a particular calculation. Secondly,
the programming style requires explicit data movement between the host CPU
and the OpenCL device; this requires manually flattening multi-dimensional ar-
rays and structures of non-primitive types. Thirdly, the language and style used
to program the device is often different from the programming language being
used on the host. A similar argument can be made against the CUDA frame-
work; since CUDA is only available on NVIDIA hardware, this work is focused
on the more broadly applicable OpenCL.

OpenACC is a pragma-based approach to concurrent programming, where
a developer explicitly annotates sections of code to be parallelised, as well as
the data which should be moved between host and device. While this approach
abstracts much of the boilerplate code of OpenCL, applying the simple annota-
tions to single threaded code does not guarantee good performance and is not
effective for all application classes.

We describe the first application of actor-based programming to kernel-based
concurrency at the language level by including the OpenCL framework within the
Ensemble programming language. We hypothesise that moving from low-level C
code to a concurrent, shared-nothing, high-level actor programming model sim-
plifies the use of OpenCL by providing appropriate structuring, thus enabling
greater access to high-performance and heterogeneous computing. We demon-
strate that applications written using actors exhibit less complexity via quan-
titative metrics compared to handwritten OpenCL in C (C-OpenCL), and that
these applications run efficiently on different hardware platforms, with low over-
head when compared to C-OpenCL and equivalent or better performance to
OpenACC annotated C (C-OpenACC). This is shown for a number of different
types of application, including a real-world document ranking example.

The remainder of the paper is arranged as follows: Section 2 describes the
OpenCL framework, Section 3 gives an overview of the state of the art, Section 4
describes the Ensemble language, Section 5 discusses the combination of OpenCL
and actors with the language and runtime, Section 6 describes experimental
results, and Section 7 summarises the work and discusses future directions.

2 OpenCL

OpenCL is a programming framework for heterogeneous and parallel computing.
It is standardised and is managed by the Khronos working group3. In OpenCL,
users are required to think in terms of host and device code, where a host is a co-
ordinator application on the CPU, and a device is an accelerator. An accelerator
may be a CPU, GPU, FPGA, or co-processor such as the Xeon Phi [10].

2.1 OpenCL Configuration

In OpenCL, the host is tasked with setting up, dispatching, and collecting results
from a device. OpenCL is accessed through an API, which enables relatively low-

3 https://www.khronos.org/opencl/ - Accessed 5 January 2015
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1 __kernel void square(__global float* input , __global float* output ,
2 const unsigned int count ){
3 int i = get_global_id (0);
4 if(i < count)
5 output[i] = input[i] * input[i];
6 }

Fig. 1: OpenCL Kernel to Compute the Square of An Input Array

level access to data types and functions in order to program and interact with
one or more accelerators.

Creating an OpenCL environment consists of first querying the hardware at
runtime to determine the available vendor platforms and the devices available
in each platform. Platforms are essentially drivers provided by the hardware
vendor, and the devices represent the actual accelerators. Then, a context must
be created. A context is an umbrella structure that holds the device(s) to be
used, as well as other runtime software constructs. A command queue is then
associated with each device and placed within the context. A command queue is
used to issue commands to a device. Commands include device queries, memory
management operations, and kernel (Section 2.2) invocations. After this, a user
creates a program with the kernel source file, and compiles it at runtime. The
specific function to be executed within the compiled source is then used to create
the kernel object. At this point the OpenCL environment has been constructed.

From here the user allocates memory on the device and then copies host
data into this memory. The device memory is then associated with the correct
position in the kernel arguments. Then, the number of dimensions upon which
the kernel should work is calculated, and the kernel is launched on the device,
with this information, via the command queue. Usually, the host then blocks at-
tempting to read data back from the device once it has finished its computation.
Once all computation is complete and the device is no longer required, there are
appropriate destructor functions. The device itself is treated simply as a func-
tional unit. Data and code are passed to the device, the device executes this
code, and the results are read back by the host.

