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CHAPTER 6

Popular Matchings

Ágnes Cseh

6.1 Introduction

Matching problems lie at the heart of discrete mathematics. Their rich history
reaches back over 100 years (Kőnig, 1916), including some milestones of com-
plexity and algorithms, such as perfect, maximum weight and minimum cost
matchings, together with their connection to network flow and vertex cover prob-
lems.

In this chapter we focus on matching markets under preferences, where each
market participant expresses their preferences as an ordered list of possible sce-
narios. Our task is to find a matching that is optimal with respect to these
preferences. If the agents express their preferences in a cardinal manner, then
the most common aim is to maximize the total utility of the agents. This yields
the concept of maximum weight or minimum cost matchings. If preferences are
ordinal, one might want to guarantee that no two agents are inclined to form a
coalition in order to deviate from the given solution. This concept corresponds
to the well-known notion of stable matchings. In coordinated allocation mecha-
nisms, the central authority of control usually aims at a solution that matches
a large number of agents. Thus, negotiating the size and the optimality of the
matching with respect to agents’ preferences is a problem that occurs naturally.

Popularity is a concept that offers an attractive trade-off between these two
notions. In short, a popular matching M guarantees that no matter what alter-
native matching is offered on the market, the majority of the agents will opt for
M . Moreover, |M | is relatively close to the size of the maximum matching in the
market. The notion was first defined by Gärdenfors (1975) and surprisingly, it
comes from cognitive science, where such a majority decision is a well-motivated
potential focus of investigation. After Gärdenfors’ paper, decades passed with-
out any achievement in the topic. Recently, an impressive amount of top-tier
publications have demonstrated the importance of popular matchings.

6.1.1 Definition of Popular Matchings

Popular matchings can be defined in various market settings. For the sake of
generality we assume that we are given a not necessarily complete and not nec-
essarily bipartite graph with n vertices and m edges, where each vertex represents
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an agent and each edge stands for an acceptable agent-agent pair. Each agent
expresses her preferences over her adjacent agents in the form of a strictly or-
dered list—every time ties are allowed, we explicitly say so. Figure 6.2 depicts
such an instance. The ranking of each vertex can be seen on the edges incident
to it. Lower numbers mean a better rank: for instance, agent a1’s top choice is b2,
her second choice is b1, her third choice is b3, while she finds b4 unacceptable. To
the left of the figure, the preference lists are shown. A matching is a set of edges
in the graph so that no agent is matched to more than one other agent.

We compare matchings M1 and M2 in the following manner. Each vertex casts
a vote for M1 or M2 or abstains from voting. If vertex v is matched to a better
partner in M1 than in M2 or it is matched in M1 and unmatched in M2, then v
votes for M1. Analogous rules specify when v votes for M2. Finally, v abstains
from voting if its situation is the same in both matchings: either because it is
matched to a vertex with the same rank or because it is unmatched in both
matchings. If the number of votes for M1 is at least as large as the number of votes
for M2, then we say that M1 is at least as popular as M2. If M1 receives strictly
more votes than M2, then M1 defeats M2, in other words, M1 is more popular
than M2. Note that the notion of defeat here is not transitive. Figure 6.2 shows
an instance in which four matchings defeat each other in a circular manner.

Matching M is popular if it is at least as popular as any other matching in
the instance. In other words, M does not get defeated by any matching in a
comparison.

Besides the aforementioned roots in cognitive science, an approach to moti-
vate the notion of popularity comes from voting theory. If we consider all possible
matchings in an instance as the set of alternatives and let the agents vote, then
it turns out that popular matchings form a well-defined subset of alternatives,
namely the set of weak Condorcet winners (Condorcet, 1785). This set consists
of the alternatives that beat or tie with every other alternative in a pairwise com-
parison.

In a similar spirit, popular matchings can be viewed as a special case of max-
imal lotteries, defined by Kreweras (1965) and Fishburn (1984) and rediscovered
by several other researchers since then (Felsenthal and Machover, 1992; Laffond
et al., 1993; Rivest and Shen, 2010). Chapter 1 of this book elaborates on max-
imal lotteries and points out the connection to popular mixed matchings, which
we will discuss in Section 6.3.2.

