Popular matchings

with two-sided preferences and one-sided ties

ÁGNES CSEH

CHIEN-CHUNG HUANG

TELIKEPALLI KAVITHA

Discussion papers

MT-DP - 2017/23
Institute of Economics, Centre for Economic and Regional Studies, Hungarian Academy of Sciences

KTI/IE Discussion Papers are circulated to promote discussion and provoque comments. Any references to discussion papers should clearly state that the paper is preliminary. Materials published in this series may subject to further publication.

Popular matchings with two-sided preferences and one-sided ties

Authors:
Ágnes Cseh, research fellow
Institute of Economics, Research Centre for Economic and Regional Studies
Hungarian Academy of Sciences, and Corvinus University of Budapest

E-mail: cseh.agnes@krtk.mta.hu
Chien-Chung Huang
École Normale Supérieure, Paris, France
E-mail: cchuang@di.end.fr
Telikepalli Kavitha
associate professor
Tata Institute of Fundamental Research, Mumbai, India
E-mail: kavitha@tes.tifr.res.in

September 2017

ISBN 978-615-5754-13-5
ISSN 1785 377X

Népszerű párosítások kétoldali preferenciákkal és egyoldali döntetlenekkel

Cseh Ágnes - Chien-Chung Huang - Telikepalli Kavitha

Összefoglaló

Adott egy páros gráf $\mathrm{G}=(\mathrm{A} \mathrm{u} \mathrm{B}, \mathrm{E})$, amelyben minden csúcs rangsorolja a szomszédait. A-ban minden a szigorú preferencialistát állít fel, a B-beli b-k listája azonban tartalmazhat döntetleneket is. Egy M-párosítást akkor nevezünk népszerűnek, ha nincsen olyan M’párosítás, amelyben több csúcs részesíti előnyben M’-t M-mel szemben, mint fordítva. Tanulmányunkban megmutatjuk, hogy a népszerű párosítás létezésének eldöntése NP-teljes probléma még akkor is, ha minden B-beli b listája vagy egyetlen döntetlen vagy szigorúan rendezett. Ezt ellensúlyozandó azt is bebizonyítjuk, hogy ha minden B-beli b csúcs listája egyetlen döntetlenből áll, akkor polinomidőben megoldható esetet kapunk. Fő eredményünk egy $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$ algoritmus népszerú párositás keresésére ezen a problémán. Megjegyezzük, hogy a fenti modell élesen eltér attól az esettől, amelyben a B-beli csúcsok indifferensek azzal kapcsolatban, hogy párosítva vannak-e egyáltalán.

Kulcsszavak: népszerű párosítás, NP-teljesség, polinomiális algoritmus, döntetlenek

JEL-kód: C63, C78

POPULAR MATCHINGS WITH TWO-SIDED PREFERENCES AND ONE-SIDED TIES*

ÁGNES CSEH ${ }^{\dagger}$, CHIEN-CHUNG HUANG ${ }^{\ddagger}$, AND TELIKEPALLI KAVITHA§ ${ }^{\S}$

Abstract

We are given a bipartite graph $G=(A \cup B, E)$ where each vertex has a preference list ranking its neighbors: in particular, every $a \in A$ ranks its neighbors in a strict order of preference, whereas the preference list of any $b \in B$ may contain ties. A matching M is popular if there is no matching M^{\prime} such that the number of vertices that prefer M^{\prime} to M exceeds the number of vertices that prefer M to M^{\prime}. We show that the problem of deciding whether G admits a popular matching or not is NP-hard. This is the case even when every $b \in B$ either has a strict preference list or puts all its neighbors into a single tie. In contrast, we show that the problem becomes polynomially solvable in the case when each $b \in B$ puts all its neighbors into a single tie. That is, all neighbors of b are tied in b 's list and b desires to be matched to any of them. Our main result is an $O\left(n^{2}\right)$ algorithm (where $n=|A \cup B|$) for the popular matching problem in this model. Note that this model is quite different from the model where vertices in B have no preferences and do not care whether they are matched or not.

Key words. popular matching, NP-complete, polynomial algorithm, ties
AMS subject classifications. 05C85, 68R10, 68Q17

1. Introduction. We are given a bipartite graph $G=(A \cup B, E)$ where the vertices in A are called applicants and the vertices in B are called posts, and each vertex has a preference list ranking its neighbors in an order of preference. Here we assume that vertices in A have strict preferences while vertices in B are allowed to have ties in their preference lists. Thus each applicant ranks all posts that she finds interesting in a strict order of preference, while each post need not come up with a total order on all interested applicants - here applicants may get grouped together in terms of their suitability, thus equally competent applicants are tied together at the same rank.

Our goal is to compute a popular matching in G. The definition of popularity uses the notion of each vertex casting a "vote" for one matching versus another. A vertex v prefers matching M to matching M^{\prime} if either v is unmatched in M^{\prime} and matched in M or v is matched in both matchings and $M(v)(v$'s partner in $M)$ is ranked better than $M^{\prime}(v)$ in v 's preference list. In an election between matchings M and M^{\prime}, each vertex v votes for the matching that it prefers or it abstains from voting if M and M^{\prime} are equally preferable to v. Let $\phi\left(M, M^{\prime}\right)$ be the number of vertices that vote for M in an election between M and M^{\prime}.

Definition 1. A matching M is popular if $\phi\left(M, M^{\prime}\right) \geq \phi\left(M^{\prime}, M\right)$ for every matching M^{\prime}.

If $\phi\left(M^{\prime}, M\right)>\phi\left(M, M^{\prime}\right)$, then we say M^{\prime} is more popular than M and denote it by $M^{\prime} \succ M$; else $M \succeq M^{\prime}$. Observe that popular matchings need not always exist. Consider an instance where $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}\right\}$ and for $i=1,2,3$, each a_{i} has the same preference list which is b_{1} followed by b_{2} followed by b_{3} while each b_{i} ranks a_{1}, a_{2}, a_{3} the same, i.e. a_{1}, a_{2}, a_{3} are tied together in b_{i} 's preference list (see bottom left instance in Fig. 2). It is easy to see that for any matching M

[^0]here, there is another matching M^{\prime} such that $M^{\prime} \succ M$, thus this instance admits no popular matching.

The popular matching problem is to determine if a given instance $G=(A \cup B, E)$ admits a popular matching or not, and if so, to compute one. This problem has been studied in the following two models.

- 1-sided model: here it is only vertices in A (also called agents) that have preferences and cast votes; vertices in B are objects with no preferences or votes.
- 2-sided model: vertices on both sides have preferences and cast votes.

Popular matchings need not always exist in the 1-sided model and the problem of deciding whether a given instance admits one or not can be solved efficiently using the characterization and algorithm from [1]. In the 2 -sided model when all preference lists are strict, it is known that any stable matching is popular [7]; thus a popular matching can be found in linear time using the Gale-Shapley algorithm. However when ties are allowed in preference lists on both sides, Biró, Irving, and Manlove [3] showed that the popular matching problem is NP-complete. One of our models discusses this case further, strengthening the above result. Besides the two-sided model with ties, we also focus on the following variant:

* vertices on both sides cast votes, however it is only vertices of A that rank their neighbors in a strict order of preference, in other words, the preference list of each vertex of A is strict while the preference list of each vertex of B contains a single
"large tie".
That is, vertices in B have no ranking over their neighbors - however each $b \in B$ desires to be matched to any of its neighbors. Thus in an election between two matchings, b abstains from voting if it is matched in both or unmatched in both, else it votes for the matching where it is matched.

The above model is a natural variant of the 1 -sided model (recall that A is a set of agents and B is a set of objects here) where each object has an owner who gains a fixed profit by allocating the object to an agent. Such fixed price markets occur for example in housing markets where the house owner earns rent when his house gets allotted to a tenant. Thus agents have preferences over objects and each object-owner wants his object to get matched to some agent so as to earn the cost of the object. That is, each object has a vote and does not care who is matched to it as long as it is matched to someone.

We will see in Section 2 that this problem is significantly different from the popular matching problem in the 1-sided model where vertices in B do not cast votes. We show the following results here, complementing our polynomial time algorithm in Theorem 2 with our hardness result in Theorem 3.

Theorem 2. Let $G=(A \cup B, E)$ be a bipartite graph where each $a \in A$ has a strict preference list while each $b \in B$ puts all its neighbors into a single tie. The popular matching problem in G can be solved in $O\left(n^{2}\right)$ time, where $|A \cup B|=n$.

Theorem 3. Let $G=(A \cup B, E)$ be a bipartite graph where each $a \in A$ has a strict preference list while each $b \in B$ either has a strict preference list or puts all its neighbors into a single tie. The popular matching problem in G is NP-complete.

Thus Theorem 3 tells us that the popular matching problem with two-sided preferences and one-sided ties is NP-hard even in the restricted case where the preference list of each $b \in B$ is either strict or a single tie. We know that the two extreme cases admit polynomial time algorithms, i.e. (i) when the preference list of every vertex of B is strict (popular matchings always exist in this case [7]) or (ii) when the preference
list of every vertex of B is a single tie (by Theorem 2).
When proving Theorem 2 we show that a graph G admits a popular matching if and only if a new graph H that we construct here (H is essentially a subgraph of G) admits an A-complete matching, i.e. one that matches all vertices in A. The graph H is based on a partition $\langle X, Y, Z\rangle$ of B, where the first set X is a subset of top posts and roughly speaking, the second set Y consists of mid-level posts, while the third set Z consists of unwanted posts. We show that corresponding to any popular matching in G, there is a partition $\left\langle L_{1}, L_{2}, L_{3}\right\rangle$ of B into top posts, mid-level posts, and unwanted posts such that $X \supseteq L_{1}$ and $Z \subseteq L_{3}$, where $\langle X, Y, Z\rangle$ is the partition computed by our algorithm to construct H. This allows us to show that if H does not admit an A-complete matching, then G has no popular matching. In fact, not every popular matching in G becomes an A-complete matching in H (Section 3 has such an example). However it will be the case that if G admits popular matchings, then at least one of them becomes an A-complete matching in H.

Theorem 3 follows from a simple reduction from the (2,2)-E3-sAT problem. The (2,2)-E3-SAT problem takes as its input a Boolean formula \mathcal{I} in CNF, where each clause contains three literals and every variable appears exactly twice in unnegated form and exactly twice in negated form in the clauses. The problem is to determine if \mathcal{I} is satisfiable or not. This problem is NP-complete [2] and our reduction shows that the following version of the 2-sided popular matching problem in $G=(A \cup B, E)$ with 1 -sided ties is NP-complete:

- every vertex in A has a strict preference list of length 2 or 4;
- every vertex in B has either a strict preference list of length 2 or a single tie of length 2 or 3 as a preference list.
Note that our NP-hardness reduction needs B to have $\Omega(|B|)$ vertices with strict preference lists and $\Omega(|B|)$ vertices with single ties as their preference lists.

Background. Popular matchings have been well-studied in the 1 -sided model $[1,15,16,17,19,20]$ where only vertices of A have preferences and cast votes. Abraham et al. [1] gave efficient algorithms to determine if a given instance admits a popular matching or not - their algorithm also works when preference lists of vertices in A admit ties. The capacitated, many-to-one matching extension of the problem was studied by Manlove and Sng [17], while many-to-many markets were considered by Paluch [21]. The notions of least unpopular matchings [18] and popular mixed matchings [14] were also proposed to deal with instances that had no popular matchings. For markets with edge weights, McDermid and Irving [19] gave a structural characterization of popular matchings. In a similar spirit, Mestre [20] showed that in the presence of vertex weights, a maximum weight maximum cardinality popular matching or a proof for its nonexitence can be found in polynomial time even in the presence of ties.

Gärdenfors [7], who introduced the notion of popularity, considered the popular matchings problem in the domain of 2 -sided preference lists and showed that in any instance with strict preference lists, a stable matching is popular. Later, Biró, Irving, and Manlove [3] gave polynomial-time algorithms to test a given matching for popularity. Efficient algorithms for computing a maximum size popular matching in an instance $G=(A \cup B, E)$ with 2-sided strict preference lists were given in $[10,12]$. Various structural properties of popular matchings in such instances have also been investigated, such as identifying which vertices can get matched in some popular matching [9], determining "popular edges" (those that belong to some popular matching) [5], solving the optimal popular half-integral matching problem [13],
and studying the polytope of popular fractional matchings [11].
Organization of the paper. Section 2 has preliminaries. Section 3 contains our algorithm and its proof of correctness. Section 4 shows our NP-hardness result. We conclude with some open problems.
2. Preliminaries. For any $a \in A$, let $f(a)$ denote a 's most desired, first choice post. Let $F=\{f(a): a \in A\}$ be the set of these top posts. We will refer to posts in F as f-posts and to the ones in $B \backslash F$ as non- f-posts. For any $a \in A$, let r_{a} be the rank of a 's most preferred non- f-post in a 's preference list; when all of a 's neighbors are in F, we set $r_{a}=\infty$. The following theorem characterizes popular matchings in the 1 -sided voting model.

Theorem 4 (from [1]). Let $G=(A \cup B, E)$ be an instance of the 1-sided popular matching problem, where each $a \in A$ has a strict preference list. Let M be any matching in $G . M$ is popular if and only if the following two properties are satisfied:
(i) M matches every $b \in F$ to some applicant a such that $b=f(a)$;
(ii) M matches each applicant a to either $f(a)$ or its neighbor of rank r_{a}.

Thus the only applicants that may be left unmatched in a popular matching here are those $a \in A$ that satisfy $r_{a}=\infty$.

If b_{1} is ranked better than b_{2} in a 's preference list (where $a \in A$), then we write $b_{1}>b_{2}$ in a 's list. Let us consider the following example where $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}\right\}$: both a_{1} and a_{2} have the same preference list which is $b_{1}>b_{2}$ while a_{3} 's preference list is $b_{1}>b_{2}>b_{3}$ (see the top left figure in Fig. 2). Assume first that only applicants cast votes. The only posts that any of a_{1}, a_{2}, a_{3} can be matched to in a popular matching here are b_{1} and b_{2}. As there are three applicants and only two possible partners in a popular matching, there is no popular matching here. However in our 2 -sided voting model, where posts also care about being matched and all neighbors of a post are in a single tie in its preference list, we have a popular matching $\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)\right\}$. Note that b_{3} is ranked third in a_{3} 's preference list, which is worse than $r_{a_{3}}=2$, however such edges are permitted in popular matchings in our 2 -sided model.

