203 research outputs found

    Combinatorial Hopf algebras, noncommutative Hall-Littlewood functions, and permutation tableaux

    Get PDF
    We introduce a new family of noncommutative analogues of the Hall-Littlewood symmetric functions. Our construction relies upon Tevlin's bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an explicit formula for: the steady state probability of each state in the partially asymmetric exclusion process (PASEP); the polynomial enumerating permutations with a fixed set of weak excedances according to crossings; the polynomial enumerating permutations with a fixed set of descent bottoms according to occurrences of the generalized pattern 2-31.Comment: 37 pages, 4 figures, new references adde

    Inhomogeneous lattice paths, generalized Kostka polynomials and An−1_{n-1} supernomials

    Full text link
    Inhomogeneous lattice paths are introduced as ordered sequences of rectangular Young tableaux thereby generalizing recent work on the Kostka polynomials by Nakayashiki and Yamada and by Lascoux, Leclerc and Thibon. Motivated by these works and by Kashiwara's theory of crystal bases we define a statistic on paths yielding two novel classes of polynomials. One of these provides a generalization of the Kostka polynomials while the other, which we name the An−1_{n-1} supernomial, is a qq-deformation of the expansion coefficients of products of Schur polynomials. Many well-known results for Kostka polynomials are extended leading to representations of our polynomials in terms of a charge statistic on Littlewood-Richardson tableaux and in terms of fermionic configuration sums. Several identities for the generalized Kostka polynomials and the An−1_{n-1} supernomials are proven or conjectured. Finally, a connection between the supernomials and Bailey's lemma is made.Comment: 44 pages, figures, AMS-latex; improved version to appear in Commun. Math. Phys., references added, some statements clarified, relation to other work specifie

    Schur polynomials, banded Toeplitz matrices and Widom's formula

    Full text link
    We prove that for arbitrary partitions λ⊆κ,\mathbf{\lambda} \subseteq \mathbf{\kappa}, and integers 0≤c<r≤n,0\leq c<r\leq n, the sequence of Schur polynomials S(κ+k⋅1c)/(λ+k⋅1r)(x1,...,xn)S_{(\mathbf{\kappa} + k\cdot \mathbf{1}^c)/(\mathbf{\lambda} + k\cdot \mathbf{1}^r)}(x_1,...,x_n) for kk sufficiently large, satisfy a linear recurrence. The roots of the characteristic equation are given explicitly. These recurrences are also valid for certain sequences of minors of banded Toeplitz matrices. In addition, we show that Widom's determinant formula from 1958 is a special case of a well-known identity for Schur polynomials
    • …
    corecore