6.1.2 Models and Chapter Structure

The most general setting involves an arbitrary graph representing a set of agents
and the possible connections between them. We will refer to this setting as the
non-bipartite model. Bipartite graphs play a distinguished role in matching mar-
kets. In bipartite graphs, the popular matching problem has been studied in the
following two models.

• One-sided model. One side of the graph consists of agents who have pref-
erences and votes, while the other side is formed by objects with no pref-
erences or votes. This setting is analogous to the house allocation market
model.
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• Two-sided model. Vertices on both sides are agents, so they all have prefer-
ences and cast votes. This setting is analogous to the stable marriage model
and it is a subcase of the non-bipartite model.

The remainder of this chapter is structured as follows. We start in Section 6.2
with a literature review of optimality concepts that can be seen as alternatives
of popularity. After this, the two main building blocks follow in Sections 6.3
and 6.4, centered around the two above described bipartite models. Finally, in
Section 6.5 we discuss results in the non-bipartite setting. Our approach is
mainly algorithmic, but at the end of each section we also elaborate on more
applied studies in the literature. The aim of this chapter is to give a structured
overview of the rapidly growing field of the theory of popular matchings.

6.2 Related Literature

Defining optimality on markets with ordinal preferences is far from straightfor-
ward. In this subsection we sketch a number of alternative optimality concepts
to popularity. These concepts are grouped based on the model they are most
common to be used in.

6.2.1 One-sided Model

A number of optimality concepts for one-side markets have been studied in the
literature. The most prevalent concept is Pareto-optimality. Informally, a match-
ing is Pareto-optimal if there is no other matching in which at least one agent is
better off, whilst no agent is worse off. Pareto-optimal matchings always exist in
the one-sided model and at least one can be found using the strategyproof Ran-
dom Serial Dictatorship mechanism, as shown by Abdulkadiroǧlu and Sönmez
(1998). The shortcomings of Pareto-optimal matchings are that even the largest
one of them can be as small as half the size of a maximum matching. Moreover,
the definition allows all but one agents to receive poor choices in order to avoid a
single agent to be allocated to a slightly worse object than she has.

Other optimality concepts are defined based on the profile of the matching.
This is a array of numbers, where the ith element is the number of agents who
are matched to their ith choice object. Matchings that maximize the profile in a
lexicographic sense are called rank-maximal matchings, defined by Irving (2003).
Similarly to Pareto-optimal matchings, rank-maximal matchings always exist and
can be found in polynomial time (Irving et al., 2006). On the other hand, even
the largest rank-maximal matchings can be as small as half the size of a maxi-
mum matching asymptotically. To overcome this disadvantage, greedy maximum
matchings (Michail, 2007) and generous maximum matchings (Abraham et al.,
2006) were also defined, both of them are based on the profile of the matching.

6.2.2 Two-sided Model

The literature on two-sided markets is clearly dominated by stable matchings
first discussed by Gale and Shapley (1962). A matching is called stable if it is not
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blocked by any pair of agents. A blocking pair comprises two agents not matched
to each other who are either single or prefer to be matched to one another than
to their respective partners in the matching. By their well-known deferred accep-
tance algorithm, Gale and Shapley showed that a stable matching always exists
and can be found in linear time. A characteristic feature of stable matchings is
the so called Rural Hospitals Theorem (Roth, 1984), part of which states that the
set of matched agents is identical in all stable matchings. In particular, all stable
solutions have the same cardinality.

Pareto-optimal matchings can be defined in two-sided markets analogously to
one-sided markets. Clearly every stable matching in a market with strict prefer-
ences is Pareto optimal, but Pareto optimal matchings can be twice as large as
stable matchings. Sng (2008) showed that a maximum Pareto optimal matching
can be found in polynomial time. Profile-based optimality concepts were studied
in the paper of Huang and Kavitha (2012).