Consider the following example (see the middle figure in Fig. 2): $A=\left\{a_{0}, a_{1}, a_{2}\right.$, $\left.a_{3}\right\}$ and $B=\left\{b_{0}, b_{1}, b_{2}, b_{3}\right\}$; both a_{1} and a_{2} have the same preference list which is $b_{1}>b_{2}$ while a_{3} 's preference list is $b_{1}>b_{0}>b_{2}$ and a_{0} 's preference list is $b_{0}>b_{3}$. There is again no popular matching here in the 1 -sided model, however in our 2 -sided voting model, we have a popular matching $\left\{\left(a_{0}, b_{3}\right),\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{0}\right)\right\}$. Note that $b_{0} \in F$ and here it is matched to a_{3} and $f\left(a_{3}\right) \neq b_{0}$; also a_{3} is matched to its second ranked post: this is neither its top post nor its $r_{a_{3}}$-th ranked post ($r_{a_{3}}=3$ here).

Thus popular matchings in our 2 -sided voting model are quite different from the characterization given in Theorem 4 for popular matchings in the 1 -sided model. Our algorithm (presented in Section 3) uses the following decomposition.

Dulmage-Mendelsohn decomposition [6]. Let M be a maximum matching in a bipartite graph $G=(A \cup B, E)$. Using M, we can partition $A \cup B$ into three disjoint sets: a vertex v is even (similarly, odd) if there is an even (resp., odd) length alternating path with respect to M from an unmatched vertex to v. Similarly, a vertex v is unreachable if there is no alternating path from an unmatched vertex to v. Denote by \mathcal{E}, \mathcal{O}, and \mathcal{U} the sets of even, odd, and unreachable vertices, respectively. The following properties (proved in [8]) will be used in our algorithm and analysis.
$-\mathcal{E}, \mathcal{O}$, and \mathcal{U} are pairwise disjoint. Let M^{\prime} be any maximum matching in G
and let $\mathcal{E}^{\prime}, \mathcal{O}^{\prime}$, and \mathcal{U}^{\prime} be the sets of even, odd, and unreachable vertices with respect to M^{\prime}, respectively. Then $\mathcal{E}=\mathcal{E}^{\prime}, \mathcal{O}=\mathcal{O}^{\prime}$, and $\mathcal{U}=\mathcal{U}^{\prime}$.

- Every maximum matching M matches all vertices in $\mathcal{O} \cup \mathcal{U}$ and has size $|\mathcal{O}|+|\mathcal{U}| / 2$. In M, every vertex in \mathcal{O} is matched with some vertex in \mathcal{E}, and every vertex in \mathcal{U} is matched with another vertex in \mathcal{U}.
- The graph G has no edge in $\mathcal{E} \times(\mathcal{E} \cup \mathcal{U})$.

3. Finding popular matchings in a 2 -sided voting model. The input is $G=(A \cup B, E)$ where each applicant $a \in A$ has a strict preference list while each post $b \in B$ has a single tie as its preference list. If G has a popular matching then we will construct such a matching in this section; else we return the message " G has no popular matching". Recall that F is the set of top posts and r_{a} is the rank of a 's most preferred non- f-post, for every $a \in A$.

Our goal is to construct a graph H such that G admits a popular matching if and only if H admits an A-complete matching. Note that the algorithm for popular matchings in the 1-sided popular matching problem is also based on the same idea: the algorithm in [1] constructs a graph based on the partition $\langle F, B \backslash F\rangle$ of B. While it is the case that in the 1-sided popular matching problem, every applicant has to be matched to either its most preferred post in F or its most preferred post in $B \backslash F$, we saw in the examples given in Section 2 that in our 2-sided popular matching problem, an applicant a can be matched to a neighbor of rank worse than r_{a}; also posts in F can be matched to applicants who do not regard them as top posts.

Let M be any matching in G and let us label each edge (a, b) in $G \backslash M$ by the vote of a for b versus $M(a)$, i.e. if a prefers b to $M(a)$, then label $(a, b)=+1$, otherwise label $(a, b)=-1$. In case a is not matched in M, then label $(a, b)=+1$ for any neighbor b of a. If M is popular in G, then the following two properties must hold on these edge labels:
(i) There is no alternating path ρ such that the edge labels in $\rho \backslash M$ are $\langle+1,+1$, $+1, \cdots\rangle$, i.e. no three consecutive non-matching edges are labeled +1 .
(ii) There is no alternating path ρ where the edge labels in $\rho \backslash M$ are $\langle+1,+1,-1$, $+1,+1, \cdots\rangle$, i.e. no five consecutive non-matching edge labels add up to 3 .
Otherwise $M \oplus \rho \succ M$. Inspired by the above two conditions that are necessary for a matching M to be popular, our algorithm will construct a 3-level partition $\langle X, Y, Z\rangle$ of B such that the following properties hold:
$-X \subseteq F$ and $Z \subseteq B \backslash F$
$-Y \subseteq F \cup\left\{b \in B \backslash F: b\right.$ has rank r_{a} in some a 's preference list $\}$.
The graph H that we will construct here will be based on this partition $\langle X, Y, Z\rangle$. Using the partition $\langle X, Y, Z\rangle$ of B, we will build a graph H where each applicant keeps at most two edges: either (1) to its most preferred post in X and also in Y or (2) to its most preferred post in Z and also in Y. Later, in phase (III) of our algorithm we will define dummy posts that may be included in Y.

Our algorithm performs the partition of B into X, Y, and Z over several iterations. Initially $X=F, Y=B \backslash F$, and $Z=\emptyset$. In each iteration, certain non-top posts get demoted from Y to Z and similarly, certain top posts get demoted from X to Y.

We will decide which f-posts belong to X and which belong to Y by trying to maintain the following property which will enable us to show that M obeys property (ii) stated above. Let $M(U)$ be the set of applicants who are matched to posts in U for any $U \subseteq B$.
$(*)$ There will be no edge in G between an applicant in $M(X)$ and a post in Z.

In order to maintain property $(*)$, we will partition A into two subsets: $A \backslash \mathrm{nbr}(Z)$ and $\operatorname{nbr}(Z)$, where $\operatorname{nbr}(U)$ (similarly, $\operatorname{nbr}_{H}(U)$) is the set of neighbors in G (resp., in H) of the vertices in U, for any subset U of vertices. Our algorithm will maintain $\operatorname{nbr}_{H}(X) \subseteq A \backslash \operatorname{nbr}(Z)$ and thus it is only the applicants in $A \backslash \mathrm{nbr}(Z)$ who will get matched to vertices in X in M and thus property (*) will be maintained. In each iteration, we have new posts entering Z from Y and this causes some applicants to move from $A \backslash \operatorname{nbr}(Z)$ to $\operatorname{nbr}(Z)$.

Fig. 1. The set B gets partitioned into X, Y, and Z. We have $\operatorname{nbr}_{H}(X) \cap \operatorname{nbr}(Z)=\emptyset$. In the figure on the right, the horizontal edges belong to M. These belong to the graph H and the dashed edges are other possible edges in the graph H. It will be the case that only the edges of $(M(Y) \times X) \cup(M(Z) \times(X \cup Y))$ in G can be labeled +1.

If M is the matching that is returned by our algorithm, then it will be the case that any edge that is labeled +1 by our edge labeling in $G \backslash M$ has to be either in $M(Y) \times X$ or in $M(Z) \times(X \cup Y)$ (see Fig. 1). There will be no +1 edge incident on any applicant who is matched to a post in X. This will enable us to show that M obeys property (i) stated earlier.

We are now ready to formally describe our algorithm. Initialize $X=F, Y=B \backslash F$, and $Z=\emptyset$.
(I) While true do

0 . H is the empty graph on $A \cup B$.

1. For each $a \in A \backslash \operatorname{nbr}(Z)$ do: - if $f(a) \in X$ then add the edge $(a, f(a))$ to H.
2. For every $b \in X$ that is isolated in H do: - delete b from X and add b to Y.
3. For each $a \in A$ do:

- let b be a 's most preferred post in the set Y; if the rank of b in a 's preference list is $\leq r_{a}$ (i.e. r_{a} or better), then add (a, b) to H.

4. Consider the graph H constructed in steps 1-3. Compute a maximum match-
ing in H. [This is to identify "even" posts in H.]

- If there exist even posts in Y then delete all even posts from Y and add them to Z.
- Else quit the While-loop.
(II) Every $a \in \operatorname{nbr}(Z)$ adds the edge (a, b) to H where b is a 's most preferred post in the set Z.
(III) Add all posts in $D=\left\{\ell(a): a \in A\right.$ and $\left.r_{a}=\infty\right\}$ to Y, where $\ell(a)$ is the dummy last resort post of applicant a. For every applicant a such that $\operatorname{nbr}(\{a\}) \subseteq X$, add the edge $(a, \ell(a))$ to H.
Note that introducing dummy posts does not interfere with the voting for popular matchings because dummy posts do not vote - they are only present in the "helper" graph H constructed above and not in the given instance G. For any applicant a, being matched to $\ell(a)$ in H is equivalent to a being left unmatched in G. Thus any matching M in H can be projected to a matching in G, by deleting all $(a, \ell(a))$ edges from M and for convenience, we will refer to the resulting matching also as M.

The condition for exiting the While-loop ensures that all posts in Y are odd/unreachable in the subgraph of H with the set of posts restricted to real posts in $X \cup Y$ (i.e. the non-dummy ones). This implies that all posts in X are also odd/unreachable in this subgraph - this is because if a post $b \in X$ is even in this subgraph, then b 's neighbor a in this subgraph is odd (by Dulmage-Mendelsohn decomposition). So the applicant a has degree more than 1 and hence it has a neighbor b^{\prime} in the set Y. Note that then b^{\prime} has to be even in this subgraph, otherwise there would be no even length alternating path from an unmatched vertex to a in any maximum matching here.

Thus all posts in $X \cup Y$ are odd/unreachable in the subgraph of H with the set of posts restricted to the non-dummy ones. So starting with a maximum matching in this subgraph and augmenting it after adding the edges on posts in Z in phase (II) and the edges on dummy posts in phase (III), we get a maximum matching in H that matches all real posts in $X \cup Y$. After the construction of H, our algorithm for the popular matching problem in G is given below.

- If H admits an A-complete matching, then return one that matches all real posts in $X \cup Y$; else output " G has no popular matching".
In the rest of this section, we prove the following theorem.
Theorem 5. G admits a popular matching if and only if H admits an A-complete matching, i.e. one that matches all vertices in A.
3.1. Some examples. We present some examples in Fig. 2 and describe how our algorithm builds the graph H on these examples. Let X_{i}, Y_{i}, Z_{i} denote the sets X, Y, Z at the end of the i-th iteration of our algorithm and let H_{i} denote the graph H in step 4 of the i-th iteration of our algorithm.

In the first example (top left of Fig. 2), we have $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $B=$ $\left\{b_{1}, b_{2}, b_{3}\right\}$ and the preferences of applicants are denoted on the edges. By our initialization, we have $X_{0}=\left\{b_{1}\right\}, Y_{0}=\left\{b_{2}, b_{3}\right\}$, and $Z_{0}=\emptyset$. In step 4 of our first iteration, we identify b_{3} as an even post in H_{1}. So $Y_{1}=\left\{b_{2}\right\}$ and $Z_{1}=$ $\left\{b_{3}\right\}$. In the second iteration, $a_{3} \in \operatorname{nbr}\left(Z_{1}\right)$ and so it has no edge to b_{1} in H_{2}. This is the last iteration of our algorithm. Our final graph H has the edge set $\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{2}\right),\left(a_{3}, b_{3}\right)\right\}$.

While the above example admits a popular matching, consider the graph in the bottom left of Fig. 2. The first iteration of our algorithm is exactly the same on

Fig. 2. We have 4 examples here: except for the graph in bottom left, all the other graphs admit popular matchings and these are highlighted. In the graph on the extreme right, both the red dotted and green dashed matchings are popular, however the matching $\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}$ in their union is not popular.
this graph as it was with the earlier graph. We have $X_{1}=\left\{b_{1}\right\}, Y_{1}=\left\{b_{2}\right\}$, and $Z_{1}=\left\{b_{3}\right\}$. However in the second iteration, all the applicants a_{1}, a_{2}, a_{3} become elements of $\operatorname{nbr}\left(Z_{1}\right)$ and b_{1} becomes an isolated vertex in step 2 , so b_{1} becomes an element of Y_{2}. In step 4 of the second iteration, b_{2} is identified as an even post in H_{2} as it is isolated in H_{2}. So $Y_{2}=\left\{b_{1}\right\}$ and $Z_{2}=\left\{b_{2}, b_{3}\right\}$. No demotions happen in the third iteration, which is the last iteration of our algorithm. Our final graph H has the edge set $\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{1}\right),\left(a_{3}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{2}\right)\right\}$. Observe that H has no A-complete matching.

In the third example (middle of Fig. 2), we have $A=\left\{a_{0}, a_{1}, a_{2}, a_{3}\right\}$ and $B=$ $\left\{b_{0}, b_{1}, b_{2}, b_{3}\right\}$ and the preferences of applicants are again denoted on the edges. In step 4 of the first iteration of this algorithm, the post b_{3} is identified as an even vertex in Y_{0} and it becomes an element of Z_{1}. So $a_{0} \in \operatorname{nbr}\left(Z_{1}\right)$ and b_{0} becomes isolated in step 2 of the second iteration. So b_{0} becomes an element of Y_{2} and this is the last iteration of our algorithm. Our final graph H has the edge set $\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{1}\right),\left(a_{3}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{0}\right),\left(a_{0}, b_{0}\right),\left(a_{0}, b_{3}\right)\right\}$. This graph admits an A-complete matching $\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{0}\right),\left(a_{0}, b_{3}\right)\right\}$.