2.2 Kernels

A device runs a special piece of code known as a kernel. An OpenCL kernel
is written in a C-like syntax and represents the logic of a single thread. The
number and groupings of threads are supplied during the configuration stage on
the host. These values are known as the local and global worksizes, and are
used to optimise the allocation of threads to the underlying hardware for a given
dataset. Within a kernel, the currently executing thread may be identified via
the API. This can be used to customise application logic. The kernel is expressed
as a function with parameters. Information for the actual computation is passed
to this function as arguments by the host.

The OpenCL model uses a memory hierarchy in which memory is split into
global, local, private, and constant regions. This is a direct mapping to the
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hardware configuration of memory found in GPUs, however the same model is
applied to all hardware devices. Global memory is shared amongst all threads,
local memory is shared between a specified group of threads, and private memory
is specific to a thread. Global and local memory are subject to unsynchronised
modifications, although there are mechanisms to synchronise access. Constant
memory is shared by all threads, but is read only. Listing 1 shows a simple kernel.

3 Parallel Programming Frameworks

There are a number of different techniques which are used to program GPUs.
These can be split into three different equivalence classes: APIs, fully-automated
parallelisation, and semi-automated parallelisation.

3.1 API Approach

The most low level approach to programming an accelerator is via an API within
an existing language. Examples of this include Python [11], Java 4, and the
original implementations in C/C++ of OpenCL [1] and CUDA [13].

While an API is a simple approach, requiring no modifications to the host lan-
guage, the general drawback of using an API is the need to write large amounts
of boilerplate code simply to setup the programming environment, as described
in Section 2.1. This boilerplate code often follows the steps required to setup
and initialise the relevant framework, and can have very little relation to the
programming idioms of the host language - e.g., the Java API requires the use
of pointer objects. Similarly, the code required to express the calculations on the
accelerator is written in a C-like language, which is embedded in the host lan-
guage as a string. For non-C-like languages, such as Java and Python, this can
be challenging for programmers without experience in C/C++. More generally,
this leads to two different programming styles for the host and the accelerator,
although it has the potential for the best performance.

3.2 Automated Approach

A different approach is to hide from the developer all the low-level details such
as initialisation, data allocation and movement, the specification of work sizes,
and when to dispatch kernels. A number of domain-specific languages have been
developed to provide such higher level abstractions. Examples of these include
Accelerator [16], LIME [6], SkelCL [14], and Chestnut [15].

With the exception of Accelerator, which pre-dates OpenCL and CUDA and
is no longer under development, the primitives of these languages abstract data
movement and computation through operations such as map, reduce, stencil, and
other vector operations. In general, the effectiveness of the approach relies on
the maturity of the source language, and the quality of the code transformation

4 http://www.jocl.org/ - Accessed 5 January 2015
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to the underlying transformation. For example, Chestnut does not support data
structures, SkelCL requires stack operations to assign variables to a kernel, and
LIME only allows static topologies of tasks and immutable state.

3.3 Semi-Automated Approach

Much work has been done on semi-automated translation of serial programs to
parallel OpenCL or CUDA code. The techniques used include recognition of
common parallelisable patterns in the source code, such as nested loops that can
be unrolled and executed in parallel. However, most rely on the programmer to
provide annotations or some form of refactoring applied to the original code.

AMD’s open-source Aparapi5 system allows partial offloading of Java code
at runtime. Aparapi relies on the programmer to refactor a function or loop
into an inner class with a run method containing the computation. The Java-
byte code for this method is translated to OpenCL/C code at runtime. The
programming model is similar to our work as it requires some refactoring but
still allows the kernel code to be written in a subset of the original language,
making use of the primitives (such as classes) provided by that language to
express the required meta-information. It also abstracts, to a certain extent, the
exact memory layout and management of data movement and provides automatic
adjustment to the available devices, rather than having the programmer optimize
the code for a specific device. Aparapi offers a trade-off between a simplified
programming model, and non-trivial performance cost [5].

OpenACC [17] is a set of explicit annotations and API for C or Fortran
code, which enables annotated code to execute on GPUs. Separate OpenMP [3]
annotations are required for CPUs. With OpenACC, the user must explicitly
annotate data to be moved between host and device, as well as sections of code
which should be parallelised. Using these hints, the compiler attempts to generate
optimised code for the supported patterns. The system enables the use of existing
code with fewer modifications than is required to use the OpenCL API. The PGI6

compiler provides the best performance, but is proprietary. There are also open-
source compilers, with varying quality and reliability. hiCuda [8] is a similar
approach for the CUDA framework, applying annotations to sequential C.

