167,270 research outputs found

    Dispersal in dendritic networks: Ecological consequences on the spatial distribution of population densities

    Full text link
    1. Understanding the consequences of spatial structure on ecological dynamics is a central theme in ecology. Recently, research has recognised the relevance of river and river-analogue network structures, because these systems are not only highly diverse but also rapidly changing due to habitat modifications or species invasions. 2. Much of the previous work on ecological and evolutionary dynamics in metapop- ulations and metacommunities in dendritic river networks has been either using comparative approaches or was purely theoretical. However, the use of micro- cosm experiments provides the unique opportunity to study large-scale questions in a causal and experimental framework. 3. We conducted replicated microcosm experiments, in which we manipulated the spatially explicit network configuration of a landscape and addressed how linear versus dendritic connectivity affects population dynamics, specifically the spatial distribution of population densities, and movement behaviour of the protist model organism Tetrahymena pyriformis. We tracked population densities and individual-level movement behaviour of thousands of individuals over time. 4. At the end of the experiment, we found more variable population densities between patches in dendritic networks compared to linear networks, as pre- dicted by theory. Specifically, in dendritic networks, population densities were higher at nodes that connected to headwaters compared to the headwaters themselves and to more central nodes in the network. These differences follow theoretical predictions and emerged from the different network topologies per se. These differences in population densities emerged despite weakly density- dependent movement. 5. We show that differences in network structure alone can cause characteristic spatial variation in population densities. While such differences have been postu- lated by theoretical work and are the underlying precondition for differential dis- persal evolution in heterogeneous networks, our results may be the first experimental demonstration thereof. Furthermore, these population-level dynam- ics may affect extinction risks and can upscale to previously shown metacommu- nity level diversity dynamics. Given that many species in natural river systems exhibit strong spatiotemporal patterns in population densities, our work suggests that abundance patterns should not only be addressed from a local environmental perspective, but may be the outcome of processes that are inher- ently driven by the respective habitat network structure

    The effects of climatic fluctuations and extreme events on running water ecosystems

    Get PDF
    Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world

    Constructal view of the scaling laws of street networks — the dynamics behind geometry

    Get PDF
    The distributions of street lengths and nodes follow inverse-power distribution laws. That means that the smaller the network components, the more numerous they have to be. In addition, street networks show geometrical self-similarities over a range of scales. Based on these features many authors claim that street networks are fractal in nature. What we show here is that both the scaling laws and self-similarity emerge from the underlying dynamics, together with the purpose of optimizing flows of people and goods in time, as predicted by the Constructal Law. The results seem to corroborate the prediction that cities’ fractal dimension approaches 2 as they develop and become more complex

    The last hideout: Abundance patterns of the not-quite-yet extinct mayfly Prosopistoma pennigerum in the Albanian Vjosa River network

    Full text link
    1. The mayfly Prosopistoma pennigerum (Müller, 1785) (Insecta: Ephemeroptera) once occurred in many European river networks. However, observations decreased in the last decades and the species can be considered largely extinct throughout Europe due to river alterations. 2. Only three extant populations are known from Cabriel (southern Spain), Volga (Russia) and Vjosa (Albania) rivers. 3. We recorded the species along a 150 km stretch in the Vjosa River in three sampling seasons (spring 2018, fall 2018 and fall 2019), counting up to 302 P. pennigerum per m2, the highest recorded abundance for the species to date. Moreover, we detected traces of environmental DNA in a newly designed targeted eDNA assay. 4. In our modelling approach we define the species’ niche in a theoretically available niche space given by the Vjosa River network and predict a high probability of presence (Ξ) in downstream located sections of this river. Expected abundances (λ) could be related to a set of environmental variables, importantly to higher discharge and increased sediment dynamics. 5. Simultaneous occurrence of larvae of different sizes at individual sites suggests an asynchronous life cycle, which may be advantageous to cope with the highly dynamic river hydrology. 6. The P. pennigerum population in the Vjosa is of key importance for the species’ global survival

    Widespread decline in hydrological monitoring threatens Pan‐Arctic Research

    Get PDF
    Operational river discharge monitoring is declining in both North America and Eurasia. This problem is especially severe in the Far East of Siberia and the province of Ontario, where 73% and 67% of river gauges were closed between 1986 and 1999, respectively. These reductions will greatly affect our ability to study variations in and alterations to the pan‐Arctic hydrological cycle

    A coupled terrestrial and aquatic biogeophysical model of the Upper Merrimack River watershed, New Hampshire, to inform ecosystem services evaluation and management under climate and land-cover change

    Get PDF
    Accurate quantification of ecosystem services (ES) at regional scales is increasingly important for making informed decisions in the face of environmental change. We linked terrestrial and aquatic ecosystem process models to simulate the spatial and temporal distribution of hydrological and water quality characteristics related to ecosystem services. The linked model integrates two existing models (a forest ecosystem model and a river network model) to establish consistent responses to changing drivers across climate, terrestrial, and aquatic domains. The linked model is spatially distributed, accounts for terrestrial–aquatic and upstream–downstream linkages, and operates on a daily time-step, all characteristics needed to understand regional responses. The model was applied to the diverse landscapes of the Upper Merrimack River watershed, New Hampshire, USA. Potential changes in future environmental functions were evaluated using statistically downscaled global climate model simulations (both a high and low emission scenario) coupled with scenarios of changing land cover (centralized vs. dispersed land development) for the time period of 1980–2099. Projections of climate, land cover, and water quality were translated into a suite of environmental indicators that represent conditions relevant to important ecosystem services and were designed to be readily understood by the public. Model projections show that climate will have a greater influence on future aquatic ecosystem services (flooding, drinking water, fish habitat, and nitrogen export) than plausible changes in land cover. Minimal changes in aquatic environmental indicators are predicted through 2050, after which the high emissions scenarios show intensifying impacts. The spatially distributed modeling approach indicates that heavily populated portions of the watershed will show the strongest responses. Management of land cover could attenuate some of the changes associated with climate change and should be considered in future planning for the region

    Contrasting signatures of distinct human water uses in regulated flow regimes

    Get PDF
    In the last century, about 50,000 dams have been constructed all around the world, and regulated rivers are now pervasive throughout the Earth\u2019s landscapes. Damming has produced global-scale alterations of the hydrologic cycle, inducing severe consequences on the ecological and morphological equilibrium of streams. However, a recognizable link between specific uses of reservoirs and their impact on flow regimes has not been disclosed yet. Here, extensive hydrological data are integrated with a physically-based model to investigate hydrological alterations downstream of 47 isolated dams in the Central Eastern U.S. Our results reveal a strong connection between the anthropogenic use and the hydrological impact of dams. Flood control reduces the temporal variability and spatial heterogeneity of river flows proportionally to the specific capacity allocated to mitigate floods (i.e., capacity scaled to the average inflow). Conversely, water supply increases the relative variability and regional heterogeneity of streamflows proportionally to the relative amount of withdrawn inflow. Accordingly, downstream of our multipurpose reservoirs the impact of regulation on streamflow variability is smoothed due to the compensating effect of flood control and water supply. Nevertheless, reservoirs with high storage capacity and overlapping uses produce regulated hydrographs that increase their unpredictability for larger aggregation periods and, thus, resemble an autocorrelated red noise. These findings suggest that the increase of freshwater demand could redefine the cumulative effects of dams at regional scale, reshaping the trajectories of eco-morphological alteration of dammed rivers
    • 

    corecore