The fourth example here (the rightmost graph in Fig. 2) is that of a graph G with several popular matchings. It is not the case that H contains all these matchings. At the end of our entire algorithm, we have $X=\left\{b_{1}, y_{1}\right\}, Y=\left\{b_{2}, y_{2}\right\}$, and $Z=\left\{b_{3}, y_{3}\right\}$. The graph H does not contain the edges $\left(a_{3}, b_{1}\right)$ and $\left(x_{1}, y_{1}\right)$
since a_{3} and x_{1} belong to $\operatorname{nbr}(Z)$. The subgraph H admits an A-complete matching $M=\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right),\left(x_{2}, y_{1}\right),\left(x_{1}, y_{2}\right)\right\}$ and this is a popular matching in G. However H does not contain $M^{\prime}=\left\{\left(a_{1}, b_{2}\right),\left(a_{2}, b_{1}\right),\left(a_{3}, b_{3}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}$, which is another popular matching in G. In fact, any subgraph that contains both M and M^{\prime} would also contain the following A-complete matching $N=\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)\right.$, $\left.\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}$, which is not popular. This is because the matching $N^{\prime}=\left\{\left(a_{1}, b_{1}\right)\right.$, $\left.\left(a_{2}, y_{1}\right),\left(a_{3}, b_{2}\right),\left(x_{1}, y_{3}\right),\left(x_{2}, y_{2}\right)\right\}$ is more popular than N : observe that the vertices a_{2}, a_{3}, and y_{3} prefer N^{\prime} to N and the vertices x_{1} and b_{3} prefer N to N^{\prime} while the remaining vertices are indifferent between the two matchings.
3.2. Proof of Theorem 5: the sufficient part. We first show that if H admits an A-complete matching, then G admits a popular matching. We have already observed that if H admits an A-complete matching, then H has an A-complete matching M that matches all real posts in $X \cup Y$.

A useful observation is that $Z \subseteq B \backslash F$. This is because in step 4 of the Whileloop in our algorithm, all f-posts in Y are odd/unreachable in H as they are the only neighbors in H of applicants who regard them as f-posts, i.e., their neighbors have degree 1 in H in step 4.

We now assign edge labels in $\{ \pm 1\}$ to all edges in $G \backslash M$ as described at the beginning of Section 3, i.e. each edge (a, b) in $G \backslash M$ is labeled label (a, b) which is a 's vote for b vs $M(a)$ and $\operatorname{label}(a, b)=+1$ if a is unmatched in M. Fig. 1 is helpful here. For any $U \in\{X, Y, Z\}$, let $M(U) \subseteq A$ be the set of applicants matched in M to posts in U. The following lemma is important.

Lemma 6. Every edge of G in $M(X) \times Y$ is labeled -1 ; similarly, every edge in $M(Y) \times Z$ is labeled -1 . Any edge labeled +1 has to be either in $M(Y) \times X$ or in $M(Z) \times(X \cup Y)$.

Proof. Every edge of $\operatorname{nbr}(X) \times X$ that is present in H is a top ranked edge. Since M belongs to H, the edges of M from $\operatorname{nbr}(X) \times X$ are top ranked edges. Thus it is clear that every edge of G in $M(X) \times Y$ is labeled -1 . Regarding $M(Y) \times Z$, every edge of $\operatorname{nbr}(Y) \times Y$ that is present in the graph H is an edge (a, b) where the rank of b in a 's preference list is $\leq r_{a}$ (i.e. r_{a} or better); on the other hand, every edge of $\mathrm{nbr}(Z) \times Z$ that is present in the graph H is an edge $\left(a, b^{\prime}\right)$ where the rank of b^{\prime} in a^{\prime} 's preference list is $\geq r_{a}$ (because $b^{\prime} \in B \backslash F$). Since M belongs to H, every edge of G in $M(Y) \times Z$ is labeled -1 .

We now show that any edge labeled +1 has to be in either $M(Y) \times X$ or $M(Z) \times$ $(X \cup Y)$ (see Fig. 1). Consider any edge $(a, b) \notin M$ such that $b \in U$ and $a \in M(U)$, where $U \in\{X, Y, Z\}$. It follows from the construction of the graph H that a vertex in $\operatorname{nbr}(U)$ can be adjacent in H to only its most preferred post in U. Thus any edge $(a, b) \notin M$ where $b \in U$ and $a \in M(U)$ is labeled -1 . We have already seen that all edges in $M(X) \times Y$ and in $M(Y) \times Z$ are labeled -1 . There are no edges in $M(X) \times Z$ since $M(X) \subseteq A \backslash \operatorname{nbr}(Z)$. Thus any edge labeled +1 has to be in either $M(Y) \times X$ or $M(Z) \times(X \cup Y)$.

Let M^{\prime} be any matching in G. The symmetric difference of M^{\prime} and M is denoted by $M^{\prime} \oplus M$: this consists of alternating paths and alternating cycles - note that edges here alternate between M and M^{\prime}. Recall that last resort posts are not used in M^{\prime} (which is a matching in G) whereas last resort posts may be present in M (which is a matching in H).

Lemma 7. Consider $M^{\prime} \oplus M$. The following three properties hold:
(i) in any alternating cycle in $M^{\prime} \oplus M$, the number of -1 edges is at least the
number of +1 edges.
(ii) in any alternating path in $M^{\prime} \oplus M$, the number of +1 edges is at most two plus the number of -1 edges; in case one of the endpoints of this path is a last resort post, then the number of +1 edges is at most one plus the number of -1 edges.
(iii) in any even length alternating path in $M^{\prime} \oplus M$, the number of -1 edges is at least the number of +1 edges; in case one of the endpoints of this path is a last resort post, then the number of -1 edges is at least one plus the number of +1 edges.
Proof. Property (i). Let $C \in M \oplus M^{\prime}$ be an alternating cycle. Let C be $b_{0}-a_{0}-$ $b_{1}-a_{1}-b_{2} \cdots-a_{k-1}-b_{0}$, where $\left(a_{i}, b_{i}\right) \in M$ for $0 \leq i \leq k-1$. If C contains no vertex of Z, then there cannot be two consecutive non-matching edges labeled +1 in C. That is, if $\left(a_{i}, b_{i+1}\right)$ is labeled +1 , then $b_{i+1} \in X$ and there is no +1 edge incident on $M\left(b_{i+1}\right)=a_{i+1}$, thus the non-matching edge incident on a_{i+1} in C has to be labeled -1 . Hence the number of -1 edges is at least the number of +1 edges.

Suppose C contains a vertex of Z : let b_{i} be such a vertex. There can be two consecutive non-matching edges labeled +1 now: let $b_{i}-a_{i}-b_{i+1}-a_{i+1}-b_{i+2}$ be such an alternating path within C, where both $\left(a_{i}, b_{i+1}\right)$ and $\left(a_{i+1}, b_{i+2}\right)$ are labeled +1 . Then $b_{i} \in Z, b_{i+1} \in Y$, and $b_{i+2} \in X$. In the first place, there is no +1 edge incident on a_{i+2} and the crucial part is that there is no edge in G between a vertex in $\mathrm{nbr}_{H}(X)$ and a vertex in Z. Thus once we reach a vertex $a_{i+2} \in M(X)$, we have to see an edge $\left(a_{i+2}, b_{i+3}\right)$ labeled -1 where $b_{i+3} \in X \cup Y$ (since a_{i+2} has no neighbor in Z). In order to reach a vertex in Z, we need to see at least two consecutive non-matching edges labeled -1 . Thus it again follows that the number of -1 edges is at least the number of +1 edges.
Property (ii). Let $\rho \in M \oplus M^{\prime}$ be an alternating path. Let ρ be $b_{0}-a_{0}-b_{1}-a_{1}-b_{2} \cdots \cdots$ $a_{k-1}-b_{k}-a_{k}$, where $\left(a_{i}, b_{i}\right) \in M$ for $0 \leq i \leq k$. The same argument that was used in the proof of property (i) shows us that there can be at most two consecutive non-matching edges labeled +1 in ρ and once we traverse such an alternating path $b_{i-} a_{i}-b_{i+1^{-}} a_{i+1^{-}}$ b_{i+2} in ρ (where b_{i} has to be in Z), we are at a vertex $b_{i+2} \in X$. Thereafter we have to see at least two more non-matching edges labeled -1 than those labeled +1 to again reach a vertex in Z. Thus it follows that the difference between the number of +1 edges and the number of -1 edges is at most two.

In fact, for the difference between the number of +1 edges and the number of -1 edges to be exactly two, it has to be the case that b_{0} is in Z. For, in case b_{0} is in Y, then it is easy to see that the difference between the number of +1 edges and the number -1 edges is at most one. Note that all last resort posts belong to Y. Thus when b_{0} is a last resort post, then the number of +1 edges in ρ is at most one plus the number of -1 edges.
Property (iii). Let $\rho=b_{0}-a_{0}-b_{1}-a_{1}-b_{2} \cdots-a_{k-1}-b_{k}$ be an even length alternating path where $\left(a_{i}, b_{i}\right) \in M$ for $0 \leq i \leq k-1$. The post b_{0} is unmatched in M^{\prime} and b_{k} is unmatched in M. Recall that M is A-complete, thus any even length alternating path with respect to M has to have vertices in B as its endpoints (since one of them is left unmatched in M). Since b_{k} is a post that is matched in M^{\prime} but not in M, it follows that $b_{k} \in Z$ (as all non-dummy posts in $X \cup Y$ are matched in M).

Now the argument is similar to the proof of property (ii). In order to maximize the difference between the number of edges labeled +1 and those labeled -1 , we assumed that the starting vertex $b_{0} \in Z$. For the final vertex b_{k} to be in Z, it follows that the number of -1 edges is at least the number of +1 edges. In particular, when b_{0} is a last resort post, then the starting vertex is in Y and so the number of -1 edges
is at least one plus the number of +1 edges.
Lemma 8 uses the above lemma to show the popularity of M. This completes the proof that if H admits an A-complete matching then G admits a popular matching.

Lemma 8. For any matching M^{\prime} in G, we have $\phi\left(M, M^{\prime}\right) \geq \phi\left(M^{\prime}, M\right)$.
Proof. Recall that M is A-complete (where some of the posts used in M can be last resort posts). Consider $M \oplus M^{\prime}$. We will now investigate every component of $M \oplus M^{\prime}$ - each of which is an alternating cycle, or an odd length alternating path, or an even length alternating path - and show $\phi\left(M, M^{\prime}\right) \geq \phi\left(M^{\prime}, M\right)$ for each of them.

- For any alternating cycle $C \in M \oplus M^{\prime}$, among the vertices of C, the difference between those who prefer M^{\prime} and those who prefer M is equal to $\sum_{a \in C} \operatorname{label}\left(a, M^{\prime}(a)\right)$. It follows from part (i) of Lemma 7 that this sum is at most 0 .
- Consider any odd length alternating path $\rho \in M \oplus M^{\prime}$: its endpoints are an applicant a^{\prime} and a post b^{\prime} that are unmatched in M^{\prime}. Assume b^{\prime} is a non-dummy post. Then among the vertices of ρ that are matched in M^{\prime}, the difference between those who prefer M^{\prime} and those who prefer M is equal to $\sum_{a \in \rho} \operatorname{label}\left(a, M^{\prime}(a)\right)$. It follows from part (ii) of Lemma 7 that this sum is at most 2. The two vertices a^{\prime} and b^{\prime} prefer M to M^{\prime} as they are matched in M and unmatched in M^{\prime}. Thus summed over all vertices of ρ, the difference between those who prefer M^{\prime} and those who prefer M is again at most 0 .
Now suppose b^{\prime} is a dummy post. Then it follows from part (ii) of Lemma 7 that among the vertices of ρ that are matched in M^{\prime}, the difference between those who prefer M^{\prime} and those who prefer M is at most 1 . The vertex a^{\prime} prefers M to M^{\prime}. Thus summed over all real vertices of ρ, the difference between those who prefer M^{\prime} and those who prefer M is again at most 0 .
- Consider any even length alternating path $\rho \in M \oplus M^{\prime}$: its endpoints are a post b_{0} that is unmatched in M^{\prime} and a post b_{k} that is unmatched in M. Assume b_{0} is a non-dummy post. Then summed over all vertices of ρ (this includes b_{0} who prefers M and b_{k} who prefers M^{\prime}), the difference between those who prefer M and those who prefer M^{\prime} is at least 0 (by part (iii) of Lemma 7).
Now suppose b_{0} is a dummy post. Then summed over all real vertices of ρ that are matched in M, the difference between those who prefer M and those who prefer M^{\prime} is at least 1 (by part (iii) of Lemma 7). Thus summed over all real vertices of ρ (this includes b_{k} who prefers M^{\prime}), the difference between those who prefer M and those who prefer M^{\prime} is at least 0 .
All vertices whose partners in M and in M^{\prime} are different belong to some alternating path or cycle in $M \oplus M^{\prime}$. Hence the difference between the number of vertices that prefer M and those that prefer M^{\prime} is non-negative. In other words, $\phi\left(M, M^{\prime}\right) \geq \phi\left(M^{\prime}, M\right)$.

Bounding the size of M. We know that M is an A-complete matching in H and it matches all real posts in $X \cup Y$. We would now like to bound from below the number of "real edges" in M, i.e. we would like to bound from below the size of the matching M^{\prime} obtained after deleting those edges from M that are incident on dummy posts. We claim $\left|M^{\prime}\right| \geq 2 / 3 \cdot\left|M_{\max }\right|$, where $M_{\max }$ is a maximum size matching in G.

This is because there can be no length-3 augmenting path ρ with respect to M^{\prime} in $M^{\prime} \oplus M_{\max }$. Suppose $\rho=b_{0}-a_{1}-b_{1}-a_{0}$ is such an augmenting path where a_{0} and b_{0} are unmatched in M^{\prime}. Then by matching a_{0} to b_{1} and a_{1} to b_{0}, we get a matching
$M^{\prime} \oplus \rho$ that is preferred by both a_{0} and b_{0} while one vertex a_{1} prefers M^{\prime} to $M^{\prime} \oplus \rho$. Thus $M^{\prime} \oplus \rho$ is more popular than M^{\prime} (and thus M), a contradiction to the popularity of M. Hence every augmenting path in $M^{\prime} \oplus M_{\max }$ has length 5 or more.

Thus we have $\left|M^{\prime}\right| \geq 2 / 3 \cdot\left|M_{\max }\right|$. This is a tight bound as shown by the example in Fig. 3. Here $A=\left\{a_{0}, a_{1}, a_{2}\right\}, B=\left\{b_{0}, b_{1}, b_{2}\right\}$, and let b_{1} be the top post of all the 3 applicants, let b_{2} be the second ranked post of both a_{1} and a_{2}, and let b_{0} be the third ranked post of a_{2}. Our algorithm can return the matching $M=$ $\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{0}, \ell\left(a_{0}\right)\right)\right\}$. So $M^{\prime}=\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right\}$. The maximum matching here is $M_{\max }=\left\{\left(a_{0}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{2}, b_{0}\right)\right\}$.

FIG. 3. Let $M=\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{0}, \ell\left(a_{0}\right)\right)\right\}$, then $M^{\prime}=\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right\}$. The matching M^{\prime} has a length-5 augmenting path $a_{0}-b_{1}-a_{1}-b_{2}-a_{2}-b_{0}$ with respect to it.
3.3. Proof of Theorem 5: the necessary part. We now show the other side of Theorem 5. That is, if G admits a popular matching, then H admits an A-complete matching. Let M^{*} be a popular matching in G. Lemma 9 will be useful to us.

