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Abstract. We consider the makespan minimization coupled-tasks problem in presence of compatibility
constraints with a specified topology. In particular, we focus on stretched coupled-tasks, i.e. coupled-
tasks having the same sub-tasks execution time and idle time duration. We study several problems in
framework of classic complexity and approximation for which the compatibility graph is bipartite (star,
chain, . . .). In such a context, we design some efficient polynomial-time approximation algorithms for
an intractable scheduling problem according to some parameters.
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1. Introduction and model

The detection of an object by a common radar system is based on the following principle: a transmitter emits
a uni-directional pulse that propagates though the environmental medium. If the pulse encounters an object,
it is reflected back to the transmitter. Using the transmit time and the direction of the pulse, the position of
the object can be computed by the transmitter. Formally this acquisition process is divided into three parts: (i)
pulse transmission; (ii) wave propagation and reflection, (iii) echo reception. Thus the detection system must
perform two tasks (parts (i) and (iii)) separated by an idle time (part (ii)). Such systems generally run in
non-preemptive mode: once started, a task cannot be interrupted and resumed later. However, the idle time
of an acquisition task can be reused to perform another task. On non-preemptive mono-processor systems,
scheduling issues appear when in parallel several sensors using different frequencies are working: the idle time
of an acquisition task can be reused to perform partially on entirely a second acquisition process using another
sensor, but only if both sensors use different frequencies to avoid interferences. Otherwise these two acquisitions
processes should be scheduled sequentially.

Coupled-tasks, introduced first by Shapiro [15], seem to be a natural way to model, among others, data
acquisition processes: a coupled-task ti is composed by two sub-tasks with processing time ai and bi and whose
execution must be separated by an incompressible and not flexible time li (called the idle time of the task).
For an acquisition process, a sensor emits a radio pulse as a first sub-task, and listens for an echo reply as a
second sub-task, while the radio pulse propagation operates during an idle time li.

Keywords. Coupled-task scheduling model, complexity, polynomial-time approximation algorithm.

1 LE2I, UMR CNRS 6306, University of Burgundy, 8 Rue Alain Savary, 21000 Dijon, France. benoit.darties@u-bourgogne.fr
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Coupled-tasks are also an efficient way to model acquisition systems designed to detect changes in an en-
vironment for a given period, by producing two measurements before and after the given period. Here each
measurement can be modeled as a sub-task.

We note T = {t1, . . . , tn} the collection of coupled-tasks to be scheduled. In order to minimize the makespan
(schedule length) of T , it is necessary to execute one or several different sub-tasks during the idle time of a
coupled-task. In the original model, all coupled-tasks may be executed in each other according to processing
time of sub-tasks and the duration of the idle time.

Some papers investigated the problem of minimizing the makespan for various configurations depending
on the values of ai, bi and li [1, 2, 14]. In [14], authors present a global visualization of scheduling problems
complexity with coupled-tasks, and give main complexity results.

In a multi-sensors acquisition system, incompatibilities may arise between two tasks ti and tj if they operate
with two different sensors working at the same channel. Thus any valid schedule would require ti and tj to be
scheduled sequentially. Hereafter, we propose a generalization of an original coupled-tasks model by considering
the notion of compatibility constraint among tasks: original coupled-task model, by introducing compatibility
constraint among tasks: two tasks ti and tj are compatibles if any sub-task of ti may be executed during the
idle time of tj or reciprocally. In [17], we introduced a compatibility graph G = (V, E) to model such this
compatibility, where V = T is the entire collection of coupled-tasks, and each pair of compatible tasks are
linked by an edge e ∈ E. We proposed in [17,18] new results focused on the impact of the addition of G on the
complexity of the problem.

Our work is motivated by the acquisition of data for automatic vehicle under water, as a TAIPAN torpedo.
With the growth in robotic technologies, several applications and works are emerging and the theoretical needs
are a priority. For example, the torpedo is used to execute several submarine topographic surveys, including
topological or temperature measurements. These acquisitions tasks can be partitioned into specific sub-problems,
where their modelling is very precise.

Since the engineers have a wide degree of freedom to create and transform the different tasks, they required
a strong theoretical analysis of coupled tasks with compatibility constraint. Indeed, they needed to have a
better knowledge of the difficulty of scheduling coupled-tasks on such systems, and to compare their scheduling
heuristics to the optimal one.

1.1. Contribution

In this work, we propose new results of complexity and approximation for particular problem instances
composed by stretched coupled-tasks only: a stretched coupled-task is a coupled-task ti = (ai, li, bi) for which
the three parameters ai, bi and li are equal to the same value α(ti), called the stretch factor of ti.

We investigate here the problem of scheduling on a mono-processor a set of stretched coupled-tasks, subject
to compatibility constraint in order to minimize the completion time of the latest task. For clarity, ai (resp bi)
refers either to the first (resp. second) sub-task, or to its processing time according to the context.

A major research issue concerns the impact of the class of the compatibility graph G on the complexity of the
problem: it is known that the problem is NP-hard even when all the tasks are compatibles between each other,
i.e. G is a complete graph (see [14]). On the other side, when G is an empty graph a trivial optimal solution
would consist in scheduling tasks sequentially. Our aim is to determine the complexity of the problem when
G describes some sub-classes of bipartite graphs, and to propose approximation algorithms with performance
guarantee for NP-hard instances.

Remark 1.1. If two compatibles stretched coupled-tasks ti and tj , with α(ti) ≤ α(tj), are scheduled in parallel
in any solution of the scheduling problem, then one of the following conditions must hold:

(1) either α(ti) = α(tj): then the idle time of one task is fully exploited to schedule a sub-task from the other
(i.e. bi is scheduled during lj , and aj is scheduled during li), and the execution of the two tasks is done
without idle time.