By their nature, annotations are extraneous to the logic of the underlying
application. This has the advantage that existing code can be used as a start-
ing point, with annotations extending or enhancing the functionality. However,
this means that there is no intuition as to what is happening under the hood.
Annotations must be applied to each construct to be parallelised, resulting in
applications which are increasingly difficult to follow as their size increases. Also,
there is no guarantee that the compiler will be able to generate an effective paral-
lel strategy for the annotated section of code. For example, if there is a non-linear
data dependency in a for loop, sequential code may be generated instead of par-
allel. Thus, the approach is unsuitable for all application classes, requiring code
to be refactored or rewritten, negating a main advantage of the approach.

5 code.google.com/p/aparapi - Accessed 5 January 2015
6 http://www.pgroup.com/ - Accessed 5 January 2015
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1 type Isnd is interface(
2 out integer output
3 )
4 type Ircv is interface(
5 in integer input
6 )
7 stage home{
8 actor snd presents Isnd {
9 value = 1;

10 constructor () {}
11 behaviour {
12 send value on output;
13 value := value + 1;

14 }}
15 actor rcv presents Ircv {
16 constructor () {}
17 behaviour {
18 receive data from input;
19 printString("\nreceived: ");
20 printInt(data);
21 }}
22 boot{
23 s = new snd();
24 r = new rcv();
25 connect s.output to r.input;
26 }}

Fig. 2: Simple Ensemble Send and Receive Example

4 Ensemble

Ensemble is an actor-based programming language. It is an evolution of the
Insense programming language [4] which was originally created to ease the de-
velopment of software for wireless sensor networks. An Ensemble actor has its
own private state and a single thread of control. The single thread of control is
expressed as a behaviour clause. The code within this clause is repeated un-
til explicitly told to stop. All actors execute within a stage. Stages represent
a memory space, thus many stages may exist per physical machine. Ensemble
supports reference counted garbage collection.

Actors have shared-nothing semantics, meaning that they share no state.
Message passing along uni-directional, typed channels is used to share infor-
mation between actors. Each channel may have an optional buffer to enable
asynchrony during communication. When no buffer is specified or a buffer is
full, the system reverts to synchronous, blocking communication. Channels are
either statically associated with a specific actor via an interface, or dynamically
created and composed at runtime into one or more 1-1, 1-n, or n-1 topologies.

In actor-based languages, data sent along channels must be duplicated to
ensure that shared-nothing semantics are preserved. One novel feature of En-
semble is the ability to declare data movable (mov). By marking heap allocated
memory as movable, only a reference will be sent along a channel, as opposed
to a duplicate. Movability is included within the type system of the language,
using inter-procedural analysis at compiletime to ensure that once a reference
is sent it is not accessed again until it is assigned to, otherwise a compiletime
error is generated. This feature was originally developed to reduce heap memory
consumption and fragmentation in small embedded devices. Figure 2 shows a
simple Ensemble program which defines, instantiates and connects two actors,
one of which sends linearly increasing values to the other.

One of the core principles of Ensemble is adaptability and scalability. To
support this, Ensemble programs are compiled to custom Java bytecodes, which
then run on a custom built virtual machine (VM) [2]. This in turn runs on a
custom operating system (OS) [9]. Currently, Ensemble is capable of running
on small resource constrained sensor platforms, as well as embedded hardware,
reasonably-provisioned systems like the Raspberry Pi, and desktop machines.
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1 type data_t is struct (
2 real [][] a;
3 real [][] b;
4 real [][] result
5 )

6 type settings_t is opencl struct (

7 integer [] worksize;

8 integer [] groupsize;

9 in data_t input;
10 out real [][] output
11 )
12 type dispatchI is interface(
13 out settings_t requests;
14 out data_t dout;
15 in real [][] din
16 )
17 type mulI is interface(
18 in settings_t requests
19 )
20 stage home{

21 opencl <device index=0, device type=CPU>

22 actor Multiply presents mulI {
23 constructor () {}
24 behaviour {

25 receive req from requests;