6.2.3 Non-bipartite Model

The non-bipartite version of the stable matching problem is usually referred at as
the stable roommates problem, which is quite different from its classical variant
from an algorithmic point of view. First of all, a stable solution is not guaranteed
to exist, which was pointed out by Gale and Shapley (1962) already, but there is
a polynomial algorithm to find one, or a proof for its nonexistence (Irving, 1985).

The definition of Pareto-optimal matchings carries over to this setting. Just
as in the simpler models, a Pareto-optimal matching always exists and a
largest Pareto-optimal matching can be found in polynomial time (Abraham and
Manlove, 2004). Profile-based optimality concepts were studied by Abraham et al.
(2008).

The detailed study of existing literature on popular matchings is spread thor-
ough the upcoming sections. Nevertheless, we would like to point out earlier
surveys on the topic, such as those of Kavitha (2008), Mestre (2008) and Chap-
ter 7 in the book of Manlove (2013).

6.3 One-sided Model

We start the study of popular matchings in one-sided models, where the two
sides of the bipartite graph G = (A ∪ B,E) represent agents (A) and objects (B),
respectively. The defining property of this setting is that only vertices in A cast
votes, the objects have neither preferences nor a right to vote. Such one-sided
markets are particularly suitable for modeling object allocation, such as in the
well-known house allocation problem.

This section starts with the existence of popular matchings and the problem of
finding a maximum size popular matching. Then we turn to the most important
extensions of the problem from a theoretical point of view. Finally, we discuss
some more applied approaches, such as computational studies and fairness con-
cepts.
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6.3.1 Finding a Max Size Popular Matching

As we have already mentioned, the initial paper of Gärdenfors (1975) was fol-
lowed by decades of silence in the matching community. The notion of popular
matchings in bipartite graphs reappeared in 2005, in the conference version of a
paper by Abraham et al. (2007), who worked on the one-sided model. The main
result of their paper is a polynomial algorithm for deciding whether a popular
matching exists.

a1 : b1 b2
a2 : b1 b2
a3 : b1 b2

a1

a2

a3

b1

b2

1

2

1

2

1

2

Figure 6.1: No popular matching exists in this instance. The dotted gray match-
ing {a2b1, a3b2} is more popular than the dashed gray matching {a1b1, a2b2}, be-
cause both a2 and a3 prefer it. Similarly, the black matching {a1b2, a3b1} defeats
the dotted gray, and the dashed gray defeats the black.

In the one-sided model, the existence of a popular matching is not guaran-
teed. Figure 6.1 depicts an instance equivalent to the famous voting paradox of
Condorcet (1785), where none of the matchings is popular. In this context, the
following result answers the most striking algorithmic question of the topic.

Theorem 6.1 (Abraham et al., 2007). There is an O(n+m) algorithm that outputs
either a largest cardinality popular matching or a proof for its nonexistence.

Note that this result not only answers the question on the existence of a pop-
ular matchings but it also guarantees a maximum cardinality solution, if any
exists. Maximizing the cardinality of the outputted matching is particularly im-
portant, since the main motivation behind popular matchings is that the concept
unites preference-optimality and large size.

The notion of first and second choice objects plays a crucial role in the algo-
rithm of Abraham et al. (2007). The object ranked highest by agent ai is called
ai’s first choice object. The second choice object of agent ai is the object that was
not marked as a first object by anyone and it is ranked the highest among such
objects in ai’s preference list. The following lemma sheds light to the importance
of these two definitions.

Lemma 6.2. M is popular in an instance of the one-sided model if and only if

1. every first choice object is assigned in M and

2. each agent is matched to either their first or second choice object.
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From this lemma, it is easy to see how to search for a popular matching. First
we need to construct the graph, where each agent is adjacent to their first and
second choice objects only and then check for a matching that matches all agents
and all first choice objects. To reach a maximum cardinality popular matching,
one needs to ensure that as few agents are matched to their dummy last resort
object as possible. This can be done by a simple augmenting path algorithm, for
example.