Lemma 9. If $(a, b) \in M^{*}$ and $b \in F$, then b has rank better than r_{a} in a 's preference list.

Proof. Suppose $(a, b) \in M^{*}$, where $b \in F$, and b has rank worse than r_{a} in a 's preference list. Note that the rank of b cannot be exactly r_{a} since there is another post $b^{\prime} \notin F$ that has rank r_{a} in a^{\prime} 's preference list. We know that $a=M^{*}(b)$ prefers post b^{\prime} to b. If post b^{\prime} is unmatched, then consider $M^{*} \oplus p$ where $p=M^{*}\left(a_{0}\right)-a_{0}-b-a-b^{\prime}$, where a_{0} is an applicant such that $f\left(a_{0}\right)=b$ (there exists such an applicant since $b \in F)$. The matching $M^{*} \oplus p$ is more popular than M^{*}.

So suppose the post b^{\prime} is matched and let $a_{1}=M^{*}\left(b^{\prime}\right)$. If $a_{0}=a_{1}$, then consider the alternating cycle $C=a_{0}-b-a-b^{\prime}-a_{0}$; the matching $M^{*} \oplus C$ makes a_{0} and a swap their partners and both applicants prefer $M^{*} \oplus C$ to M^{*} while nobody prefers M^{*} to $M^{*} \oplus C$. Thus $M^{*} \oplus C$ is more popular than M^{*}. If $a_{0} \neq a_{1}$, then consider the alternating path ρ that promotes a_{0} to its top post b and then $M^{*}(b)=a$ to a more preferred post b^{\prime} and finally, $M^{*}\left(b^{\prime}\right)=a_{1}$ to its top post $f\left(a_{1}\right)$. The vertices $M^{*}\left(a_{0}\right)$ and $M^{*}\left(f\left(a_{1}\right)\right)$ become unmatched in $M^{*} \oplus \rho$ and so they prefer M^{*} to $M^{*} \oplus \rho$ while the three vertices a_{0}, a, and a_{1} prefer $M^{*} \oplus \rho$ to M^{*}. Every other vertex is indifferent between $M^{*} \oplus \rho$ and M^{*}. So $M^{*} \oplus \rho$ is more popular than M^{*}. Thus we have contradicted the popularity of M^{*} in all the cases.

We label the edges of $G \backslash M^{*}$ by +1 or -1 as done at the beginning of Section 3: for any edge (a, b) in $G \backslash M^{*}$, we have label $(a, b)=$ vote of a for b vs $M^{*}(a)$. In case
a is not matched in M^{*}, then $\operatorname{label}(a, b)=+1$ for any neighbor b of a. An important observation is that there is no alternating path ρ such that the edge labels in $\rho \backslash M^{*}$ are $\langle+1,+1,+1, \cdots\rangle$, i.e. no three consecutive non-matching edges in any alternating path are labeled +1 .

Based on the matching M^{*} and the edge labels on $G \backslash M^{*}$, we partition B into $L_{1} \cup L_{2} \cup L_{3}$.

- Roughly speaking, L_{3} consists of unwanted posts, so all posts that are unmatched in M^{*} belong to L_{3}. Similarly, posts like b_{3} with a length- 5 alternating path $M^{*}\left(b_{1}\right)-b_{1}-M^{*}\left(b_{2}\right)-b_{2}-M^{*}\left(b_{3}\right)-b_{3}$ incident on them, with both the non-matching edges labeled +1 (see Fig. 4) are in L_{3}; mid-level posts like b_{2} are in L_{2} and top posts like b_{1} are in L_{1}.
- There cannot be an edge in G between a_{1} and b_{3}^{\prime} where $a_{1}-b_{1}-a_{2}-b_{2}-a_{3}-b_{3}$ and $a_{1}^{\prime}-b_{1}^{\prime}-a_{2}^{\prime}-b_{2}^{\prime}-a_{3}^{\prime}-b_{3}^{\prime}$ are two length- 5 alternating paths with both the nonmatching edges labeled +1 - otherwise we can construct a matching more popular than M^{*} by promoting a_{3} to b_{2} and a_{2} to b_{1}, demoting a_{1} to b_{3}^{\prime}, and promoting a_{3}^{\prime} to b_{2}^{\prime} and a_{2}^{\prime} to b_{1}^{\prime} which leaves a_{1}^{\prime} unmatched. We will maintain this invariant that $M^{*}\left(L_{1}\right) \cap \mathrm{nbr}\left(L_{3}\right)=\emptyset$ while adding further posts to L_{1}, L_{2}, L_{3}.

Fig. 4. A length-5 alternating path $M^{*}\left(b_{1}\right)-b_{1}-M^{*}\left(b_{2}\right)-b_{2}-M^{*}\left(b_{3}\right)-b_{3}$, where both $\left(M^{*}\left(b_{3}\right), b_{2}\right)$ and $\left(M^{*}\left(b_{2}\right), b_{1}\right)$ are labeled +1 .

More formally, we define the partition $B=L_{1} \cup L_{2} \cup L_{3}$ below.
0 . Initialize $L_{1}=L_{2}=\emptyset$ and $L_{3}=\left\{b \in B: b\right.$ is unmatched in $\left.M^{*}\right\}$. Let all posts that are matched in M^{*} be unmarked. In steps 1-4 we mark these posts and add them to the sets L_{1}, L_{2}, L_{3} as described below.

1. For each length- 5 alternating path $\rho=a_{1}-b_{1}-a_{2}-b_{2}-a_{3}-b_{3}$ where $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)$, $\left(a_{3}, b_{3}\right) \in M^{*}$ and both $\left(a_{2}, b_{1}\right)$ and $\left(a_{3}, b_{2}\right)$ are labeled +1 , add b_{i} to L_{i}, for $i=1,2,3$ and mark these posts.
2. Repeat the following two steps till there is no unmarked post b to be added to $L_{2} \cup L_{3}$ by these rules:

- if $M^{*}(b)$ has no +1 edge incident on it and $M^{*}(b) \in \operatorname{nbr}\left(L_{3}\right)$, then add b to L_{2} and mark b.
- if $M^{*}(b)$ has a +1 edge to a vertex in L_{2}, then add b to L_{3} and mark b.

3. For each unmarked b :

- (3.1) if $M^{*}(b)$ has no +1 edge incident on it then add b to L_{1} and mark b;
- (3.2) else add b to L_{2} and mark b.

Remark. If a post b is unmarked at the end of step 2 , then there are two subcases:

- either $M^{*}(b)$ has no +1 edge incident on it and $M^{*}(b) \notin \operatorname{nbr}\left(L_{3}\right)$
- or $M^{*}(b)=a$ has a +1 edge $\left(a, b^{\prime}\right)$ incident on it and $b^{\prime} \notin L_{2}$.

In the first subcase above, b will get added to L_{1} in (3.1) and in the second subcase above, b will get added to L_{2} in (3.2). Since every post $b \in B$ gets added to exactly one of L_{1}, L_{2}, L_{3}, steps 0-3 obtain a partition $\left\langle L_{1}, L_{2}, L_{3}\right\rangle$ of B.

Lemma 10. We have $L_{1} \subseteq F \subseteq L_{1} \cup L_{2}$, where F is the set of top posts.
Proof. We will first show that every post in L_{1} is an f-post. Posts are added to L_{1} in steps 1 and 3.1. Regarding posts added to L_{1} in step 3.1, it follows from the description of step 3.1 that there is no +1 edge incident on the partner of such a post. Let b be any post added to L_{1} in step 1 . Note that there is no +1 edge incident to $M^{*}(b)$, otherwise we would have an alternating path ρ with respect to M^{*} with three consecutive non-matching edges that are labeled +1 (which is forbidden since M^{*} is popular). Thus $L_{1} \subseteq F$.

We will now show that every f-post belongs to either L_{1} or L_{2}. Suppose $b_{1}=$ $f\left(a_{0}\right)$ belongs to L_{3}. The post b_{1} has to be matched in M^{*}. Let $a_{1}=M^{*}\left(b_{1}\right)$ and we also know from the construction of the set L_{3} that there is an edge $\left(a_{1}, b_{2}\right)$ with $b_{2} \in L_{2}$ that is labeled +1 . If the vertex a_{0} is unmatched in M^{*}, then by promoting a_{0} to b_{1} and a_{1} to b_{2}, and leaving $M^{*}\left(b_{2}\right)$ unmatched, we obtain a matching that is more popular than M^{*}.

Hence let us assume that a_{0} is matched in M^{*}. Consider the alternating path $M^{*}\left(a_{0}\right)-a_{0}-b_{1}-a_{1}-b_{2}$ with respect to M^{*} : this has two consecutive non-matching edges that are labeled +1 . Thus it follows from our construction of L_{1}, L_{2}, L_{3} that $M^{*}\left(a_{0}\right) \in$ $L_{3}, b_{1} \in L_{2}$, and $b_{2} \in L_{1}$. This contradicts our assumption that $b_{1} \in L_{3}$.

Lemma 11. $M^{*}\left(L_{1}\right) \cap \operatorname{nbr}\left(L_{3}\right)=\emptyset$.
Before we prove the above lemma, we will show the following claim which will be useful in proving Lemma 11.

Claim 1. If $a \in \operatorname{nbr}\left(L_{3}\right)$ and $M^{*}(a)=f(a)$, then there is an alternating path ρ_{a} with respect to M^{*} with a as an endpoint such that either $\left|\rho_{a}\right|$ is even and the edge labels on $\rho_{a} \backslash M^{*}$ are $\langle-1,+1,-1, \cdots,+1,+1\rangle$ or $\left|\rho_{a}\right|$ is odd and the edge labels on $\rho_{a} \backslash M^{*}$ are $\langle-1,+1,-1, \cdots,+1,-1\rangle$ where the last edge is incident on an unmatched post.

Proof. Posts are added to L_{3} in steps 0,1 , and 2 . We now study each of these cases. The set L_{3} was initialized to the set of posts left unmatched in M^{*}. So at the end of step 0 , it is the case that every $a \in \operatorname{nbr}\left(L_{3}\right)$ has an odd alternating path, which is in fact an edge (a, b) labeled -1 , whose one endpoint is a and the other endpoint is an unmatched post b.

Let b_{3} be a post that got added to L_{3} in step 1 . Then there is an alternating path $b_{3}-a_{3}-b_{2}-a_{2}-b_{1}-a_{1}$ such that $\left(a_{i}, b_{i}\right) \in M^{*}$ for $i=1,2,3$, and both $\left(a_{3}, b_{2}\right)$ and $\left(a_{2}, b_{1}\right)$ are marked +1 . Thus every neighbor $a \in \operatorname{nbr}\left(\left\{b_{3}\right\}\right)$ with $M^{*}(a)=f(a)$ has an even length alternating path $\rho_{a}=a-b_{3}-a_{3}-b_{2}-a_{2}-b_{1}-a_{1}$ where the edge labels on $\rho_{a} \backslash M^{*}$ are $\langle-1,+1,+1\rangle$. Note that $a \neq a_{1}$ - otherwise ρ_{a} is an alternating cycle and $M^{*} \oplus \rho_{a}$ is more popular than M^{*}.

Thus the claim that every $a \in \operatorname{nbr}\left(L_{3}\right)$ with $M^{*}(a)=f(a)$ has a desired alternating path ρ_{a} is true at the end of step 1. Let b_{3} be a post that got added to L_{3} in step 2 and let us assume that till the point b_{3} gets added to L_{3}, the claim holds. Since b_{3} was added to L_{3} in step 2, this was due to a +1 edge between $a_{3}=M^{*}\left(b_{3}\right)$ and a post $b_{2} \in L_{2}$ whose partner $a_{2}=M^{*}\left(b_{2}\right)$ regards b_{2} as a top post. The post $b_{2} \in L_{2}$ because its partner $a_{2} \in \operatorname{nbr}\left(L_{3}\right)$. This means there is a desired alternating
path $\rho_{a_{2}}$ incident on a_{2}. Neither b_{3} nor b_{2} lies on $\rho_{a_{2}}$ since all the posts in $\rho_{a_{2}}$ that belong to $L_{2} \cup L_{3}$ were added to $L_{2} \cup L_{3}$ prior to b_{2} joining L_{2} and b_{3} joining L_{3}. Consider any neighbor a of b_{3} that is in $\operatorname{nbr}\left(L_{3}\right)$ because $b_{3} \in L_{3}$ and $M^{*}(a)=f(a)$. The desired alternating path ρ_{a} is $a-b_{3}-a_{3}-b_{2}-a_{2}$ followed by $\rho_{a_{2}}$.

Proof of Lemma 11. We will use Claim 1 to show that $M^{*}\left(L_{1}\right) \cap \operatorname{nbr}\left(L_{3}\right)=\emptyset$. Posts get added to L_{1} in steps 1 and 3.1 of the partition scheme. Let b_{1} be a post that got added to L_{1} in step $1-$ then there is an alternating path $p=a_{3}-b_{2}-a_{2}{ }^{-}$ $b_{1}-a_{1}$ where both $\left(a_{3}, b_{2}\right)$ and $\left(a_{2}, b_{1}\right)$ are labeled +1 . It has to be the case that $b_{1}=f\left(a_{1}\right)$ (otherwise there would be an alternating path with respect to M^{*} with three consecutive non-matching edges labeled +1); if $a_{1} \in \operatorname{nbr}\left(L_{3}\right)$, then there is an alternating path $\rho_{a_{1}}$ as described in Claim 1. If the posts a_{2} and a_{3} do not appear in $\rho_{a_{1}}$, then consider the alternating path p^{\prime} which consists of p followed by $\rho_{a_{1}}$. It is easy to see that $M^{*} \oplus p^{\prime}$ is more popular than M^{*} : a contradiction to the popularity of M^{*}.

In case a_{2} appears in $\rho_{a_{1}}$, then we have an alternating cycle C, which is $\rho_{a_{1}}$ truncated till the vertex a_{2} followed by $a_{2}-b_{1}-a_{1}$. This cycle has a stretch of alternating -1 and +1 labeled non-matching edges along with two consecutive non-matching edges labeled +1 : these are the edge $\left(a_{2}, b_{1}\right)$ and the edge incident on b_{2} in $\rho_{a_{1}}$ from a vertex in $M^{*}\left(L_{3}\right)$. Thus $M^{*} \oplus C$ is more popular than M^{*} : a contradiction again. If a_{3} appears in $\rho_{a_{1}}$, then we can again construct an alternating cycle C^{\prime} (using the $a_{1} \leadsto a_{3}$ subpath of $\rho_{a_{1}}$ followed by the alternating path p). The matching $M^{*} \oplus C^{\prime}$ is more popular than M^{*} since C^{\prime} has more +1 labeled non-matching edges than -1 labeled non-matching edges. This again contradicts the popularity of M^{*}.