26 receive d from req.input;

27 x = get_global_id (0);
28 y = get_global_id (1);

29 dim = get_global_size (0);
30 c = 0.0;
31 for i = 0 .. (dim -1) do {
32 c := c + (d.a[y][i]) * (d.b[i][x]);
33 }
34 d.result[x][y] := c;

35 send d.result on req.output;

36 }}
37 actor Dispatch presents dispatchI{
38 constructor () {}
39 behaviour {
40 s = 1024;
41 ws = new integer [2] of s;
42 gs = new integer [2] of 0;
43 i = new in data_t;
44 o = new out real [][];
45 connect dout to i;
46 connect o to din;
47
48 ocl_struct = new settings_t(ws,gs ,i,o);
49 d = generate_data(s);
50
51 send ocl_struct on requests;
52 send d on dout;
53 receive result from din;
54 }}
55 boot{
56 d = new Dispatch ();
57 m = new Multiply ();
58 connect d.requests to m.requests;
59 }
60 }

Fig. 3: Matrix Multiply Example

5 Integration of OpenCL in Ensemble Actors

This section describes the integration of OpenCL into Ensemble with minimal
changes to the language. By doing this, Ensemble provides a high-level, single-
source solution which leverages OpenCL’s existing low-level, yet portable, split-
source infrastructure.

5.1 Language Integration

The similarity between the isolated nature of computation in actor-based pro-
gramming and the OpenCL model is strong. Both require explicit data movement
between loci of computation. In Ensemble, the channel mechanism provides a
natural way to facilitate this without the need to go outside the language or ob-
fuscate existing code; consequently, OpenCL kernels are represented as actors.
The requirement for separate programming of host and device also matches the
distinction between actors. The full example of matrix multiplication in Ensem-
ble shown in Figure 3 is referred to throughout this section. The green colour
represents additions to the language, and light yellow shows compiler-enforced
structure. These highlighted sections represent the only changes to the language.
Language Model In Ensemble, an actor is marked as being a kernel by adding
the opencl keyword to its definition (line 21). This tells the compiler that the
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actor’s interface should only contain a single channel, and that a slightly differ-
ent structure is expected within the behaviour clause. In this way, kernels are
integrated into the language, not a separate source file in a different language.

The single channel conveys an opencl struct type as defined by the devel-
oper (lines 6-11). This is a normal struct except that the opencl keyword tells
the compiler that the fields of the struct should contain two integer arrays, an
in channel, and an out channel. The arrays convey the local and global work-
sizes required to dispatch the OpenCL kernel, as discussed in Section 2. The
two channels are the input and output channels for the data to and from the
kernel, respectively. The channels are created and configured in the host actor
(lines 43-46), sent to the kernel actor via the input channel (line 51), and then
the data is sent (line 52). The host then waits for data from the actor (line 53).
This is an example of the dynamic nature of Ensemble channels, and enables
any type of data to be conveyed to and from the kernel actor safely, without
requiring any extra compiler analysis, beyond normal language processing.

Within the behaviour loop of the kernel actor it is required that the first
two statements are receive statements (lines 25-26). The first statement receives
an opencl struct instance. This enables the runtime to prepare the kernel for
dispatch to the device with the appropriate dimensions by using the worksize

and groupsize values. The second statement is used to receive the data that the
kernel will process. It is also required that the last statement is a send statement
(line 35). This is used to send the processed data onwards. The send statement
is also used as a marker, with all statements between the second receive and
send statements representing the OpenCL kernel (lines 27-34). The standard
set of OpenCL calls natively available in a kernel are also available within the
OpenCL behaviour clause between these markers (lines 27-29), including the
math functions. Also, the global, local, and private memory modifiers are
available, enabling the developer to take full advantage of the different memory
regions which are available in the OpenCL model to improve performance.