A slightly modified version of the above described algorithm serves to solve the
general case in which preference lists may contain ties. This is also presented
by Abraham et al. (2007), who gave an O(

√
nm) time algorithm for the maximum

cardinality one-sided popular matching problem with ties.

6.3.2 Theoretical Results

This subsection is built up by three parts, each of them centered around capac-
itated instances, the relaxation of popular matchings and weighted instances,
respectively.

Capacitated Extension

The many-to-one matching case clearly belongs to the most intuitive generaliza-
tions of the popular matching problem. In this setting, each object is assigned
a positive capacity, which is the upper bound on the number of agents who can
get this object allocated to them. On the other hand, each agent is allowed to
receive one object at most. Due to this latter point, the notion of comparing two
matchings does not need to be modified at all.

A characterization analogous to the one in Lemma 6.2 was given by Sng and
Manlove (2010). They also presented the following results on the complexity of
finding a popular matching.

Theorem 6.3 (Sng and Manlove, 2010). There is an O(
√
Cn + m) algorithm to

determine if an instance of the capacitated popular matching problem admits a
popular matching, and if so, to find a largest such matching, where C is the total
capacity of the objects. If ties are allowed, the time complexity of the algorithm
changes to O((

√
C + n)m).

Defining a voting rule in the many-to-many setting is complex, and as a matter
of fact, there are several legitimate options to study. Lexicographic order was
studied by Paluch (2014). She provided a characterization of popular matchings
and showed that finding a popular matching or a proof for its nonexistence is
NP-hard.

Relaxing Popular Matchings

Having established in Theorem 6.1 that we can distinguish instances with and
without popular matchings in polynomial time, the relaxation of popularity is
the next intuitive move. We will now sketch the two most common relaxations,
namely least unpopular matchings and popular mixed matchings.
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Least unpopular matchings. First, the notion of least unpopular matchings
was proposed to deal with instances that had no popular matchings (McCutchen,
2008). Assume that M1 and M2 are two matchings in the same instance. We say
that M2 dominates M1 by a factor of u

v , if u is the number of agents who strictly
prefer M2 to M1 and v is the number of agents who strictly prefer M1 to M2. For
instance, matching {a2b1, a3b2} in Figure 6.1 dominates matching {a1b1, a2b2} by
a factor of 2. The unpopularity factor of a matching M is the maximum factor
by which it is dominated by any other matching, ignoring matchings that give
u = v = 0. According to this definition, a matching is popular if and only if its
unpopularity factor is exactly 1.

McCutchen (2008) also defined an alternative concept to measure the degree
of popularity, called the unpopularity margin. This is defined in the same man-
ner as the unpopularity factor, except that one subtracts the numbers of votes
instead of dividing them. More precisely, M2 dominates M1 by a margin of u− v,
if u is the number of agents who strictly prefer M2 to M1 and v is the number
of agents who strictly prefer M1 to M2. Returning to the same example in Fig-
ure 6.1, we can state that {a2b1, a3b2} dominates {a1b1, a2b2} by a margin of 1. The
unpopularity margin of M is the maximum margin by which M is dominated by
any other matching. According to this definition, a matching is popular if and
only if its unpopularity margin is exactly 0.

Theorem 6.4 (McCutchen, 2008, Manlove, 2013). There is an O(m
√
n) time

algorithm to find the unpopularity factor of a matching and there is an O(m
√
n·log n)

time algorithm to find the unpopularity margin of a matching. These algorithms
work even in the presence of ties.

Theorem 6.5 (McCutchen, 2008). The problems of finding a least unpopularity
factor matching and a least unpopularity margin matching are NP-hard.

McCutchen (2008) also showed that the unpopularity factor of any matching
is always an integer. In particular, if G does not admit a popular matching, then
the unpopularity factor is at least 2 for all matchings in G.

Note that matchings with least unpopularity factor are exactly the matchings
with least unpopularity margin. The least unpopularity margin is equivalent to
the Simpson-Kramer voting rule (Kramer, 1977; Simpson, 1969), which selects
as the winner the candidate whose greatest pairwise defeat is smaller than the
greatest pairwise defeat of any other candidate.

