3 research outputs found

    Portability, compatibility and reuse of MAC protocols across different IoT radio platforms

    Get PDF
    To cope with the diversity of Internet of Things (loT) requirements, a large number of Medium Access Control (MAC) protocols have been proposed in scientific literature, many of which are designed for specific application domains. However, for most of these MAC protocols, no multi-platform software implementation is available. In fact, the path from conceptual MAC protocol proposed in theoretical papers, towards an actual working implementation is rife with pitfalls. (i) A first problem is the timing bugs, frequently encountered in MAC implementations. (ii) Furthermore, once implemented, many MAC protocols are strongly optimized for specific hardware, thereby limiting the potential of software reuse or modifications. (iii) Finally, in real-life conditions, the performance of the MAC protocol varies strongly depending on the actual underlying radio chip. As a result, the same MAC protocol implementation acts differently per platform, resulting in unpredictable/asymmetrical behavior when multiple platforms are combined in the same network. This paper describes in detail the challenges related to multi-platform MAC development, and experimentally quantifies how the above issues impact the MAC protocol performance when running MAC protocols on multiple radio chips. Finally, an overall methodology is proposed to avoid the previously mentioned cross-platform compatibility issues. (C) 2018 Elsevier B.V. All rights reserved

    Enhanced priority-based adaptive energy-aware mechanisms for wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSN) continues to find its use in our lives. However, research has shown that it has barely attained an optimal performance, particularly in the aspects of data heterogeneity, data prioritization, data routing, and energy efficiency, all of which affects its operational lifetime. The IEEE 802.15.4 protocol standard, which manages data forwarding across the Data Link Layer (DLL) does not address the impact of heterogeneous data and node Battery-Level (BL) which is an indicator for node battery life. Likewise, mechanisms proposed in the literature – TCP-CSMA/CA, QWL-RPL and SSRA have not proffered optimal solution as they encourage excessive computational overhead which results in shortened operational lifetime. These problems are inherited on the Network Layer (NL) where data routing is implemented. Mitigating these challenges, this research presents an Enhanced Priority-based Adaptive Energy-Aware Mechanisms (EPAEAM) for Wireless Sensor Networks. The first mechanism is the Optimized Backoff Mechanism for Prioritized Data (OBMPD) in Wireless Sensor Networks. This mechanism proposed the Class of Service Traffic Priority-based Medium Access Control (CSTP-MAC). The CSTP-MAC is implemented on the DLL. In this mechanism, unique backoff period expressions compute backoff periods according to the class and priority of the heterogeneous data. This approach improved network performances which enhanced network lifetime. The second mechanism is the Shortest Path Priority-Based Objective Function (SPPB-OF) for Wireless Sensor Networks. SPPB-OF is implemented across the NL. SPPB-OF implements a unique shortest path computation algorithm to generate energy-efficient shortest path between the source and destination nodes. The third mechanism is the Cross-Layer Energy-Efficient Priority-based Data Path (CL-EEPDP) for Wireless Sensor Networks. CL-EEPDP is implemented across the DLL and NL with considerations for node battery-level. A unique mathematical expression, Node Battery-Level Estimator (NBLE) is used to estimate the BL of neighbouring nodes. The knowledge of the BL together with the priority of data are used to decide an energy-efficient next-hop node. Benchmarking the EPAEAM with related mechanisms - TCP-CSMA/CA, QWL-RPL and SSRA, results show that EPAEAM achieved improved network performance with a packet delivery ratio (PDR) of 95.4%, and power-saving of 90.4%. In conclusion, the EPAEAM mechanism proved to be a viable energy-efficient solution for a multi-hop heterogeneous data WSN deployment with support for extended operational lifetime. The limitations and scope of these mechanisms are that their application is restricted to the data-link and network layers, moreover, only two classes of data are considered, that is; High Priority Data (HPD) and Low Priority Data (LPD)
    corecore