518 research outputs found

    Scalable Exact Parent Sets Identification in Bayesian Networks Learning with Apache Spark

    Full text link
    In Machine Learning, the parent set identification problem is to find a set of random variables that best explain selected variable given the data and some predefined scoring function. This problem is a critical component to structure learning of Bayesian networks and Markov blankets discovery, and thus has many practical applications, ranging from fraud detection to clinical decision support. In this paper, we introduce a new distributed memory approach to the exact parent sets assignment problem. To achieve scalability, we derive theoretical bounds to constraint the search space when MDL scoring function is used, and we reorganize the underlying dynamic programming such that the computational density is increased and fine-grain synchronization is eliminated. We then design efficient realization of our approach in the Apache Spark platform. Through experimental results, we demonstrate that the method maintains strong scalability on a 500-core standalone Spark cluster, and it can be used to efficiently process data sets with 70 variables, far beyond the reach of the currently available solutions

    An Integer Programming approach to Bayesian Network Structure Learning

    Get PDF
    We study the problem of learning a Bayesian Network structure from data using an Integer Programming approach. We study the existing approaches, an in particular some recent works that formulate the problem as an Integer Programming model. By discussing some weaknesses of the existing approaches, we propose an alternative solution, based on a statistical sparsification of the search space. Results show how our approach can lead to promising results, especially for large network

    Exact Computation of Influence Spread by Binary Decision Diagrams

    Full text link
    Evaluating influence spread in social networks is a fundamental procedure to estimate the word-of-mouth effect in viral marketing. There are enormous studies about this topic; however, under the standard stochastic cascade models, the exact computation of influence spread is known to be #P-hard. Thus, the existing studies have used Monte-Carlo simulation-based approximations to avoid exact computation. We propose the first algorithm to compute influence spread exactly under the independent cascade model. The algorithm first constructs binary decision diagrams (BDDs) for all possible realizations of influence spread, then computes influence spread by dynamic programming on the constructed BDDs. To construct the BDDs efficiently, we designed a new frontier-based search-type procedure. The constructed BDDs can also be used to solve other influence-spread related problems, such as random sampling without rejection, conditional influence spread evaluation, dynamic probability update, and gradient computation for probability optimization problems. We conducted computational experiments to evaluate the proposed algorithm. The algorithm successfully computed influence spread on real-world networks with a hundred edges in a reasonable time, which is quite impossible by the naive algorithm. We also conducted an experiment to evaluate the accuracy of the Monte-Carlo simulation-based approximation by comparing exact influence spread obtained by the proposed algorithm.Comment: WWW'1

    Cellular network capacity and coverage enhancement with MDT data and Deep Reinforcement Learning

    Get PDF
    Recent years witnessed a remarkable increase in the availability of data and computing resources in comm-unication networks. This contributed to the rise of data-driven over model-driven algorithms for network automation. This paper investigates a Minimization of Drive Tests (MDT)-driven Deep Reinforcement Learning (DRL) algorithm to optimize coverage and capacity by tuning antennas tilts on a cluster of cells from TIM's cellular network. We jointly utilize MDT data, electromagnetic simulations, and network Key Performance indicators (KPIs) to define a simulated network environment for the training of a Deep Q-Network (DQN) agent. Some tweaks have been introduced to the classical DQN formulation to improve the agent's sample efficiency, stability and performance. In particular, a custom exploration policy is designed to introduce soft constraints at training time. Results show that the proposed algorithm outperforms baseline approaches like DQN and best-first search in terms of long-term reward and sample efficiency. Our results indicate that MDT -driven approaches constitute a valuable tool for autonomous coverage and capacity optimization of mobile radio networks

    Contagion Source Detection in Epidemic and Infodemic Outbreaks: Mathematical Analysis and Network Algorithms

    Full text link
    This monograph provides an overview of the mathematical theories and computational algorithm design for contagion source detection in large networks. By leveraging network centrality as a tool for statistical inference, we can accurately identify the source of contagions, trace their spread, and predict future trajectories. This approach provides fundamental insights into surveillance capability and asymptotic behavior of contagion spreading in networks. Mathematical theory and computational algorithms are vital to understanding contagion dynamics, improving surveillance capabilities, and developing effective strategies to prevent the spread of infectious diseases and misinformation.Comment: Suggested Citation: Chee Wei Tan and Pei-Duo Yu (2023), "Contagion Source Detection in Epidemic and Infodemic Outbreaks: Mathematical Analysis and Network Algorithms", Foundations and Trends in Networking: Vol. 13: No. 2-3, pp 107-251. http://dx.doi.org/10.1561/130000006
    • …
    corecore