33,381 research outputs found

    Efficient algorithms to solve scheduling problems with a variety of optimization criteria

    Get PDF
    La programmation par contraintes est une technique puissante pour résoudre, entre autres, des problèmes d'ordonnancement de grande envergure. L'ordonnancement vise à allouer dans le temps des tâches à des ressources. Lors de son exécution, une tâche consomme une ressource à un taux constant. Généralement, on cherche à optimiser une fonction objectif telle la durée totale d'un ordonnancement. Résoudre un problème d'ordonnancement signifie trouver quand chaque tâche doit débuter et quelle ressource doit l'exécuter. La plupart des problèmes d'ordonnancement sont NP-Difficiles. Conséquemment, il n'existe aucun algorithme connu capable de les résoudre en temps polynomial. Cependant, il existe des spécialisations aux problèmes d'ordonnancement qui ne sont pas NP-Complet. Ces problèmes peuvent être résolus en temps polynomial en utilisant des algorithmes qui leur sont propres. Notre objectif est d'explorer ces algorithmes d'ordonnancement dans plusieurs contextes variés. Les techniques de filtrage ont beaucoup évolué dans les dernières années en ordonnancement basé sur les contraintes. La proéminence des algorithmes de filtrage repose sur leur habilité à réduire l'arbre de recherche en excluant les valeurs des domaines qui ne participent pas à des solutions au problème. Nous proposons des améliorations et présentons des algorithmes de filtrage plus efficaces pour résoudre des problèmes classiques d'ordonnancement. De plus, nous présentons des adaptations de techniques de filtrage pour le cas où les tâches peuvent être retardées. Nous considérons aussi différentes propriétés de problèmes industriels et résolvons plus efficacement des problèmes où le critère d'optimisation n'est pas nécessairement le moment où la dernière tâche se termine. Par exemple, nous présentons des algorithmes à temps polynomial pour le cas où la quantité de ressources fluctue dans le temps, ou quand le coût d'exécuter une tâche au temps t dépend de t.Constraint programming is a powerful methodology to solve large scale and practical scheduling problems. Resource-constrained scheduling deals with temporal allocation of a variety of tasks to a set of resources, where the tasks consume a certain amount of resource during their execution. Ordinarily, a desired objective function such as the total length of a feasible schedule, called the makespan, is optimized in scheduling problems. Solving the scheduling problem is equivalent to finding out when each task starts and which resource executes it. In general, the scheduling problems are NP-Hard. Consequently, there exists no known algorithm that can solve the problem by executing a polynomial number of instructions. Nonetheless, there exist specializations for scheduling problems that are not NP-Complete. Such problems can be solved in polynomial time using dedicated algorithms. We tackle such algorithms for scheduling problems in a variety of contexts. Filtering techniques are being developed and improved over the past years in constraint-based scheduling. The prominency of filtering algorithms lies on their power to shrink the search tree by excluding values from the domains which do not yield a feasible solution. We propose improvements and present faster filtering algorithms for classical scheduling problems. Furthermore, we establish the adaptions of filtering techniques to the case that the tasks can be delayed. We also consider distinct properties of industrial scheduling problems and solve more efficiently the scheduling problems whose optimization criteria is not necessarily the makespan. For instance, we present polynomial time algorithms for the case that the amount of available resources fluctuates over time, or when the cost of executing a task at time t is dependent on t