Popular mixed matchings. The second optimality concept proposed for in-
stances without popular matchings is popular mixed matchings (Kavitha et al.,
2011). The notion of popularity is kept intact here, while the matching condition
is relaxed. A mixed matching is a probability distribution over matchings in the
input graph. The vote of an agent can be adjusted in a straightforward manner
to this setting. For instance, taking each of the three matchings of cardinal-
ity 2 in Figure 6.1 with probability 1

2 is a mixed matching that defeats matching
{a1b1, a2b2} by exactly one vote, because a1 casts half a vote for {a1b1, a2b2}, a1
casts half a vote for the mixed matching and finally, a3 fully votes for the mixed
matching.
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Theorem 6.6 (Kavitha et al., 2011). Popular mixed matchings exist even in the
presence of ties in preference lists, and they can be found in polynomial time.

Kavitha et al. (2011) presented two algorithms for the problem. Interestingly,
one of them relies on the algorithm of McCutchen (2008) to determine the un-
popularity margin of a matching, while the other one uses linear programming
techniques.

Optimizing over Weights

A natural extension of the popular matching problem is to consider graphs with
edge or vertex weights and search for the weight-optimal popular solution.

Edge weights. McDermid and Irving (2011) gave a structural characterization
of popular matchings, and efficient algorithms to enumerate them. This led to
the following result.

Theorem 6.7 (McDermid and Irving, 2011). In the presence of edge weights, a
maximum weight maximum cardinality popular matching or a proof for its nonexis-
tence can be found in O(n + m) time.

Presenting a reduction to the minimum cost assignment problem Matsui and
Hamaguchi (2016) proposed a polynomial time algorithm for finding a maximum
weight popular matching, irrespective of its cardinality.

Vertex weights. Another intuitive extension of the problem is to assign an ar-
bitrary positive weight to each agent. The vote of that agent then counts with the
multiplicity given by this weight. Mestre (2014) considered this extension and
showed the following.

Theorem 6.8 (Mestre, 2014). In the presence of vertex weights, a maximum
weight maximum cardinality popular matching or a proof for its nonexitence can
be found in polynomial time even in the presence of ties.

6.3.3 Applied Approaches

Upon establishing the characterization of popular matchings in the one-sided
model, Abraham et al. (2007) ran experiments to test the probability of the ex-
istence of a popular matching in randomly generated instances with |A| = |B|.
Their results show that the ratio of solvable instances drops radically as the
length of preference lists increase. Obviously, if every list is of length 1, a pop-
ular matching is guaranteed to exist. Out of 1000 instances with 100 agents
and lists of length 10 only 2 were solvable, while the same setting with prefer-
ence list of length 20 or more did not allow a single instance to admit a popular
matching. The intuition behind this phenomenon is that dummy posts as second
choice objects increase the probability of a matching assigning all agents. Due
to Lemma 6.2, this latter is a necessary condition for the existence of a popular
matching. To complement these slightly discouraging results, Mahdian (2006)
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showed that a popular matching exists with high probability, if |B| is a small
multiplicative factor larger than |A|.

Popular mixed matchings were studied from the view of fairness concepts by
Aziz et al. (2013). They showed that in some instances, popularity and envy-
freeness are incompatible if n > 3. On the other hand, if a popular and envy-free
assignment exists, it can be computed in polynomial time. The also proved that
there is no strategyproof popular random assignment rule if n > 3. Weaker no-
tions of envy-freeness and strategyproofness were also showed to be incompatible
with popularity by Brandt et al. (2017), for n > 5 and n > 7, respectively.

Nasre (2013) studied strategyproofness in the classical integral matching case.
She assumed that a1 is the sole manipulative agent who is aware of the true pref-
erence lists of all other agents and that a central authority chooses an arbitrary
popular matching. Thus, the goal of a1 is to falsify her preference list to weakly
improve the post she gets matched to in the falsified instance with any chosen
popular outcome. She showed that the optimal cheating strategy for a single
agent to get better always can be computed in O(n + m) time when preference
lists are all strict and in O(

√
nm) time when preference lists are allowed to con-

tain ties.

