84 research outputs found

    Minimal Envy and Popular Matchings

    Full text link
    We study ex-post fairness in the object allocation problem where objects are valuable and commonly owned. A matching is fair from individual perspective if it has only inevitable envy towards agents who received most preferred objects -- minimal envy matching. A matching is fair from social perspective if it is supported by majority against any other matching -- popular matching. Surprisingly, the two perspectives give the same outcome: when a popular matching exists it is equivalent to a minimal envy matching. We show the equivalence between global and local popularity: a matching is popular if and only if there does not exist a group of size up to 3 agents that decides to exchange their objects by majority, keeping the remaining matching fixed. We algorithmically show that an arbitrary matching is path-connected to a popular matching where along the path groups of up to 3 agents exchange their objects by majority. A market where random groups exchange objects by majority converges to a popular matching given such matching exists. When popular matching might not exist we define most popular matching as a matching that is popular among the largest subset of agents. We show that each minimal envy matching is a most popular matching and propose a polynomial-time algorithm to find them

    Solving the Maximum Popular Matching Problem with Matroid Constraints

    Full text link
    We consider the problem of finding a maximum popular matching in a many-to-many matching setting with two-sided preferences and matroid constraints. This problem was proposed by Kamiyama (2020) and solved in the special case where matroids are base orderable. Utilizing a newly shown matroid exchange property, we show that the problem is tractable for arbitrary matroids. We further investigate a different notion of popularity, where the agents vote with respect to lexicographic preferences, and show that both existence and verification problems become NP-hard, even in the bb-matching case.Comment: 16 pages, 2 figure

    Popular Matchings

    Get PDF

    Popular matchings with two-sided preferences and one-sided ties = Népszerű párosítások kétoldali preferenciákkal és egyoldali döntetlenekkel

    Get PDF

    Algorithms and computation

    Get PDF

    Online Duet between Metric Embeddings and Minimum-Weight Perfect Matchings

    Full text link
    Low-distortional metric embeddings are a crucial component in the modern algorithmic toolkit. In an online metric embedding, points arrive sequentially and the goal is to embed them into a simple space irrevocably, while minimizing the distortion. Our first result is a deterministic online embedding of a general metric into Euclidean space with distortion O(logn)min{logΦ,n}O(\log n)\cdot\min\{\sqrt{\log\Phi},\sqrt{n}\} (or, O(d)min{logΦ,n}O(d)\cdot\min\{\sqrt{\log\Phi},\sqrt{n}\} if the metric has doubling dimension dd), solving a conjecture by Newman and Rabinovich (2020), and quadratically improving the dependence on the aspect ratio Φ\Phi from Indyk et al.\ (2010). Our second result is a stochastic embedding of a metric space into trees with expected distortion O(dlogΦ)O(d\cdot \log\Phi), generalizing previous results (Indyk et al.\ (2010), Bartal et al.\ (2020)). Next, we study the \emph{online minimum-weight perfect matching} problem, where a sequence of 2n2n metric points arrive in pairs, and one has to maintain a perfect matching at all times. We allow recourse (as otherwise the order of arrival determines the matching). The goal is to return a perfect matching that approximates the \emph{minimum-weight} perfect matching at all times, while minimizing the recourse. Our third result is a randomized algorithm with competitive ratio O(dlogΦ)O(d\cdot \log \Phi) and recourse O(logΦ)O(\log \Phi) against an oblivious adversary, this result is obtained via our new stochastic online embedding. Our fourth result is a deterministic algorithm against an adaptive adversary, using O(log2n)O(\log^2 n) recourse, that maintains a matching of weight at most O(logn)O(\log n) times the weight of the MST, i.e., a matching of lightness O(logn)O(\log n). We complement our upper bounds with a strategy for an oblivious adversary that, with recourse rr, establishes a lower bound of Ω(lognrlogr)\Omega(\frac{\log n}{r \log r}) for both competitive ratio and lightness.Comment: 53 pages, 8 figures, to be presented at the ACM-SIAM Symposium on Discrete Algorithms (SODA24

    Graph theoretic generalizations of clique: optimization and extensions

    Get PDF
    This dissertation considers graph theoretic generalizations of the maximum clique problem. Models that were originally proposed in social network analysis literature, are investigated from a mathematical programming perspective for the first time. A social network is usually represented by a graph, and cliques were the first models of "tightly knit groups" in social networks, referred to as cohesive subgroups. Cliques are idealized models and their overly restrictive nature motivated the development of clique relaxations that relax different aspects of a clique. Identifying large cohesive subgroups in social networks has traditionally been used in criminal network analysis to study organized crimes such as terrorism, narcotics and money laundering. More recent applications are in clustering and data mining wireless networks, biological networks as well as graph models of databases and the internet. This research has the potential to impact homeland security, bioinformatics, internet research and telecommunication industry among others. The focus of this dissertation is a degree-based relaxation called k-plex. A distance-based relaxation called k-clique and a diameter-based relaxation called k-club are also investigated in this dissertation. We present the first systematic study of the complexity aspects of these problems and application of mathematical programming techniques in solving them. Graph theoretic properties of the models are identified and used in the development of theory and algorithms. Optimization problems associated with the three models are formulated as binary integer programs and the properties of the associated polytopes are investigated. Facets and valid inequalities are identified based on combinatorial arguments. A branch-and-cut framework is designed and implemented to solve the optimization problems exactly. Specialized preprocessing techniques are developed that, in conjunction with the branch-and-cut algorithm, optimally solve the problems on real-life power law graphs, which is a general class of graphs that include social and biological networks. Computational experiments are performed to study the effectiveness of the proposed solution procedures on benchmark instances and real-life instances. The relationship of these models to the classical maximum clique problem is studied, leading to several interesting observations including a new compact integer programming formulation. We also prove new continuous non-linear formulations for the classical maximum independent set problem which maximize continuous functions over the unit hypercube, and characterize its local and global maxima. Finally, clustering and network design extensions of the clique relaxation models are explored

    Cross-modal and synaesthetic perception in music and vision

    Get PDF
    This thesis is concerned with the cross-modal and synaesthetic perception of musical and visual stimuli. Each of these types of perception has been researched separately, and a hypothesis is presented here that accounts for both cross-modal matching and the development of synaesthesia. This hypothesis claims that sensory information can be evaluated in another modality by using a scale of comparison in that modality. The first set of experiments examines normal subjects performing cross-modal matching with coloured circles and auditory stimuli that vary in complexity. It is shown that subjects use a variety of scales of comparison from both visual and auditory modalities to form matches. As the stimuli increase in complexity, the individual variation in cross-modal matching also increases. The second set of experiments examines matching performance using higher order stimuli, by having subjects evaluate fragments of melodies and complete melodies on affective and descriptive adjective scales. Melodies were also matched with landscape scenes to examine if subjects could form matches between two highly complex sets of stimuli. The final experiments examine synaesthetic associations with colour, evoked from music, letters, numbers, and other categorical information. Common features of synaesthesia from a population of synaesthetes are identified, and experiments performed to test the interference of the synaesthetic associations. Additional experiments are presented that explore the superior short-term memory of one synaesthete, and the role of his associations as a mnemonic device

    Alkalmazott matematikai lapok 2019

    Get PDF

    Boundary Rider: Essays in Honour of Geoffrey O'Grady

    Get PDF
    corecore