Regarding any post b added to L_{1} in step 3.1 , as observed in the remark below our partition scheme, we have $M^{*}(b) \notin \mathrm{nbr}\left(L_{3}\right)$. This completes the proof that $M^{*}\left(L_{1}\right) \cap \operatorname{nbr}\left(L_{3}\right)=\emptyset$.

We will use the partition $\left\langle L_{1}, L_{2}, L_{3}\right\rangle$ of B to build the following subgraph $G^{\prime}=$ $\left(A \cup B, E^{\prime}\right)$ of G. For each $a \in A$, include the following edges in E^{\prime} :
(i) if $a \notin \operatorname{nbr}\left(L_{3}\right)$, then add the edge $(a, f(a))$ to E^{\prime}.
(ii) if a has a neighbor of rank $\leq r_{a}$ in L_{2}, then add the edge (a, b) to E^{\prime}, where b is a 's most preferred neighbor in L_{2}.
(iii) if $a \in \operatorname{nbr}\left(L_{3}\right)$, then add the edge (a, b) to E^{\prime}, where b is a 's most preferred neighbor in L_{3}.
Lemma 12. Every edge of the matching M^{*} belongs to the graph G^{\prime}.
Proof. The set B has been partitioned into $L_{1} \cup L_{2} \cup L_{3}$. We will now show that for each post b_{0} that is matched in M^{*}, the edge $\left(M^{*}\left(b_{0}\right), b_{0}\right)$ belongs to G^{\prime}. We distinguish three cases: $b_{0} \in L_{1}, b_{0} \in L_{2}$, and $b_{0} \in L_{3}$.

- Case 1. The post $b_{0} \in L_{1}$. Hence there is no +1 edge incident on $a_{0}=M^{*}\left(b_{0}\right)$, in other words, $b_{0}=f\left(a_{0}\right)$. Lemma 11 tells us that $M^{*}\left(L_{1}\right) \cap \operatorname{nbr}\left(L_{3}\right)=\emptyset$; hence a_{0} has no neighbor in L_{3} and by rule (i) above, the edge $\left(a_{0}, f\left(a_{0}\right)\right)=\left(a_{0}, b_{0}\right)$ belongs to the edge set of G^{\prime}.
- Case 2. Next we consider the case when $b_{0} \in L_{2}$. It is easy to see that b_{0} has to be a_{0} 's most preferred post in L_{2}, where $a_{0}=M^{*}\left(b_{0}\right)$. Otherwise there would have been an edge $\left(a_{0}, b_{1}\right)$ labeled +1 with $b_{1} \in L_{2}$, where b_{1} is a_{0} 's most preferred post in L_{2}. Then either $b_{1} \in L_{1}$ or $b_{0} \in L_{3}$ (from how we construct the sets L_{1}, L_{2}, L_{3}), a contradiction. We now have to show that the rank of b_{0} in a_{0} 's preference list is $\leq r_{a}$, otherwise the edge $\left(a_{0}, b_{0}\right)$ does not belong to G^{\prime}.

Suppose $b_{0} \in F$. Since the edge $\left(a_{0}, b_{0}\right) \in M^{*}$, which is a popular matching, it follows from Lemma 9 that b_{0} is ranked better than $r_{a_{0}}$ in a_{0} 's preference list; thus the edge $\left(a_{0}, b_{0}\right)$ belongs to G^{\prime}. So the case left is when $b_{0} \notin F$. If b_{0} is not a_{0} 's most preferred post outside F, then there is the length- 5 alternating path $\rho=b_{0}$ -$a_{0}-b_{1}-a_{1}-f\left(a_{1}\right)-M^{*}\left(f\left(a_{1}\right)\right)$, where b_{1} is the most preferred post of a_{0} outside F and $a_{1}=M^{*}\left(b_{1}\right)$. The alternating path ρ has two consecutive non-matching edges $\left(a_{0}, b_{1}\right)$ and $\left(a_{1}, f\left(a_{1}\right)\right)$ that are labeled +1 . This contradicts the presence of b_{0} in L_{2} as such a post would have to be in L_{3}. Thus if $b_{0} \notin F$, then b_{0} has to be a_{0} 's most preferred post outside F, i.e. b_{0} has rank $r_{a_{0}}$ in a_{0} 's preference list.

- Case 3. We finally consider the case when the post $b_{0} \in L_{3}$. We need to show that b_{0} is the most preferred post of $a_{0}=M^{*}\left(b_{0}\right)$ in L_{3}. Suppose not. Let b_{1} be a_{0} 's most preferred post in L_{3}. Since $b_{1} \in L_{3}$ while $F \cap L_{3}=\emptyset$ (by Lemma 10), we know that there is an edge labeled +1 incident on $a_{1}=M^{*}\left(b_{1}\right)$. Let this edge be $\left(a_{1}, b_{2}\right)$ and let a_{2} be $M^{*}\left(b_{2}\right)$. So there is a length- 5 alternating path $p=b_{0}-a_{0}-b_{1}-a_{1}-b_{2}-a_{2}$ where both the non-matching edges $\left(a_{0}, b_{1}\right)$ and $\left(a_{1}, b_{2}\right)$ are labeled +1 . This contradicts the presence of b_{1} in L_{3} as such a post would have to be in L_{2}. Thus b_{0} is a_{0} 's most preferred post in L_{3}.

The following lemma shows the relationship between the partition $\left\langle L_{1}, L_{2}, L_{3}\right\rangle$ and the partition $\langle X, Y, Z\rangle$ constructed by our algorithm that builds the graph H.

Lemma 13. The set $X \supseteq L_{1}$ and the set $Z \subseteq L_{3}$.

Proof. In our algorithm that constructs the graph H and also the partition $\langle X, Y, Z\rangle$, the set X is initialized to F and the set Y is initialized to $B \backslash F$. As our algorithm progresses, in each iteration of the While-loop, some f-posts get demoted from X to Y and similarly, some non- f-posts get demoted from Y to Z till there is an iteration (say, iteration $h+1$) where all posts in Y are odd/unreachable in H - this is the last iteration of the While-loop.

For any $1 \leq k \leq h+1$, let T_{k} (similarly, F_{k}) be the set of posts that got demoted from Y to Z (resp., X to Y) in the k-th iteration of the While-loop in our algorithm. We have $T_{h+1}=\emptyset$.

Note that $F_{1}=\emptyset$ since Z is initialized to \emptyset, so in the first iteration of our algorithm, every f-post b has a neighbor $a \in A \backslash \operatorname{nbr}(Z)$ such that $f(a)=b$. Thus no post is demoted from X to Y in the first iteration.

The graph H_{1} is the subgraph of G where each $a \in A$ has at most two neighbors: its top post and when $r_{a}<\infty$, its neighbor of rank r_{a}. The set T_{1} is the set of even non- f-posts in H_{1}. We will use the following claims and finish the proof of this lemma (the proofs of Claims 2-4 are given after the proof of Lemma 13).

Claim 2. The set $T_{1} \subseteq L_{3}$.
CLAIM 3. For any $1 \leq k \leq h$, if $\bigcup_{i=1}^{k} T_{i} \subseteq L_{3}$ then $F_{k+1} \subseteq L_{2}$.
Claim 4. For any $2 \leq k \leq h$, if $\bigcup_{i=2}^{k} F_{i} \subseteq L_{2}$ then $T_{k} \subseteq L_{3}$.
Claim 2 tells us that $T_{1} \subseteq L_{3}$. We now use Claims 3 and 4 alternately to conclude that for every $1 \leq k \leq h$, we have $\cup_{i=2}^{k+1} F_{i} \subseteq L_{2}$ and $\cup_{i=1}^{k} T_{i} \subseteq L_{3}$.

Thus the set $Z=\cup_{i=1}^{h} T_{i}$ is a subset of L_{3} and the set $F \backslash X=\cup_{i=2}^{h+1} F_{i}$ is a subset of L_{2}. Since $F \backslash X \subseteq L_{2}$, it follows that $X \supseteq F \backslash L_{2}$. We know that $F \backslash L_{2}=L_{1}$ (by Lemma 10), thus $X \supseteq L_{1}$.

Proof of Claim 2. Any post in T_{1} that is left unmatched in M^{*} has to belong to L_{3}. Similarly, any $b_{0} \in T_{1}$ that is matched in M^{*} to an applicant a_{0} that ranks
b_{0} worse than $r_{a_{0}}$ has to belong to L_{3} : this is because there is a length- 5 alternating path $p=b_{0}-a_{0}-b_{1}-a_{1}-b_{2}-a_{2}$ where b_{1} is a post of rank $r_{a_{0}}$ in a_{0} 's preference list, $a_{1}=M^{*}\left(b_{1}\right)$, and $b_{2}=f\left(a_{1}\right)$. The path p has two consecutive non-matching edges that are labeled +1 , so $b_{0} \in L_{3}$.

Now consider any $b_{0} \in T_{1}$ that is matched in M^{*} to an applicant a_{0} such that the rank of $\left(a_{0}, b_{0}\right)$ is $r_{a_{0}}$. So a_{0} is a neighbor of b_{0} in H_{1}. Since b_{0} is even in H_{1}, all the neighbors of b_{0} in H_{1} are odd and thus they have to be of degree exactly 2 in H_{1} (recall that all applicants have degree at most 2 in H_{1}). Thus the neighbors of these applicants are again even. Let C be the connected component containing b_{0} in H_{1}. It is easy to see that in C, all posts are even, all applicants are odd, and the number of posts is more than the number of applicants. (In fact, C is a tree with b_{0} as the root and the number of posts in C is one plus the number of applicants in C.)

If $b_{0} \in L_{2}$, then a_{0} 's other neighbor in C, which is $f\left(a_{0}\right)$, has to be in L_{1} since there is a +1 edge from a_{0} to $f\left(a_{0}\right)$. This means $f\left(a_{0}\right)$ is matched to an applicant a_{0}^{\prime} that ranks it as a top post, so the applicant a_{0}^{\prime} is a neighbor of $f\left(a_{0}\right)$ in C. There has to be another neighbor of a_{0}^{\prime} in C; call this vertex b_{1}. The important observation is that b_{1} cannot be in L_{3} as that would violate Lemma 11 since $a_{0}^{\prime} \in M^{*}\left(L_{1}\right)$. So $b_{1} \in L_{2}$ and this means b_{1} is matched to an applicant a_{1} that ranks it $r_{a_{1}}$, in other words, a_{1} is a neighbor of b_{1} in C. So $f\left(a_{1}\right)$ has to be in L_{1} and we continue in this manner marking all f-posts in C as elements of L_{1} and all non- f-posts in C as elements of L_{2}.

This means all posts in C are matched to their neighbors in C, however this is not possible as there are more posts than applicants in C. This contradicts our assumption that $b_{0} \in L_{2}$, in other words, b_{0} has to be in L_{3}. Thus $T_{1} \subseteq L_{3}$.

Proof of Claim 3. The set F_{k+1} is the set of posts that got demoted from X to Y in the $(k+1)$-th iteration of the While-loop: this means each post b in F_{k+1} had no applicant outside $\operatorname{nbr}\left(\cup_{i=1}^{k} T_{i}\right)$ that regarded b as an f-post. In other words, every applicant a such that $f(a)=b$ belongs to $\operatorname{nbr}\left(\cup_{i=1}^{k} T_{i}\right)$. Since $\cup_{i=1}^{k} T_{i} \subseteq L_{3}$, each such applicant a is present in $\operatorname{nbr}\left(L_{3}\right)$.

Let $F_{k+1}=\left\{b_{1}, \ldots, b_{h}\right\}$. For $1 \leq i \leq h$, let $\left(a_{i}, b_{i}\right) \in M^{*}$: if $f\left(a_{i}\right)=b_{i}$, then $b_{i} \in L_{2}$ (because $a_{i} \in \operatorname{nbr}\left(L_{3}\right)$); else there is an edge $\left(a_{i}, f\left(a_{i}\right)\right)$ that is labeled +1 incident on a_{i} and hence b_{i} cannot be in L_{1}. Thus $F_{k+1} \cap L_{1}=\emptyset$, i.e. $F_{k+1} \subseteq L_{2}$ (by Lemma 10).

Proof of Claim 4. Let us assume that we have proved Claim 4 for all smaller values of k. That is, for $j \leq k-1$, we have shown that if $\cup_{i=2}^{j} F_{i} \subseteq L_{2}$ then the set $T_{j} \subseteq L_{3}$. This is indeed the case for $k=2$ since we know $T_{1} \subseteq L_{3}$ (by Claim 2). Using Claim 3 and Claim 4 (for $j \leq k-1$) alternately now, it follows that $T_{j} \subseteq L_{3}$ for $j \leq k-1$. Thus $\cup_{i=1}^{k-1} T_{i} \subseteq L_{3}$. We will now show that T_{k} is also a subset of L_{3}.

Let H_{k} denote the graph H in step 4 in the k-th iteration of the While-loop in our algorithm. This is the graph where we determine the even posts that will get demoted from Y to Z. In step 4 of the k-th iteration of the While-loop, the set $X=F \backslash \cup_{i=2}^{k} F_{i}$ (call this set X_{k}), $Z=\cup_{i=1}^{k-1} T_{i}$ (call this set Z_{k}), and let Y_{k} be the set of posts outside $X_{k} \cup Z_{k}$. The edge set of H_{k} is as follows:

- for each $a \in A$: if the rank of a 's most preferred post b in Y_{k} is $\leq r_{a}$, then the edge (a, b) belongs to H_{k}
- for $a \in A \backslash \operatorname{nbr}\left(Z_{k}\right)$: the edge $(a, f(a))$ is also present in H_{k}.

Let S be the set of non- f-posts that are odd/unreachable in the graph H_{1}. Let us refer to posts in S as s-posts. We will now show that all s-posts in L_{2} are odd/unreachable in H_{k}; so every s-post that is even in H_{k} has to be in L_{3}, in other
words, $T_{k} \subseteq L_{3}$. Let G_{0}^{\prime} be the subgraph of G^{\prime} with the set of posts restricted to $L_{1} \cup L_{2}$ (see Fig. 5). Consider the subgraph G_{k}^{\prime} of G_{0}^{\prime} obtained by deleting edges missing in H_{k} from G_{0}^{\prime}.