One of the key advantages of embedding OpenCL within the language is the
ability to preserve multi-dimensional array and structure dereferencing. Cur-
rently, OpenCL requires that arrays and structures containing pointers are flat-
tened when being passed to a kernel. In Ensemble, this process is automated,
leaving the users with normal dereferencing of such data types within the kernel.
This also has the advantage of providing the user with warnings and errors for
kernels at compiletime, rather than having to wait until runtime kernel compila-
tion. Furthermore, as all the OpenCL actors are connected by channels, should
the user wish to change the device upon which the OpenCL actor should run, the
language only requires that the device type be modified in the actor definition.
No other change is required. Also, should the developer wish to use a different
kernel or a different device at runtime, all that is required is to reconnect the
configuration channel to an appropriate kernel actor’s configuration channel.

By tagging an actor as an OpenCL kernel, a user must still write parallel
code within the behaviour clause; however, by integrating this into the language
model, the process is much simplified compared to a C version, see Section 6.
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Fig. 4: OpenCL in Ensemble Execution Model

Compiler Modifications The compiler was modified to apply slightly different
rules to an OpenCL actor, enforcing the structure described previously. The
channel operations mirror the explicit data movement required by OpenCL,
and it is the channel operations that dictate the creation of device buffers and
the movement of memory between the host and the device. struct values are
flattened so that each field is sent separately, with the compiler generating the
appropriate code within the kernel to manage this. Multi-dimensional arrays are
flattened to single dimensional arrays. Again, the compiler generates appropriate
kernel code to manage this. Primitive values are sent as 1D-arrays of one element
so as to ensure updates within the kernel are applied to the value. Passing a
pointer to the host variable is not an option. A potential optimisation here is to
wrap all passed primitive variables in a single array.
Execution Model Figure 4 shows the execution model when using OpenCL
with Ensemble. Rather than the actor running on the device directly, an OpenCL
actor is compiled into a bytecode representation of the actor in the normal
way. A C representation of the code identified as the kernel is generated, and
stored as a string within the actor’s bytecode. Should the kernel actor contain
functions defined in other code sections, the compiler will generate C equivalents
within this string. This is completely hidden from the developer. The bytecode
is interpreted as normal, and acts as the host in the traditional OpenCL sense.
This actor handles the incoming and outgoing channel communications, as well
as preparing, launching, and collecting data from the kernel. This also enables
multiple kernels to execute on a single device.

5.2 Runtime Integration

Runtime In order to add OpenCL support into the Ensemble runtime, a number
of modifications were made. Firstly, the use of OpenCL is optional, and condi-
tionally compiled into the runtime. This was necessary to ensure that RAM and
ROM on resource-constrained platforms without OpenCL were not consumed.
In this way, the same source tree is still available for multiple platforms, reducing
maintenance and update effort.

Secondly, during the initialisation of the runtime, a single matrix is created to
hold the different platforms and devices available in this system. This is done to
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ensure that there is only a single command queue per device. This was necessary
as race-conditions were observed with multiple command queues per device when
reading data. The information passed in the declaration (Figure 3, line 21) of
an OpenCL actor is used to index into this matrix at runtime to determine
the appropriate context and command queue. If no information is given in the
declaration, default values are used.

Thirdly, OpenCL wrapper functions were created and made available to the
interpreter to simplify and abstract the interaction with the OpenCL API.

Interpreter Within the interpreter, all OpenCL operations are implemented
in C for performance. Each operation described in Section 2.1 is implemented
as a custom native operation in the VM. The VM has a special invokenative
bytecode that is used to provide access to certain primitive operations in the
runtime. This includes actor and channel lifecycle operations, and now includes
access to the OpenCL wrappers discussed previously. Also, each OpenCL actor
is given an OpenCLEnvironment variable. This is a runtime structure only visible
within the interpreter that is used to store metadata about the platform, device,
and device type, as well as the relevant command queue and context for a given
OpenCL actor. This structure is populated when the actor is created using the
information contained in the previously described runtime matrix.

Lazy Evaluation In OpenCL, a common idiom is to leave data on a device
for as long as possible, thus reducing the time spent copying data between the
device and host, and ultimately the application’s execution time; data movement
is often the greatest performance bottleneck. In actor-based languages there is
no shared state, hence when messages are sent between actors, a duplicate is
created and sent. This ensures no shared state between the actors, and that
each actor has a unique copy of the data. While this is correct, it costs time,
requires greater memory consumption, and precludes keeping data on the device.