6.4 Two-sided Model

In this section we turn to bipartite graphs with preferences on both sides. Such
instances model situations where vertices on both sides represent agents and
thus are given the right to vote. Initially, Gärdenfors (1975) defined the notion of
popularity for these two-sided markets with preferences on both sides. He also
showed that if all preference lists are strict, then any stable matching is popular;
thus a popular matching always exists and can be found in linear time using the
well-known deferred acceptance algorithm of Gale and Shapley (1962). Huang
and Kavitha (2013) later gave a characterization of popular matchings based on
augmenting paths. They also came up with an O(m) algorithm to test whether a
given matching is popular.

This section is structured similarly to Section 6.3. It starts with the problem
of finding a maximum size popular matching, then we elaborate on extensions
of the problem, such as the case of ties or maximum weight popular matchings.
Finally, we discuss some more applied approaches.

6.4.1 Finding a Max Size Popular Matching

Popular matchings of the same instance can differ in size, as illustrated by
a sample instance from Kavitha (2015) in Figure 6.2. Besides the two sta-
ble matchings M1 = {a1b1, a2b2} and M2 = {a1b2, a2b1} the perfect matching
M3 = {a1b3, a2b4, a3b2, a4b1} is also popular. This gives us popular matchings of
size 2 and 4. None of the four matchings of size 3 is popular, because they de-
feat each other in a circular manner. Note one more nicety of this instance: no
popular matching defeats any of these size 3 matchings strictly in a comparison.
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a1 : b2 b1 b3 b1 : a1 a2 a4
a2 : b1 b2 b4 b2 : a2 a1 a3
a3 : b2 b3 : a1
a4 : b1 b4 : a2

a1

a2

a3

a4 b1

b2b3

b4

2

1

1 23

12

2

1

3

3

3

Figure 6.2: Sample instance with popular matchings of size 2 and 4.

As demonstrated by this instance, a strikingly important feature of popular
matchings is that they beat stable matchings in size. As a matter of fact, any sta-
ble matching is a minimum size popular matching (Huang and Kavitha, 2013).
The size of a stable matching in G can be as small as |Mmax|/2, where Mmax is a
maximum matching in G. Relaxing stability to popularity yields larger matchings
and it is easy to show that a largest popular matching has size at least 2

3 · |Mmax|.
This result begs for the question about finding a maximum size popular match-
ing.

Efficient algorithms for computing a maximum size popular matching were
given by Huang and Kavitha (2013) and Kavitha (2014). Here we present the
latter one.

The algorithm can be seen as a 2-round Gale-Shapley algorithm. Each man in
the instance can have two states: unpromoted or promoted. At start, every man
is unpromoted and the deferred acceptance rounds of the Gale-Shapley algorithm
begin. According to the rules of that, each man proposed to his most preferred
woman. As a response, each woman temporarily accepts the offer she ranks
highest and rejects the rest of the proposing men. Rejected men now proceed to
their second-choice woman and compete for her by submitting a proposal. Later
proposals can result in the rejection of the earlier temporarily accepted man. The
Gale-Shapley algorithm terminates with a stable matching.

At this stage, all men in the instance are unpromoted. The second round of
the algorithm starts with the promotion of all men who remained unmatched at
the end of the Gale-Shapley algorithm. These men now get the chance to walk
through their original preference list one more time, from the top to the bottom.
Women find promoted me more attractive than unpropoted men, irrespective of
their original preferences. Two men of the same state will always be compared
according to the original list of the woman. It is easy to see that the proposals
of promoted men can result in some other men becoming single. Every time a
man reaches the end of his preference list for the first time, he gets promoted.
If a man reaches the end of his preference list for a second time as well, he is
deactivated.

This algorithm outputs a maximum size popular matching, moreover, its time-
complexity is the same as of the Gale-Shapley algorithm.