We now show that G_{k}^{\prime} contains all edges in G_{0}^{\prime} incident on s-posts in L_{2}, by showing that any edge (a, b) incident on an s-post $b \in L_{2}$ in G_{0}^{\prime} is present in H_{k} also. Since the edge (a, b) belongs to G_{0}^{\prime}, the post b has to be ranked r_{a} in a 's preference list and moreover, there is no f-post in L_{2} of rank better than r_{a} in a 's list. If the edge (a, b) does not exist in H_{k}, then it means there is some f-post in Y_{k} that a prefers to b. All f-posts in Y_{k} are in $\cup_{i=2}^{k} F_{i}$ and we are given that $\cup_{i=2}^{k} F_{i} \subseteq L_{2}$. Since we know there is no f-post in L_{2} that a prefers to b, it follows that b has to be a 's most preferred post in Y_{k} and so the edge (a, b) belongs to H_{k}. Thus G_{k}^{\prime}, whose edge set is the intersection of the edge sets of G_{0}^{\prime} and H_{k}, contains all edges in G_{0}^{\prime} incident on s-posts in L_{2}.

Fig. 5. The set of posts in G_{0}^{\prime} can be viewed as $L_{1} \cup\left(X_{k} \cap L_{2}\right) \cup\left(Y_{k} \cap L_{2}\right)$. All s-posts in L_{2} are in $Y_{k} \cap L_{2}$.

Every post in $L_{1} \cup L_{2}$ is odd/unreachable in G_{0}^{\prime} since the matching M^{*} restricted to the edge set of G_{0}^{\prime} is $\left(L_{1} \cup L_{2}\right)$-complete. We have shown that G_{k}^{\prime} contains all edges in G_{0}^{\prime} incident on s-posts in L_{2} : thus all s-posts in L_{2} are odd/unreachable in G_{k}^{\prime}. It is easy to see that all top-ranked edges in G_{0}^{\prime} incident on f-posts in $Y_{k} \cap L_{2}$ are also present in G_{k}^{\prime} : each such post has a degree 1 neighbor in G_{k}^{\prime}, thus all f-posts in $Y_{k} \cap L_{2}$ are also odd/unreachable in G_{k}^{\prime}.

We now claim that all posts in L_{1} are also odd/unreachable in G_{k}^{\prime}. We first show that all edges incident on L_{1} in G_{0}^{\prime} are present in H_{k}. This is because each edge (a, b) in G_{0}^{\prime} such that $b \in L_{1}$ is incident on an applicant $a \in A \backslash \operatorname{nbr}\left(L_{3}\right)$ such that $b=f(a)$ and we know the graph H_{k} has $(a, f(a))$ edges for all $a \in A \backslash \operatorname{nbr}\left(Z_{k}\right) \supseteq A \backslash \operatorname{nbr}\left(L_{3}\right)$ since $Z_{k}=\cup_{i=1}^{k-1} T_{i} \subseteq L_{3}$.

In G_{k}^{\prime}, each vertex $b \in L_{1}$ either has a degree 1 neighbor (in which case our claim is true) or it has a degree 2 neighbor a whose other neighbor is in $Y_{k} \cap L_{2}$, i.e. it is not in $X_{k} \cap L_{2}$. This is because a cannot have 2 neighbors in X_{k} in the graph H_{k} and we know $L_{1} \subseteq X_{k}$ since all f-posts missing in X_{k} (these are posts in $\cup_{i=2}^{k-1} F_{i}$) are absent from L_{1} also. Since all posts in $Y_{k} \cap L_{2}$ are odd/unreachable in G_{k}^{\prime}, it follows that all posts in L_{1} are also odd/unreachable in G_{k}^{\prime}.

Let us now compare the graph H_{k} with the graph G_{k}^{\prime}. The graph H_{k} has additional vertices: these are the ones in $Y_{k} \cap L_{3}$ and the new edges in H_{k} (new relative to G_{k}^{\prime}) belong to the following two classes: (i) $\operatorname{nbr}\left(L_{3}\right) \times\left(Y_{k} \cap L_{3}\right)$ and
(ii) $A \times\left(L_{1} \cup\left(Y_{k} \cap L_{2}\right)\right)$. This is because every edge incident on $X_{k} \cap L_{2}$ in H_{k} (these are all top-ranked edges) is present in G_{0}^{\prime} as well.

Consider any new edge (a, b) in H_{k} of type (i), i.e. $(a, b) \in \operatorname{nbr}\left(L_{3}\right) \times\left(Y_{k} \cap L_{3}\right)$. Since (a, b) belongs to H_{k}, it must be the case that a 's most preferred neighbor in Y_{k} is b. So the post b is ranked r_{a} in a^{\prime} 's list and a has no neighbor of rank better than r_{a} in Y_{k}. Recall that G_{0}^{\prime} has no edge in $\operatorname{nbr}\left(L_{3}\right) \times L_{1}$. So the only edge that can be incident on a in the graph G_{k}^{\prime} is an edge to $f(a)$ in $X_{k} \cap L_{2}$.

Consider any connected component C in G_{k}^{\prime} that contains an s-post in L_{2} : every post here belongs to either L_{1} or $Y_{k} \cap L_{2}$, in other words, there is no post in $X_{k} \cap L_{2}$ here. This is because there is no applicant a in G_{k}^{\prime} with neighbors in $Y_{k} \cap L_{2}$ and $X_{k} \cap L_{2}$ as this means a has two neighbors in L_{2}, which is forbidden in G_{0}^{\prime}. Similarly, there is no applicant a^{\prime} in G_{k}^{\prime} with neighbors in L_{1} and $X_{k} \cap L_{2}$ as this means a has two neighbors in X_{k}, which is forbidden in H_{k}. Thus C has no post from $X_{k} \cap L_{2}$.

So the new edges in H_{k} of type (i) do not touch components in G_{k}^{\prime} that contain s-posts in L_{2}. All the new edges incident upon these components have their endpoints in $L_{1} \cup\left(Y_{k} \cap L_{2}\right)$. These posts are already odd/unreachable in G_{k}^{\prime}. So these posts remain odd/unreachable in H_{k}. Hence every s-post in L_{2} is odd/unreachable in H_{k}. This completes the proof of Claim 4.

The augmented graph G^{\prime}. The matching M^{*} need not be A-complete. However it would help us to assume that M^{*} is A-complete, so we augment M^{*} by adding $(a, \ell(a))$ edges for every $a \in A$ that is unmatched in M^{*}. Recall that $\ell(a)$ is the dummy last resort post of a. However the augmented matching M^{*} need not belong to the graph G^{\prime} any longer - hence we augment G^{\prime} also by adding some dummy vertices and some edges as described below.

The augmentation of G^{\prime} is analogous to phase (III) of our algorithm - we augment G^{\prime} as follows: let $L_{2}=L_{2} \cup D$, where $D=\left\{\ell(a): a \in A\right.$ and $\left.r_{a}=\infty\right\}$; if $\operatorname{nbr}(\{a\}) \subseteq$ L_{1}, then add $(a, \ell(a))$ to G^{\prime}. Thus when compared to G^{\prime}, the augmented G^{\prime} has some new vertices (all these are dummy last resort posts) and some new edges - each new edge is of the form $(a, \ell(a))$ where $\ell(a)$ is a 's only neighbor in $L_{2} \cup L_{3}$. These new edges are enough to show the following lemma.

Lemma 14. The augmented matching M^{*} belongs to the augmented graph G^{\prime}.
Proof. Before the augmentations of G^{\prime} and M^{*}, the matching M^{*} belonged to the graph G^{\prime} (by Lemma 12). We now need to show that if a is left unmatched in M^{*} (before augmentation), then $r_{a}=\infty$ and all of a 's neighbors belong to L_{1}.

Suppose a is left unmatched in M^{*} and $r_{a}<\infty$. Since $r_{a}<\infty$, there is a post $b \notin F$ such that the post b has rank r_{a} in a 's preference list. Consider the alternating path $p=a-b-a^{\prime}-f\left(a^{\prime}\right)-a^{\prime \prime}$, where $a^{\prime}=M^{*}(b)$ and $a^{\prime \prime}=M^{*}\left(f\left(a^{\prime}\right)\right)$. The matching $M^{*} \oplus p$ matches a to b and promotes a^{\prime} to its top post $f\left(a^{\prime}\right)$ and leaves $a^{\prime \prime}$ unmatched. Thus $M^{*} \oplus p$ is more popular than M^{*}, a contradiction.

So let us assume $r_{a}=\infty$ and a was left unmatched in M^{*}. Suppose a has some neighbor b_{0} outside L_{1}. The post b_{0} has to be in F because $r_{a}=\infty$, i.e. a has no neighbors outside F. Since $F \subseteq L_{1} \cup L_{2}$ (by Lemma 10), it follows that $b_{0} \in L_{2}$. Let $a_{0}=M^{*}\left(b_{0}\right)$; if $b_{0} \neq f\left(a_{0}\right)$, then we again have an alternating path $p=a-b_{0}-a_{0}{ }^{-}$ $f\left(a_{0}\right)-a_{1}$, where $a_{1}=M^{*}\left(f\left(a_{0}\right)\right)$ such that $M^{*} \oplus p$ is more popular than M^{*}. This contradicts the popularity of M^{*}.

So suppose $b_{0}=f\left(a_{0}\right)$ and $b_{0} \in L_{2}$ because $a_{0} \in \operatorname{nbr}\left(L_{3}\right)$. We know from Claim 1 that there is a desired alternating path $\rho_{a_{0}}$, where either the last two non-matching edges are labeled +1 or the last post in $\rho_{a_{0}}$ is unmatched. Consider the alternating
path ρ which is the path $a-b_{0}-a_{0}$ followed by the path $\rho_{a_{0}}$. It is easy to see that $M^{*} \oplus \rho$ is more popular than M^{*}, a contradiction to the popularity of M^{*}.

Since the augmented M^{*} is an A-complete matching, it follows from Lemma 14 that the augmented graph G^{\prime} admits an A-complete matching. Theorem 15 uses Lemma 13 to show that if the augmented graph G^{\prime} admits an A-complete matching, then so does the graph H constructed by our algorithm.

Theorem 15. If H does not admit an A-complete matching, then the augmented graph G^{\prime} cannot admit an A-complete matching.

Proof. We will use G^{\prime} to refer to the augmented graph G^{\prime} in this proof. The rules for adding edges in H and in G^{\prime} are exactly the same - the only difference is in the partition $\langle X, Y, Z\rangle$ on which H is based versus the partition $\left\langle L_{1}, L_{2}, L_{3}\right\rangle$ on which G^{\prime} is based. If $\langle X, Y, Z\rangle=\left\langle L_{1}, L_{2}, L_{3}\right\rangle$, then the graphs H and G^{\prime} are exactly the same.

Fig. 6. The part of G^{\prime} inside the box will be called $G^{\prime \prime}$. We show that the graph G^{\prime} has no edge between any applicant in A^{\prime} and any post in Z.

Fig. 6 denotes how the partition $\langle X, Y, Z\rangle$ can be modified to the partition $\left\langle L_{1}, L_{2}, L_{3}\right\rangle$. We know from Lemma 13 that $X \supseteq L_{1}$ and $Z \subseteq L_{3}$. Consider the subgraph $G^{\prime \prime}$ of G^{\prime} induced on the vertex set $A^{\prime}=(A \backslash \operatorname{nbr}(Z)) \cup\left(\operatorname{nbr}(Z) \cap \mathrm{nbr}_{H}\left(Y \cap L_{3}\right)\right)$ and $B^{\prime}=X \cup Y$. This is the part bounded by the box in Fig. 6. In our analysis, we can essentially separate G^{\prime} into $G^{\prime \prime}$ and the part outside $G^{\prime \prime}$ due to the following claim that says G^{\prime} has no edges between A^{\prime} and Z.

Claim 5. G^{\prime} has no edge (a, b) where $a \in A^{\prime}$ and $b \in Z$.
Proof. Any applicant $a \in A^{\prime}$ has to belong to either $A \backslash \operatorname{nbr}(Z)$ or to $\operatorname{nbr}(Z) \cap$ $\operatorname{nbr}_{H}\left(Y \cap L_{3}\right)$ (see Fig. 6). There is obviously no edge in G between a vertex in $A \backslash \operatorname{nbr}(Z)$ and any vertex in Z. So suppose $a \in \operatorname{nbr}(Z) \cap \operatorname{nbr}_{H}\left(Y \cap L_{3}\right)$. For $b \in L_{3}$, if the edge (a, b) is in G^{\prime}, then b has to be a 's most preferred post in L_{3}. We will now show that $b \in Y \cap L_{3}$, equivalently $b \notin Z$. Thus G^{\prime} has no edge (a, b) where $a \in A^{\prime}$ and $b \in Z$.

Since $a \in \operatorname{nbr}_{H}\left(Y \cap L_{3}\right)$, the graph H contains an edge between a and some $b^{\prime} \in Y \cap L_{3}$. Recall that an element of $Y \cap L_{3}$ is a real post in Y. By the rules of including edges in H, it follows that the rank of b^{\prime} in a 's preference list is $\leq r_{a}$. The entire set L_{3} cannot contain any post of rank better than r_{a} for any $a \in A$ since any post of rank better than r_{a} in a 's list belongs to F while $L_{3} \cap F=\emptyset$ (by Lemma 10). So b^{\prime} has rank r_{a} in a 's list. Thus a^{\prime} 's most preferred neighbor in L_{3} belongs to $Y \cap L_{3}$.

Let G_{0} be the subgraph of $G^{\prime \prime}$ obtained by deleting from $G^{\prime \prime}$ the edges that are absent in H. Thus G_{0} is a subgraph of both G^{\prime} and H. The following claim (whose proof is given after the proof of Theorem 15) will be useful to us.

Claim 6. All posts in $\left(X \cap L_{2}\right) \cup\left(Y \cap L_{3}\right)$ are odd/unreachable in G_{0}. Moreover, every edge (a, b) in G^{\prime} that is missing in H satisfies $b \in\left(X \cap L_{2}\right) \cup\left(Y \cap L_{3}\right)$.

Consider the graph G_{1} whose edge set is the intersection of the edge sets of G^{\prime} and H. Equivalently, G_{1} can be constructed by adding to the edge set of G_{0}, the edges incident on $A^{\prime \prime}=\operatorname{nbr}(Z) \backslash \operatorname{nbr}_{H}\left(Y \cap L_{3}\right)$ that are present in both G^{\prime} and H (see Fig. 6). This is due to the fact that G^{\prime} has no edge in $A^{\prime} \times Z$.