To prevent such duplication, Ensemble supports marking non-primitive types
as movable (mov), as discussed in Section 4. This approach has been applied to
the OpenCL kernels in Ensemble. Marking the in channel to the kernel used for
data as moveable (mov) has two effects. Firstly, once any non-primitive data is
copied to the device it is marked as no longer being on the host, and copies of
relevant OpenCL data structures are associated with the runtime representation
of the data type. Secondly, the compiler will not generate the code to read this
data back from the device. Thus, when the data is sent onwards it will hold a
reference to the data on the device.

At this point there are two possibilities for the data that is sent onwards.
The first option is that the data successfully arrives at another OpenCL actor
without being accessed by the host. In this case, the pointer to the device data
is set as the appropriate kernel argument, and the kernel is dispatched. Here,
the data was kept on the device at all times. The second option is that the
data is either accessed directly by host code, or the data is sent to an OpenCL
actor associated with a different context. In both cases, the runtime reads the
data back from the device and returns the device memory. As Ensemble uses
automatic garbage collection, should the host reference count ever reach zero,
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both host and device memory will be returned. In this way, the choice to use
mov gives the user control over memory usage.

One benefit of lazy evaluation is that the runtime can automatically deter-
mine, using the OpenCLEnviroment, if the incoming data needs to be moved
to the current context, and then do so if required. Currently, OpenCL manages
data movement between devices in a single context, but not in different contexts.

6 Evaluation

This section explores the linguistic complexity and performance cost of code par-
allelisation with actors by comparison to API and directive-based programming.

6.1 Applications

A range of applications were chosen to evaluate the linguistic complexity and
performance of actor-based OpenCL in Ensemble as compared to equivalent C
and OpenACC implementations. The range of applications covered include ma-
trix operations, multiple kernels, parallel reduction and a real world application.
All of the source code for the described applications can be found online7.

– Matrix Multiplication multiplies two 10242 matrices in a single kernel.
– Mandelbrot computes a 1000 iteration Mandelbrot set in a single kernel.
– LUD (Lower Upper Decomposition) factorises a square matrix of 2048

elements, and is a common operation in matrix calculations: this example
uses three kernels in series.

– Matrix Reduction finds the minimal value in an array of 33,554,432 ele-
ments using parallel reduction in a single kernel.

– Document Ranking takes a set of documents and using a template deter-
mines if these documents are wanted, or unwanted: this is a single kernel.

6.2 Experimental Setup

The host machine had 16GB of RAM. CPU refers to an Intel Core i5-3550 CPU
@ 3.30GHz, and GPU refers to an AMD Radeon R9 290x GPU. All results are
the average of one hundred runs of the respective application, and the error bars
indicate the standard deviation of the total execution times. All code has been
compiled with the -O2 optimisation. Unless stated otherwise, the same results
were observed for all applications and implementations The AMD version of
OpenCL 1.2, and version 14.10 of the PGI compiler was used. All configuration
information is found within the online code examples.

6.3 Code Complexity

Table 1 shows the (arithmetic) difference between the concurrent and non-
concurrent code versions for each approach. As well as the lines of code written,

7 www.paul-harvey.org/data-and-links.html
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Table 1: Difference Between Single Threaded and Concurrent Code per Approach
Lines of Code Cyclomatic Complexity ABC

Application C Ensemble OpenACC C Ensemble OpenACC C Ensemble OpenACC
Matrix Multiplication 154 -8 5 -1 -2 0 134 2 1
Mandelbrot 96 -4 12 -1 1 0 22 -6 2
Reduction 266 72 3 19 4 1 103 10 0
LUD 144 7 7 5 -8 1 200 -11 0
Document Ranking 45 -16 3 53 -1 0 405 -29 0

the table also shows McCabe’s cyclomatic complexity [12] for applications. This
metric quantitatively assesses the number of different paths through a program.
Also shown is the assignments, branches, and conditions (ABC) metric that
assesses the size/complexity of code [7]. In each case, the number shown is for
the entire application; negative values indicate a decrease in the specified metric.