    Optimization Models and Algorithms for Spatial Scheduling

    Get PDF
    Spatial scheduling problems involve scheduling a set of activities or jobs that each require a certain amount of physical space in order to be carried out. In these problems space is a limited resource, and the job locations, orientations, and start times must be simultaneously determined. As a result, spatial scheduling problems are a particularly difficult class of scheduling problems. These problems are commonly encountered in diverse industries including shipbuilding, aircraft assembly, and supply chain management. Despite its importance, there is a relatively scarce amount of research in the area of spatial scheduling. In this dissertation, spatial scheduling problems are studied from a mathematical and algorithmic perspective. Optimization models based on integer programming are developed for several classes of spatial scheduling problems. While the majority of these models address problems having an objective of minimizing total tardiness, the models are shown to contain a core set of constraints that are common to most spatial scheduling problems. As a result, these constraints form the basis of the models given in this dissertation and many other spatial scheduling problems with different objectives as well. The complexity of these models is shown to be at least NP-complete, and spatial scheduling problems in general are shown to be NP-hard. A lower bound for the total tardiness objective is shown, and a polynomial-time algorithm for computing this lower bound is given. The computational complexity inherent to spatial scheduling generally prevents the use of optimization models to find solutions to larger, realistic problems in a reasonable time. Accordingly, two classes of approximation algorithms were developed: greedy heuristics for finding fast, feasible solutions; and hybrid meta-heuristic algorithms to search for near-optimal solutions. A flexible hybrid algorithm framework was developed, and a number of hybrid algorithms were devised from this framework that employ local search and several varieties of simulated annealing. Extensive computational experiments showed these hybrid meta-heuristic algorithms to be effective in finding high-quality solutions over a wide variety of problems. Hybrid algorithms based on local search generally provided both the best-quality solutions and the greatest consistency

    The Lazy Bureaucrat Scheduling Problem

    Full text link
    We introduce a new class of scheduling problems in which the optimization is performed by the worker (single ``machine'') who performs the tasks. A typical worker's objective is to minimize the amount of work he does (he is ``lazy''), or more generally, to schedule as inefficiently (in some sense) as possible. The worker is subject to the constraint that he must be busy when there is work that he can do; we make this notion precise both in the preemptive and nonpreemptive settings. The resulting class of ``perverse'' scheduling problems, which we denote ``Lazy Bureaucrat Problems,'' gives rise to a rich set of new questions that explore the distinction between maximization and minimization in computing optimal schedules.Comment: 19 pages, 2 figures, Latex. To appear, Information and Computatio

    Framework for sustainable TVET-Teacher Education Program in Malaysia Public Universities

    Get PDF
    Studies had stated that less attention was given to the education aspect, such as teaching and learning in planning for improving the TVET system. Due to the 21st Century context, the current paradigm of teaching for the TVET educators also has been reported to be fatal and need to be shifted. All these disadvantages reported hindering the country from achieving the 5th strategy in the Strategic Plan for Vocational Education Transformation to transform TVET system as a whole. Therefore, this study aims to develop a framework for sustainable TVET Teacher Education program in Malaysia. This study had adopted an Exploratory Sequential Mix-Method design, which involves a semi-structured interview (phase one) and survey method (phase two). Nine experts had involved in phase one chosen by using Purposive Sampling Technique. As in phase two, 118 TVET-TE program lecturers were selected as the survey sample chosen through random sampling method. After data analysis in phase one (thematic analysis) and phase two (Principal Component Analysis), eight domains and 22 elements have been identified for the framework for sustainable TVET-TE program in Malaysia. This framework was identified to embed the elements of 21st Century Education, thus filling the gap in this research. The research findings also indicate that the developed framework was unidimensional and valid for the development and research regarding TVET-TE program in Malaysia. Lastly, it is in the hope that this research can be a guide for the nations in producing a quality TVET teacher in the future

    Some complexity and approximation results for coupled-tasks scheduling problem according to topology

    Get PDF
    We consider the makespan minimization coupled-tasks problem in presence of compatibility constraints with a specified topology. In particular, we focus on stretched coupled-tasks, i.e. coupled-tasks having the same sub-tasks execution time and idle time duration. We study several problems in framework of classic complexity and approximation for which the compatibility graph is bipartite (star, chain,. . .). In such a context, we design some efficient polynomial-time approximation algorithms for an intractable scheduling problem according to some parameters

    Parameterized complexity of machine scheduling: 15 open problems

    Full text link
    Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.Comment: Version accepted to Computers & Operations Researc
    corecore