We claim that all posts in $\left(X \cap L_{2}\right) \cup\left(Y \cap L_{3}\right)$ are odd/unreachable in G_{1}. This is because Claim 6 tells us that each post in this set is odd/unreachable in G_{0} and due to the absence of $A^{\prime} \times Z$ edges in G^{\prime}, the graph G_{1} has no new edge (new when compared to G_{0}) incident on the set A^{\prime} of applicants in G_{0}. Hence all posts in $\left(X \cap L_{2}\right) \cup\left(Y \cap L_{3}\right)$ remain odd/unreachable in G_{1}.

Claim 6 also tells us that all edges in G^{\prime} that are missing in H are incident on posts in $\left(X \cap L_{2}\right) \cup\left(Y \cap L_{3}\right)$. We know that all these posts are odd/unreachable in G_{1}, hence G^{\prime} has no new edge (new when compared to G_{1}) on posts that are even in G_{1}. Thus the size of a maximum matching in G^{\prime} equals the size of a maximum matching in G_{1}. This is at most the size of a maximum matching in H, since G_{1} is a subgraph of H. Hence if H has no A-complete matching, then neither does G^{\prime}.

Proof of Claim 6. We will now show that all posts in $\left(X \cap L_{2}\right) \cup\left(Y \cap L_{3}\right)$ are odd/unreachable in G_{0}. Let a be an applicant with degree 2 in the graph G_{0} and let b_{1} and b_{2} be the two neighbors of a, where b_{1} is the more preferred neighbor of a. We claim either (i) $b_{1} \in X \cap L_{2}$ and $b_{2} \in Y \cap L_{3}$ or (ii) $b_{1} \in L_{1}$ and $b_{2} \in Y \cap L_{2}$. This is due to the following reasons.

- There is no applicant in G_{0} with edges to both a post in L_{1} and post in $X \cap L_{2}$. If there was such an applicant a, then a would have two neighbors in the set X, which is forbidden in H. Recall that any edge in G_{0} is an edge in H as well.
- There is no applicant in G_{0} with edges to both a post in $X \cap L_{2}$ and a post in $Y \cap L_{2}$. If there was such an applicant a, then a would have two neighbors in the set L_{2}, which is forbidden in G^{\prime}. Recall that any edge in G_{0} is an edge in G^{\prime} as well.
- There is no applicant in G_{0} with edges to both a post in $Y \cap L_{2}$ and a post in $Y \cap L_{3}$. If there was such an applicant a, then a would have two neighbors in the set Y, which is forbidden in H.
- There is no applicant a in G_{0} with edges to both a post in L_{1} and a post in $Y \cap L_{3}$. This is because G^{\prime} cannot contain such a pair of edges as it is only applicants in $A \backslash \operatorname{nbr}\left(L_{3}\right)$ that are adjacent to posts in L_{1}.
Thus in the graph G_{0}, vertices in $\left(X \cap L_{2}\right) \cup\left(Y \cap L_{3}\right)$ and those in $L_{1} \cup\left(Y \cap L_{2}\right)$ belong to different connected components. Note that all dummy posts belong to $Y \cap L_{2}$. So none of these posts belongs to any connected component in G_{0} that
contains vertices in $\left(X \cap L_{2}\right) \cup\left(Y \cap L_{3}\right)$. Consider the subgraph H^{\prime} of H, obtained by restricting the set of posts in H to real posts in $X \cup Y$. All real posts in $X \cup Y$ are odd/unreachable in H^{\prime}. Since $\left(X \cap L_{2}\right) \cup\left(Y \cap L_{3}\right)$ consists of real posts, all these posts are odd/unreachable in H^{\prime}.

We now claim that all posts in $\left(X \cap L_{2}\right) \cup\left(Y \cap L_{3}\right)$ remain odd/unreachable in G_{0}. In the first place, every edge $\left(a_{0}, b_{0}\right)$ in H^{\prime} incident on any vertex $b_{0} \in Y \cap L_{3}$ is present in $G^{\prime \prime}$ as well. This is because $a_{0} \in A^{\prime}$ and if $b_{0} \in Y \cap L_{3}$ is the most preferred post in Y for applicant a_{0}, then the rank of b_{0} in a_{0} 's preference list is $r_{a_{0}}$ and thus b_{0} is also a_{0} 's most preferred post in L_{3}, so the edge $\left(a_{0}, b_{0}\right)$ belongs to the graph $G^{\prime \prime}$. Similarly every edge $\left(a_{1}, b_{1}\right)$ in H^{\prime} incident on any post $b_{1} \in X \cap L_{2}$ is present in $G^{\prime \prime}$ as well - this is because $a_{1} \in A^{\prime}$ and b_{1} has to be $f\left(a_{1}\right)$ for the edge $\left(a_{1}, b_{1}\right)$ to exist in H^{\prime}. Thus b_{1} is also a_{1} 's most preferred post in L_{2}. Hence all edges in H^{\prime} incident on posts in $\left(X \cap L_{2}\right) \cup\left(Y \cap L_{3}\right)$ are present in G_{0}.

Let b be any post in $\left(X \cap L_{2}\right) \cup\left(Y \cap L_{3}\right)$. The connected component in G_{0} that contains b can be obtained by taking the connected component containing b in H^{\prime} and deleting all vertices in $L_{1} \cup\left(Y \cap L_{2}\right)$ from this component. Since no edge incident on b has been deleted here and because b is odd/unreachable in the starting component, it follows that b is odd/unreachable in G_{0}.

We will now show the second part of Claim 6: every edge (a, b) in G^{\prime} that is missing in H satisfies $b \in\left(X \cap L_{2}\right) \cup\left(Y \cap L_{3}\right)$. We partitioned the set B of posts into five sets (refer to Fig. 6). These are $L_{1}, X \cap L_{2}, Y \cap L_{2}, Y \cap L_{3}$, and Z. We will now show that every edge in G^{\prime} that is incident on $L_{1} \cup\left(Y \cap L_{2}\right) \cup Z$ is present in H also.

- Any edge (a, b) in G^{\prime} where $b \in L_{1}$ is such that $f(a)=b$ and $a \in A \backslash \operatorname{nbr}\left(L_{3}\right)$. Since $L_{3} \supseteq Z$ (by Lemma 13), this means $a \in A \backslash \operatorname{nbr}(Z)$. Thus H also contains the edge (a, b).
- Any edge (a, b) in G^{\prime} where $b \in Y \cap L_{2}$ is such that b is a 's most preferred post in L_{2} and the rank of b in a 's preference list is $\leq r_{a}$. Note that $Y \backslash L_{2}=$ $\left(Y \cap L_{3}\right) \subseteq B \backslash F$ (by Lemma 10). Thus the rank of a 's most preferred post in $Y \backslash L_{2}$ is $\geq r_{a}$ and hence no post in $Y \backslash L_{2}$ can be ranked better than b. So the post b is, in fact, a 's most preferred post in Y. Thus the edge (a, b) belongs to H as well.
- Any edge (a, b) in G^{\prime} where $b \in Z$ is such that b is a 's most preferred post in L_{3}. Since $L_{3} \supseteq Z$, this means b is a 's most preferred post in Z. Thus H also contains the edge (a, b).
Thus every edge (a, b) in G^{\prime} that is missing in H satisfies $b \in\left(X \cap L_{2}\right) \cup\left(Y \cap L_{3}\right)$.
Theorem 15, along with Lemma 14, finishes the proof of the necessary part of Theorem 5 and this completes the proof of correctness of our algorithm. We now analyze its running time.

Observe that we can maintain the most preferred posts in X, Y, and Z for all applicants over all iterations in $O(m)$ time, where m is the number of edges in G. To begin with, the most preferred non- f-post for all applicants can be determined in $O(m)$ time. Thereafter, whenever a post b moves from X to Y (similarly, from Y to Z), we charge b a cost of the degree of b to pay for checking if any of its neighbors now has b as its most preferred post in Y (resp., Z).

Let n be the number of vertices in G. The number of iterations is $O(n)$ and the most expensive step in each iteration is finding a maximum matching in a subgraph where each vertex in A has degree at most 2 . This step can easily be performed in $O(n)$ time. Thus the running time of our algorithm is $O\left(n^{2}\right)$. Hence we can deduce Theorem 2 stated in Section 1.

There are instances on $O(n)$ vertices and $O(n)$ edges where our algorithm takes $\Theta\left(n^{2}\right)$ time. Consider the example given in Fig. 7: here there are $2 n+1$ applicants and $2 n+2$ posts and the number of edges is $5 n+2$. For each $1 \leq i \leq n$, we have $f\left(a_{i}\right)=f\left(a_{i}^{\prime}\right)=f_{i}$ and s_{i} is the most preferred non- f-post for both a_{i} and a_{i}^{\prime}. For a_{0}, we have $f\left(a_{0}\right)=f_{0}$ and a_{0} 's most preferred non- f-post is s_{0}.

Fig. 7. The preferences of applicants are indicated on the edges. Our algorithm runs for $n+1$ iterations here.

In the starting graph H_{1}, there is exactly one post that is even in Y_{1} : this is s_{0} and so s_{0} moves from Y_{1} to Z_{1}. In the second iteration, f_{0} has no applicant in $A \backslash \operatorname{nbr}(Z)$ that regards it as a top post and this causes the demotion of f_{0} from X_{2} to Y_{2}. Now the post f_{0} is the most preferred post in Y_{2} for a_{1} and this makes s_{1} even in Y_{2} and causes s_{1} to move from Y_{2} to Z_{2}.

This makes both a_{1} and a_{1}^{\prime} belong to $\operatorname{nbr}(Z)$ and hence f_{1} gets isolated in H_{3} and so f_{1} moves from X_{3} to Y_{3}. Now f_{1} becomes the most preferred post in Y_{3} for a_{2} and this causes s_{2} to move from Y_{3} to Z_{3} and so on. Thus our algorithm runs for $n+1$ iterations. This instance admits popular matchings; for instance, $\left\{\left(a_{0}, f_{0}\right),\left(a_{i}, f_{i}\right),\left(a_{i}^{\prime}, s_{i}\right): 1 \leq i \leq n\right\}$ is a popular matching here.
4. Our NP-hardness result. Given a matching M in $G=(A \cup B, E)$, it was shown in [3] that M can be tested for popularity in $O(\sqrt{|V|} \cdot|E|)$ time (even in the presence of ties), where $|V|=|A \cup B|$. Thus the 2-sided popular matching problem in G with 1 -sided ties is in the complexity class NP. We now show the NP-hardness of the 2 -sided popular matching problem in G with 1 -sided ties using the (2,2)-E3-SAT problem.

Recall that the (2,2)-E3-SAT problem takes as its input a Boolean formula \mathcal{I} in CNF, where each clause contains three literals and every variable appears exactly twice in unnegated form and exactly twice in negated form in the clauses. The problem is to determine if \mathcal{I} is satisfiable or not and this problem is NP-complete [2].

Constructing a popular matching instance $G=(A \cup B, E)$ from \mathcal{I}. Let \mathcal{I} have m clauses and n variables. The instance G constructed consists of n variable gadgets, m clause gadgets, and some interconnecting edges between these, see Fig. 8. A variable gadget representing variable v_{j}, for $1 \leq j \leq n$, is a 4-cycle on vertices $a_{j_{1}}, b_{j_{1}}, a_{j_{2}}$, and $b_{j_{2}}$, where $a_{j_{1}}, a_{j_{2}} \in A$ and $b_{j_{1}}, b_{j_{2}} \in B$. A clause gadget representing clause C_{i}, for $1 \leq i \leq m$, is a subdivision graph of a claw. Its edges are divided into three classes: $c_{i} \in B$ is at the center, the neighbors of c_{i} are $x_{i_{1}}, x_{i_{2}}, x_{i_{3}} \in A$, and finally, each of $x_{i_{1}}, x_{i_{2}}, x_{i_{3}}$ is adjacent to its respective copy in $\mathcal{Y}_{i}=\left\{y_{i_{1}}, y_{i_{2}}, y_{i_{3}}\right\}$, where $\mathcal{Y}_{i} \subseteq B$.

A vertex in \mathcal{Y}_{i} represents an appearance of a variable. For instance, $y_{3_{1}}$ is the first literal of the third clause. Each of the vertices in \mathcal{Y}_{i} is connected to a vertex in the variable gadget via an interconnecting edge. Vertex $y_{i_{k}}$ is connected to the gadget standing for variable j if the k-th literal of the i th clause is either v_{j} or $\neg v_{j}$. If it is v_{j}, then the interconnecting edge ends at $a_{j_{1}}$, else at $a_{j_{2}}$. The preferences
of this instance can be seen in Fig. 8. The constructed graph trivially satisfies both conditions claimed in Section 1, i.e. every vertex in A has a strict preference list of length 2 or 4 and every vertex in B has either a strict preference list of length 2 or a single tie of length 2 or 3 as a preference list.

$$
(+1,-1)
$$

FIG. 8. A clause gadget, a variable gadget, and the structure of the entire construction with a variable that appears at the second place in the first clause in unnegated form and at the third place in the second clause in negated form. The thick red matching corresponds to a true variable.

Constructing a truth assignment in \mathcal{I}, given a popular matching M in G. The graph G is as described above. Claim 7 states that any popular matching M in G has a certain structure.

Claim 7. Any popular matching M in G has to obey the following properties.

- M avoids all interconnecting edges.
- M is one of the two perfect matchings on any variable gadget; i.e. for each j, the edges of M, restricted to the gadget corresponding to variable v_{j}, are either (i) $\left(a_{j_{1}}, b_{j_{1}}\right)$ and $\left(a_{j_{2}}, b_{j_{2}}\right)$, or (ii) $\left(a_{j_{1}}, b_{j_{2}}\right)$ and $\left(a_{j_{2}}, b_{j_{1}}\right)$.
- M leaves exactly one vertex per clause i unmatched and this unmatched vertex $y_{i_{k}}$ is adjacent to an $a_{j_{t}}$ that is matched to $b_{j_{1}}$.
Proof. Label each edge (a, b) in $G \backslash M$ by the pair (α, β), where $\alpha \in\{ \pm 1\}$ is a 's vote for b versus $M(a)$ and $\beta \in\{ \pm 1,0\}$ is b 's vote for a versus $M(b)$. Our first observation is that every c_{i}, for $1 \leq i \leq m$, and every $b_{j_{1}}$, for $1 \leq j \leq n$, must be matched in M. That is because these vertices are the top choices for each of their neighbors, hence if one of them is left unmatched, then there would be an edge labeled $(+1,+1)$ incident to an unmatched vertex. This contradicts the popularity of M.