Theorem 6.9 (Huang and Kavitha, 2013, Kavitha, 2014). In the two-sided
model with strictly ordered lists there is an O(m) algorithm that outputs a largest
cardinality popular matching.
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It is easy to see that once a woman got a proposal in this algorithm, she
will never become single. In particular, women matched in the output of the
Gale-Shapley algorithm will be matched in the computed popular matching. As
Hirakawa et al. (2015) have shown, more is true: every maximum cardinality
popular matching assigns the same set of agents, which is a superset of the
agents matched in any stable matching.

Naturally, one could allow men to be promoted after the second round as
well. Kavitha (2014) showed that more Gale-Shapley rounds yield an even larger
matching, but this increment in size comes at a price of an increased unpopu-
larity factor. This latter can be defined in the two-sided model analogously as in
the one-sided model.

Theorem 6.10 (Kavitha, 2014). For every k where 2 6 k 6 n, there is a matching
Mk such that |Mk| > k

k+1 |Mmax| and u(Mk) 6 k − 1, where Mmax is a maximum
matching in G and u(Mk) is the unpopularity factor of Mk. This matching can be
computed in O(km) time via a k-round Gale-Shapley procedure.

6.4.2 Theoretical Results

Popularity among Maximum Matchings

Motivated by the search for a matching that is of largest cardinality among pop-
ular matchings, Kavitha (2014) investigated the question of finding a maximum
cardinality matching that is never defeated by any other maximum cardinality
matching.

Theorem 6.11 (Kavitha, 2014). A matching that is popular among maximum car-
dinality matchings always exists and can be found in O(nm) time.

Ties in Preference Lists

It turns out that ties have a massive effect on the complexity of popular matching
problems in the two-sided model. When ties are allowed in preference lists on
both sides, Biró et al. (2010) showed that deciding whether a popular matching
exists is NP-complete. This result was further strengthened by Cseh et al. (2015)
who also studied an intermediate variant between the 1-and 2-sided models with
strict lists, namely if only agents in A have ordered preference lists ranking their
neighbors, however agents on both sides cast votes—in this case, agents in B
only care about being matched. Their results can be summarized as follows.

Theorem 6.12 (Cseh et al., 2015). If one side of the bipartite graph has strict
preference lists while on the other side each agents either puts its neighbors into
a single tie or into a strict list, then deciding whether a popular matching exists is
NP-complete.

If one side of the bipartite graph has strict preference lists while on the other
side each agents puts its neighbors into a single tie, then a popular matching or a
proof for its nonexistence can be found in O(n2) time.
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Optimizing over Weights

Currently there is no known method to find a maximum weight popular matching
in a graph equipped with edge weights. Several results point in this direction,
which justifies that the problem is clearly among the most riveting open questions
in the area.

Cseh and Kavitha (2016) investigated the case of a forced edge in the graph.
This refers to the problem in which there is a given forced edge e and we seek
popular matchings that contain e. The problem is equivalent to searching for a
maximum weight matching with weight function 1 on e and 0 elsewhere.

Theorem 6.13 (Cseh and Kavitha, 2016). A popular matching containing a given
forced edge e or a proof for its nonexistence can be found in O(m) time.

The same authors investigated the maximum-weight popular matching prob-
lem with complete lists.

Theorem 6.14 (Cseh and Kavitha, 2016). If all preference lists are complete,
then a maximum weight popular matching can be found in polynomial time.

Besides considering special weight functions or preference lists, another ap-
proach is to relax the matching condition by permitting mixed matchings. A
special case of those is half-integral matchings, in which edges are allowed to
occur with value 0, 1

2 or 1.

Theorem 6.15 (Kavitha, 2016). The maximum weight popular half-integral
matching problem can be solved in polynomial time.

Most recently, Huang and Kavitha (2017) achieved remarkable structural re-
sults using LP techniques. Alongside other results they showed that there is
always a half-integral popular matching among the maximum weight fractional
popular matchings.

Theorem 6.16 (Huang and Kavitha, 2017). The popular fractional matching
polytope is half-integral and in the special case where a stable matching in the
graph is a perfect matching, it is integral.