By comparison to C-OpenCL, both Ensemble-OpenCL and C-OpenACC re-
quire fewer lines of code, and are simpler by both metrics, with the only ex-
ceptions being the matrix multiplication and Mandelbrot cyclomatic complexity
examples. The negative values seen are due to the kernel code/actor effectively
replacing the outer for loop in the single-threaded version, thus reducing code
and complexity. In general, annotating code with OpenACC pragmas has little
effect on the code size or metrics. The main impact is from having to explicitly
specify the sizes of the data to be moved, requiring variables to be accessed.

The implicit kernel for loop, plus the actor and channel abstractions accounts
for the better results generally shown by Ensemble-OpenCL compared to C-
OpenACC. The main discrepancy being the reduction example, which required
very different kernel logic to the single-threaded equivalent in both Ensemble and
C, however, this mindset is advocated by both approaches, unlike OpenACC.

6.4 Performance

Figures 5a-5e show the comparative performance of Ensemble-OpenCL, C-OpenCL
and C-OpenACC for the applications described above. C-OpenACC will refer to
both GPU and CPU results, as the PGI compiler was used for both OpenACC
and OpenMP pragmas. Each column in each figure displays the time taken to
complete the given application, normalised to the Ensemble GPU results. This
is done to highlight relative application performance, rather than absolute exe-
cution performance. The columns are split to show the relative amount of time
taken to move data to a device, move data from a device, to execute a kernel,
and the overhead which represents the total relative application execution time
minus these values. This does not apply to C-OpenACC as it was not possible to
correctly identify the distinct operations due to the pragma-based abstraction.

Figures 5a and 5b show the results for the matrix multiplication and Mandel-
brot applications, respectively. The OpenCL actions (data movement and kernel
calculations) are nearly equivalent between the C and Ensemble versions. The
higher overheads in the Ensemble version are due to interpreter overhead for
the non-kernel code. C-OpenACC shows similar performance on the GPU for
Figure 5a, however much worse performance in Figure 5b, even when using the
fine-grained gangs and worker annotations to explicitly specify the groupsize
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(a) Matrix Multiplication
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(b) Mandelbrot
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(c) LUD
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Fig. 5: Performance between C-OpenCL, Ensemble-OpenCL and C-OpenACC
Normalised to Ensemble GPU

and worksize to be used on the GPU. Whereas an explicit kernel can take ad-
vantage of each thread’s position within the 2D architecture of the GPU, the
C-OpenACC abstraction cannot, hence the poor performance.

Figure 5c is of particular note as it highlights one of the advantages of using
channels. In this application there are three kernels, each performing a different
operation. In the Ensemble version, a controller actor plumbs the channels of the
kernel actors together, creating a pipeline of kernels. The controller then sends
the data, and waits for the final result. By comparison, the C-OpenCL version
sequentially invokes each kernel from the host. As C-OpenACC is annotated
single-threaded code, it also invokes the relevant code sequentially.

This application highlights the advantage of movability within Ensemble.
Without movability, LUD took approximately 3 minutes (not shown) to com-
plete on the GPU due to all the data movement involved; with movability, it
takes approximately five seconds on the GPU. Here we can see that by using
movable types, the time taken by Ensemble is comparable to the C version. The
higher overheads are caused by the non-OpenCL code being interpreted by the
unoptimised Ensemble VM, not data movement.
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In order to obtain comparable performance from OpenACC, annotating the
outer loop of the relevant code was not sufficient, requiring use of the non-trivial
gangs and worker annotations. This makes the distinction of host and device
explicit, with the added disadvantage of being inline in the code, rather than
having distinct sections of code. Again, worse performance is seen from the CPU.

Figure 5d shows that Ensemble-OpenCL closely tracks the performance of C-
OpenCL. C-OpenACC performs poorly for this application on both the GPU and
CPU due to this type of application requiring different logic to take advantage
of parallel hardware. Again, annotating the sequential version is not enough for
this type of application.