Having established that c_{i} is matched for all $1 \leq i \leq m$ we can assume without loss of generality that $\left(c_{i}, x_{i_{3}}\right) \in M$ for a chosen clause gadget i. Also, the edges $\left(x_{i_{1}}, y_{i_{1}}\right)$ and $\left(x_{i_{2}}, y_{i_{2}}\right)$ must be in M, because they are the top-ranked edges of $y_{i_{1}}$ and $y_{i_{2}}$, respectively. Let us now investigate an arbitrary variable gadget j for some $1 \leq j \leq n$. Again, without loss of generality we can assume that $\left(a_{j_{1}}, b_{j_{1}}\right) \in M$. We now claim that $\left(a_{j_{2}}, b_{j_{2}}\right) \in M$ as well.

Suppose $\left(a_{j_{2}}, b_{j_{2}}\right) \notin M$. Since M is a maximal matching, $\left(a_{j_{2}}, y_{i_{k}}\right) \in M$ for some i_{k}. Based on the above described structure of the clause gadgets, the edges $\left(x_{i_{k}}, c_{i}\right),\left(x_{i_{k+1}}, y_{i_{k+1}}\right)$, and $\left(x_{i_{k+2}}, y_{i_{k+2}}\right)$ are in M, where the subscripts are taken modulo 3. Consider the following augmenting path p with respect to M :

$$
\rho=b_{j_{2}}-a_{j_{1}}-b_{j_{1}}-a_{j_{2}}-y_{i_{k}}-x_{i_{k}}-c_{i}-x_{i_{k+1}}-y_{i_{k+1}} .
$$

We have $M \oplus p \succ M$, which contradicts the popularity of M. Thus $\left(a_{j_{2}}, b_{j_{2}}\right) \in M$.
An analogous argument proves that if $\left(a_{j_{2}}, b_{j_{1}}\right) \in M$ for some j, then $\left(a_{j_{1}}, b_{j_{2}}\right)$ has to be in M. The last observation we make is that if $y_{i_{k}}$ is unmatched in M, then its interconnecting edge leads to an $a_{j_{t}}$ that is matched to $b_{j_{1}}$. Otherwise ($y_{i_{k}}, a_{j_{t}}$) would be labeled $(+1,+1)$ with one vertex unmatched, a contradiction again to the popularity of M. This finishes the proof of Claim 7 .

We assign true to all variables v_{j} such that $M \supseteq\left\{\left(a_{j_{1}}, b_{j_{1}}\right),\left(a_{j_{2}}, b_{j_{2}}\right)\right\}$ and false to all variables v_{j} such that $M \supseteq\left\{\left(a_{j_{1}}, b_{j_{2}}\right),\left(a_{j_{2}}, b_{j_{1}}\right)\right\}$.

So the truth value of every variable is uniquely defined and all we need to show is that every clause has a true literal. Assume that in clause C_{i}, all three literals are false. The clause gadget has an unmatched vertex $y_{i_{k}}$ that is adjacent to an $a_{j_{t}}$. If the literal is false, then $a_{j_{t}}$ prefers $y_{i_{k}}$ to $M\left(a_{j_{t}}\right)=b_{j_{2}}$ and this becomes an edge labeled $(+1,+1)$ with an unmatched end vertex - this contradicts the popularity of M. Hence in every clause, there is at least one true literal and so this is a satisfying assignment.

Constructing a popular matching in G, given a truth assignment in \mathcal{I}. Here we first construct a matching M in the graph G as described below and then show that it is popular. Initially $M=\emptyset$. For each j, where $1 \leq j \leq n$, if $v_{j}=$ true in the assignment, then add $\left(a_{j_{1}}, b_{j_{1}}\right)$ and $\left(a_{j_{2}}, b_{j_{2}}\right)$ to M, else add ($a_{j_{1}}, b_{j_{2}}$) and ($a_{j_{2}}, b_{j_{1}}$) to M. For each i, where $1 \leq i \leq m$, in the gadget corresponding to clause C_{i}, any true literal is chosen (say, the k-th literal) and $y_{i_{k}}$, representing its appearance, is left unmatched. Moreover, $\left(x_{i_{k}}, c_{i}\right),\left(x_{i_{k+1}}, y_{i_{k+1}}\right)$ and $\left(x_{i_{k+2}}, y_{i_{k+2}}\right)$ (where the subscripts are taken modulo 3) are added to M. No interconnecting edge appears in M. This finishes the description of M.

Lemma 16. The matching M is popular in G.

Proof. Suppose M is not popular. Then there is another matching M^{\prime} that is more popular than M. This can only happen if $M \oplus M^{\prime}$ contains a component ρ such that the number of vertices in ρ that prefer M^{\prime} to M is more than those that prefer M to M^{\prime}. To achieve this, the matching M^{\prime} should contain at least one edge labeled
either $(+1,+1)$ or $(+1,0)$, where we use edge labels (α, β) as described in the proof of Claim 7. We now analyze the cases based on the occurrences of such "positive" edges.

Since we started with a truth assignment, no interconnecting edge can be labeled $(+1,+1)$. In fact, it is straightforward to check that no edge here can be labeled $(+1,+1)$. We now check for the occurrences of edges labeled $(+1,0)$. These can occur at two places: the edge $\left(a_{j_{t}}, b_{j_{1}}\right)$ for any $1 \leq j \leq n$ and the edge ($x_{i_{k}}, c_{i}$) for any $1 \leq i \leq m$.
Case 1. Suppose $\left(a_{j_{2}}, b_{j_{1}}\right)$ is labeled $(+1,0)$. This happens if v_{j} is true in the truth assignment. We start the augmenting path ρ at $\left(a_{j_{2}}, b_{j_{1}}\right)$. Augmenting along the 4 -cycle is not sufficient to break popularity, therefore, $a_{j_{1}}$ must be matched along one of its interconnecting edges, say $\left(a_{j_{1}}, y_{i_{k}}\right)$.

- If $y_{i_{k}}$ is unmatched, consider the path $\rho=b_{j_{2}}-a_{j_{2}}-b_{j_{1}}-a_{j_{1}-}-y_{i_{k}}$. There are two vertices $\left(a_{j_{1}}\right.$ and $\left.b_{j_{2}}\right)$ that prefer M to $M \oplus \rho$ and two vertices ($a_{j_{2}}$ and $y_{i_{k}}$) that prefer $M \oplus \rho$ to M.
- If $y_{i_{k}}$ is matched, then extend the path ρ till the unmatched vertex of the i th variable gadget (call this $y_{i_{t}}$). The path ρ is described below:

$$
\rho=b_{j_{2}}-a_{j_{2}}-b_{j_{1}}-a_{j_{1}}-y_{i_{k}}-x_{i_{k}}-c_{i}-x_{i_{t}}-y_{i_{t}} .
$$

So 4 vertices, i.e. $b_{j_{2}}, a_{j_{1}}, y_{i_{k}}$, and $x_{i_{t}}$, prefer M to $M \oplus \rho$ while 3 vertices, i.e. $a_{j_{2}}, x_{i_{k}}$, and $y_{i_{t}}$, prefer $M \oplus \rho$ to M.

Case 2. Now suppose $\left(x_{i_{k}}, c_{i}\right)$ is labeled $(+1,0)$. Let us assume that this edge is $\left(x_{i_{3}}, c_{i}\right)$ and suppose $\left(x_{i_{1}}, c_{i}\right) \in M$. Consider the alternating path $\rho=y_{i_{1}}-x_{i_{1}}-c_{i}-x_{i_{3}}-$ $y_{i_{3}}$. In the matching $M \oplus \rho$, the vertices $x_{i_{3}}$ and $y_{i_{1}}$ are better-off while $x_{i_{1}}$ and $y_{i_{3}}$ are worse-off, i.e. they prefer M to $M \oplus \rho$. In order to collect one more vertex that prefers $M \oplus \rho$, let us extend this alternating path ρ to include ($a_{j_{k}}, y_{i_{3}}$), the interconnecting edge of $y_{i_{3}}$. The vertex $y_{i_{3}}$ still prefers M to $M \oplus \rho$ since $y_{i_{3}}$ was paired in M to its top-ranked neighbor.

Without loss of generality, let us assume that this interconnecting edge is $\left(a_{j_{2}}, y_{i_{3}}\right)$. We have two cases here: either $\left\{\left(a_{j_{1}}, b_{j_{1}}\right),\left(a_{j_{2}}, b_{j_{2}}\right)\right\} \subseteq M$ or $\left\{\left(a_{j_{1}}, b_{j_{2}}\right),\left(a_{j_{2}}, b_{j_{1}}\right)\right\} \subseteq$ M.

- In the first case, the path ρ gets extended to $\cdots-a_{j_{2}}-b_{j_{2}}$. So $a_{j_{2}}$ prefers $M \oplus \rho$ to M, however $b_{j_{2}}$ is left unmatched in $M \oplus \rho$, so $b_{j_{2}}$ prefers M to $M \oplus \rho$.
- In the second case, the path ρ gets extended to $\cdots-a_{j_{2}}-b_{j_{1}}-a_{j_{1}}-b_{j_{2}}$. So $a_{j_{1}}$ prefers $M \oplus \rho$ to M, however both $a_{j_{2}}$ and $b_{j_{2}}$ prefer M to $M \oplus \rho$.
We have analyzed all the cases where edges can labeled $(+1,0)$ and we showed that there is no alternating cycle or path ρ containing an edge labeled $(+1,0)$ such that $M \oplus \rho \succ M$. Thus M is popular.
This finishes the proof of Theorem 3 stated in Section 1.
Conclusions and open problems. We gave an $O\left(n^{2}\right)$ algorithm for the popular matching problem in $G=(A \cup B, E)$ where vertices in A have strict preference lists while each vertex in B puts all its neighbors into a single tie and $n=|A \cup B|$. Our algorithm needs the preference lists of vertices in A to be strict and the complexity of the popular matching problem when ties are allowed in the preference lists of vertices in A is currently unknown.

When each $b \in B$ either has a single tie of length at most 3 or a strict preference list (and each $a \in A$ has a strict preference list), we showed that the popular matching problem becomes NP-hard. The complexity of the same problem with ties of length at most 2 instead of 3 is open.

Acknowledgments. We would like to thank the two anonymous reviewers for their helpful comments.

REFERENCES

[1] D.J. Abraham, R.W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings. SIAM Journal on Computing, Vol. 37, No. 4, pages 1030-1045, 2007.
[2] P. Berman, M. Karpinski, and Alexander D. Scott. Approximation hardness of short symmetric instances of MAX-3SAT. Electronic Colloquium on Computational Complexity Report, number 49, 2003.
[3] P. Biró, R.W. Irving, and D.F. Manlove. Popular matchings in the Marriage and Roommates problems. In the Proceedings of the 7th International Conference on Algorithms and Complexity (CIAC): pages $97-108,2010$.
[4] Á. Cseh, C.-C. Huang, and T. Kavitha. Popular Matchings with Two-Sided Preferences and One-Sided Ties. In the Proceedings of the 42 nd International Colloquium on Automata, Languages, and Programming (ICALP): Part I, pages 367-379, 2015.
[5] Á. Cseh and T. Kavitha. Popular edges and dominant matchings. In the 18th International Conference on Integer Programming and Combinatorial Optimization (IPCO): 138-151, 2016.
[6] A. Dulmage and N. Mendelsohn. Coverings of bipartite graphs. Canadian Journal of Mathematics, Vol. 10: pages 517-534, 1958.
[7] P. Gärdenfors. Match making: assignments based on bilateral preferences. Behavioural Science, Vol. 20: pages 166-173, 1975.
[8] R.L. Graham, M. Grötschel, and L. Lovász, editors. The Handbook of Combinatorics, chapter 3, Matchings and Extensions, by W. R. Pulleyblank, pages 179-232. North Holland, 1995.
[9] M. Hirakawa, Y. Yamauchi, S. Kijima, and M. Yamashita On The Structure of Popular Matchings in The Stable Marriage Problem - Who Can Join a Popular Matching? In the 3rd International Workshop on Matching Under Preferences (MATCH-UP), 2015.
[10] C.-C. Huang and T. Kavitha. Popular Matchings in the Stable Marriage Problem. Information and Computation, Vol. 222: pages 180-194, 2013.
[11] C.-C. Huang and T. Kavitha. Popularity, Mixed matchings, and Self-Duality. In the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2017.
[12] T. Kavitha. A size-popularity tradeoff in the stable marriage problem. SIAM Journal on Computing, Vol. 43(1): pages 52-71, 2014.
[13] T. Kavitha. Popular Half-Integral Matchings. In the Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming (ICALP), LIPIcs-Leibniz International Proceedings in Informatics, Vol. 55. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.
[14] T. Kavitha, J. Mestre, and M. Nasre. Popular mixed matchings. Theoretical Computer Science, Vol. 412(24), pages 2679-2690, 2011.
[15] T. Kavitha and M. Nasre. Note: Optimal popular matchings. Discrete Applied Mathematics, Vol. 157(14): pages 3181-3186, 2009.
[16] M. Mahdian. Random popular matchings. In the Proceedings of the 7th ACM conference on Electronic Commerce: pages 238-242, 2006.
[17] C.T.S. Sng and D.F. Manlove Popular matchings in the weighted capacitated house allocation problem. Journal of Discrete Algorithms, Vol. 8(2): pages 102-116, 2010.
[18] R.M. McCutchen. The least-unpopularity-factor and least-unpopularity-margin criteria for matching problems with one-sided preferences. In the Proceedings of the 8th Latin American Theoretical Informatics Symposium (LATIN): pages 593-604, 2008.
[19] E. McDermid and R.W. Irving. Popular matchings: structure and algorithms. Journal of Combinatorial Optimization, Vol. 22(3): pages 339-358, 2011.
[20] J. Mestre. Weighted popular matchings. ACM Transactions on Algorithms, Vol. 10(1): 2, 2014.
[21] K. Paluch. Popular and clan-popular b-matchings. Theoretical Computer Science, 544:313, 2014.

[^0]: *A preliminary version of this paper appeared in ICALP 2015 [4].
 ${ }^{\dagger}$ Hungarian Academy of Sciences and Corvinus University of Budapest, Budapest, Hungary (cseh.agnes@krtk.mta.hu).
 ${ }^{\ddagger}$ École Normale Supérieure, Paris, France (cchuang@di.end.fr).
 ${ }^{\S}$ Tata Institute of Fundamental Research, Mumbai, India. (kavitha@tcs.tifr.res.in).