6.4.3 Applied Approaches

Bhattacharya et al. (2015) studied a dynamic matching scenario, when agents
and edges of the graph arrive and depart iteratively over time. The question is
whether one can maintain a popular matching after each timeslot by modifying
the given matching only in a few edges. They showed that maintaining popularity
requires an amortized number of Ω(n) changes to the matching per round. Their
result also answers an algorithmic question of independent interest. No algo-
rithm is known for finding a popular matching by gradually building it up from a
given matching, stepping from one matching to a more popular matching in each
round. The negative result about maintaining popularity implies that two-sided
instances might have no such paths to a popular matching, even for complete
and strict preferences.
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Chisca et al. (2016) propose the first constraint programming formulation of
the popular matching problem. They encode preferences using the global cardi-
nality constraint (Régin, 1996).

Popular matchings were proposed as a solution concept for task allocation
in multi-camera networks by Cui and Jia (2013). According to users priority
and task nature, different tasks are prioritized. For example, routine patrolling
may have the lowest rank, while tasks that are triggered by motion detection
are ranked highest. The authors run extensive simulations and demonstrate
that popular matchings offer an attractive and efficient alternative to baseline
approaches based on various greedy matching procedures.

6.5 Non-bipartite Model

The notion of popularity can be defined in not necessarily bipartite instances by
a straightforward adjustment of the definition introduced in Section 6.1.1. We
assume that all vertices represent agents and cast votes.

This section also follows the outline of the previous two sections. Due to
the smaller volume, we do not separate the parts on existence, theoretical and
applied approaches.

Chung (2000) was the first to observe that stable matchings are popular even
in the non-bipartite case. Thus, if an instance with strict lists admits a stable
matching, then the existence of a popular matching is also guaranteed. Some in-
stances of the stable roommates problem do not admit a stable solution, yet they
admit a popular matching, as demonstrated by Figure 6.3, first presented by Biró
et al. (2010). Surprisingly, the complexity of deciding whether a non-bipartite in-
stance admits a popular matching is unknown. Biró et al. (2010) proved that
validating whether a given matching is popular can be done in polynomial time,
even if ties are present in the preference lists.

a1 : a2 a3 a4
a2 : a3 a1 a4
a3 : a1 a2 a4
a4 : a3 a2 a1

a1 a2

a3

a4

1 2

1

21

2

3

3

3

2

3

1

Figure 6.3: The dotted gray edges mark the unique popular matching M =
{a1a2, a3a4}. It is blocked by the edge a2a3. The instance admits no stable match-
ing.

Even though the main complexity question about popular matchings in non-
bipartite instances has not been answered yet, there is a number of results mark-
ing a promising path towards it.
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Huang and Kavitha (2017) showed that the polytope of popular fractional
matchings is half-integral in the non-bipartite case, analogously to Theorem 6.16.
This means that one can compute a maximum weight popular half-integral
matching in polynomial time. They also showed that the problem of comput-
ing an integral maximum weight popular matching in a non-bipartite instance
is NP-hard. Note that this still does not answer the open question on finding a
largest cardinality popular matching, if any exists in the instance.

Some studies about extensions of the problem are also present in the liter-
ature. Huang and Kavitha (2013) have proved that the problem of computing a
least unpopularity factor matching is NP-hard and presented instances where ev-
ery matching has unpopularity factor Ω(log n). On the positive side, they proved
that every instance admits a matching whose unpopularity factor is O(log n), and
such a matching can be computed in linear time.

6.6 Conclusion

In this chapter we have discussed the popular matching problem from an algo-
rithmic point of view. We discussed existence, maximum size popular matchings,
various theoretical and applied contributions in the cases of a bipartite market
with one-sided and two-sided preferences, and finally in non-bipartite instances.

We have posed three open questions.

1. What is the complexity of finding a maximum weight popular matching in
the two-sided model?

2. What is the complexity of finding a popular matching in the non-bipartite
model?

3. What is the complexity of finding a largest cardinality popular matching in
the non-bipartite model, if any exists in the instance?
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