Figure 5e shows results for a real world example and indicates that the kernel
execution time in Ensemble-OpenCL is greater than in C-OpenCL. This is due
to some fundamental differences between the host languages, rather than the
programming models. Firstly, in Ensemble there are no NULL values. This means
that all data types must be initialised at the point of creation. This has the
advantage of making the language safer, but can lead to increased execution
time when the variable is written to before reading - i.e. initialisation was not
required. In this application, two arrays are initialised in the kernel, within a
loop with many iterations. A similar action is taken in the C version, however
the two initialisation loops are combined, effectively halving the amount of work
done by the C version. Loop unrolling in the code generated from the Ensemble
compiler could help with this.

Secondly, the ability of C to use an integer value as both a boolean indicator
and numerical value leads to faster code when compared to Ensemble, which
has no such overloading. Ensemble uses separate types for numeric and boolean
values, which in this application requires a number of control structures to be
used, and causes greater execution time.

Thirdly, the C-OpenCL version uses short vector types and operations. En-
semble does not yet support OpenCL specific types such as short vectors, and
the associated vector operations upon such types. This limitation is due to time
constraints, rather than implementation or theoretical barriers. Such types and
operations will be added to the Ensemble type system, and will reduce the exe-
cution time. Again, this is a limitation of Ensemble, not actors.

The second observation is the smaller communication time in Ensemble-
OpenCL compared to C-OpenCL. This was an unexpected consequence of mov-
ability (Section 5). In this application, the kernel execution was run multiple
times during each individual run to collect sufficiently large time values. In the
C-OpenCL version, the data is copied to and from the device each time. No
changes or modifications are made to the data between movements. This is also
true in the Ensemble version, however due to the lazy evaluation logic the data
on the device is never moved back to the host as it is not required to do so.

The PGI compiler was not able to compile this code, hence no results were ob-
tained for the GPU or CPU from C-OpenACC. The CPU results were generated
from the OpenMP pragmas and the gcc compiler. Even with the gcc compiler
we still see the slower CPU results by comparison with the other methods.
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From the results shown, the general trend is that the performance of hand
coded C-OpenCL is comparable to Ensemble-OpenCL. As both C and Ensem-
ble are using the OpenCL runtime, the main difference in time between these
approaches comes from the overhead of the Ensemble VM. There are optimisa-
tions that can be applied to the implementation, as discussed previously, however
the fact that Ensemble is an interpreted language accounts for the majority of
the overhead when compared to the C version, as opposed to issues with the
language’s actor-based structure.

Given these results and the previous discussion, we have demonstrated that:

– Ensemble-OpenCL always enables simpler, functionally-equivalent code with
many fewer lines of code compared to C-OpenCL, and generally simpler,
equivalent code with fewer lines when compared to C-OpenACC;

– Ensemble-OpenCL applications present commensurate performance to C-
OpenCL on GPU & CPU;

– Relative performance of Ensemble-OpenCL to C-OpenACC ranges from
equivalent to significantly better on GPUs, and from better to vastly better
on CPUs.

7 Conclusions and Future Work

Conclusion This work presents the first attempt at using the actor program-
ming model to simplify kernel-based concurrency. The separation of host and
device code, as well as the explicit data movement found in kernel program-
ming, naturally maps to the concept of isolated actors using message-passing
communication. By comparing C-OpenCL with Ensemble-OpenCL, this paper
has shown that Ensemble-OpenCL requires less code, is qualitatively simpler,
and provides comparable performance with hand written C-OpenCL. Also, by
taking advantage of novel features in the language, it is still possible to use
common OpenCL optimisation techniques which are in contrast to the normal
shared-nothing semantics of actor-based programming. Furthermore, by com-
parison with C-OpenACC, Ensemble-OpenCL shows performance ranging from
better to vastly better, at the cost of slightly larger code size in a small number
of cases.

By offering a simple and performant programming model for a range of appli-
cations classes, actors provide an ideal abstraction for kernel-based concurrency.

Future Work The main bottleneck in performance is the Ensemble VM. To
address this, a JIT compiler will be built to remove the overhead of bytecode
interpretation. Furthermore, the Ensemble type system will be expanded to in-
clude OpenCL types, such as short vectors.

Work is currently in progress to add distribution natively to Ensemble. This
includes abstraction of network communication between actors via the channel
mechanism, remote deployment, and runtime actor migration. Once complete,
one possible use-case will be to program and load-balance a computer cluster of
heterogeneous platforms entirely with actors from within the language.
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