SCHEDULING COUPLED-TASKS ACCORDING TO TOPOLOGY 783

(2) or 3α(ti) ≤ α(tj): then ti is fully executed during the idle time lj of tj . For sake of simplify, we say we pack
ti into tj .

The others configuration α(ti) < α(tj) < 3α(ti) is unavailable, otherwise some sub-tasks would overlap in the
schedule.

From Remark 1.1 one can propose an orientation to each edge e = (ti, tj) ∈ E from the task with the lowest
stretch factor to the task with the highest one, or set e as a bidirectional edge when α(ti) = α(tj). In the
following, we consider only oriented compatibility graphs. Abusing notation, dealing with undirected topologies
for G refers in fact to its underlying undirected graph.

We use various standard notations from graph theory: NG(x) is the set of neighbors of x in G. ΔG is the
maximum degree of G. We denote respectively by d−G(v) and d+

G(v) the indegree and outdegree of v, and
dG(v) = d−G(v) + d+

G(v). We denote by G[S] the graph induced from G by vertices from S.
Reusing the Graham’s notation scheme [10], we define the main problem of this study as 1|α(ti), G|Cmax. We

study the variation of the complexity when the topology of G varies, and we propose approximation results for
NP-hard instances.

We study thee subclasses of bipartite graphs in particular: the chain, the star, and the k-stage bipartite
graphs. A k-stage bipartite graph is a graph G = (V0 ∪ V1 ∪ · · · ∪ Vk, E1 ∪ E2 ∪ . . . ∪ Ek), where each arc in Ei

has its extremities in Vi and in Vi+1, for i ∈ {1, . . . , k}. For a given k-stage bipartite graph G, we denote by
Gk = G[Vk−1 ∪ Vk] the kth stage of G. In this paper, we focus our study on 1-stage bipartite graphs (1-SBG)
and 2-stage bipartite graphs (2-SBG). We also study the problem when the compatibility graph G is a 1-stage
complete bipartite graph (1-SCBG), i.e. E1 contains all the edges (x, y), ∀x ∈ V0, ∀y ∈ V1.

For 1-SBG (or 2-SBG) with G = (X∪Y, E), we denoted by X-tasks (resp. Y -tasks) the set of tasks represented
by X (resp. Y ) in G. For any set of X-tasks, let seq(X) be the time required to schedule sequentially all the
tasks from X . Formally, we have:

seq(X) =
∑

t∈X

3α(t).

Remark 1.2. Given an instance of 1|α(ti), G|Cmax. If X is an independent set for G, then all the tasks from
X are pairwise non-compatibles. Thus seq(X) is a lower bound for the cost of any optimal solution.

The results obtained in this article are summarized in Table 1.

Table 1. Complexity and approximation results discussed in this paper.

Topology Complexity Approximation

G= Chain graph O(n3) (Thm. 2.1)

G =Star graph 1 NP − C (Thm. 2.3) FPT AS (Thm. 4.1)

G =Star graph 2 O(n) (Thm. 2.2)

G = 1-SBG, dG(Y ) ≤ 2 O(n3) (Thm. 3.1)

G = 1-SCBG
PT AS (Thm. 4.3)NP − C (see [16])
13
12

-APX (Thm. 4.3)

G = 2-SBG NP − C (Thm. 3.2) 13
9

-APX (Thm. 4.4)

1Star graph with only incoming arcs for the central node arc.
2Star graph with at least one outcoming arc for the central node.
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1.2. Prerequisites

1.2.1. Performance ratio

Recall that the performance ratio ρ for a minimization (resp. maximization) problem is given as the ratio
between the value of the approximation solution returned by the algorithm A on an instance I and the optimum
i.e. ρ ≤ maxI

A(I)
OPT (I) (resp. ρ ≥ minI

OPT (I)
A(I) ). Notice that for a minimization problem the ratio is greater

than one (resp. lower than one).

1.2.2. Definition of problems

To prove the different results announced in this paper, we use several well-known approximation results on
four packing-related problems:

(1) The subset sum (ss) problem is a well-known problem in which, given a set S of n positive values and
v ∈ IN, one asks if there exists a subset S∗ ⊆ S such that

∑
i∈S∗ i = v. This decision problem is well-

known to be NP-complete (see [8]). The optimization version problem is sometimes viewed as a knapsack

problem, where each item profits and weights coincide to a value in S, the knapsack capacity is v, and the
aim is to find the set of packable items with maximum profit.

(2) The multiple subset sum (mss) problem is a variant of well-known bin packing in which a number of
identical bins is given and one would like to maximize the overall weight of the items packed in the bins
such that the sum of the item weights in every bin does not exceed the bin capacity. The problem is also a
special case of the Multiple knapsack problem in which all knapsacks have the same capacities and the
item profits and weights coincide. Caprara et al. [4] proved that mss admits a PT AS, but does not admit
a FPT AS even for only two knapsacks. They also proposed a 3

4−approximation algorithm in [5].
(3) multiple subset sum with different knapsack capacities (mssdc) [3] is an extension of mss con-

sidering different bin capacities. mssdc also admits a PT AS [3].
(4) As a generalization of mssdc, multiple knapsack assignment restriction (mkar) problem consists

to pack weighted items into non-identical capacity-constrained bins, with the additional constraint that
each item can be packed in some bins only. Each item as a profit, the objective here is to maximize the
sum of profits of packed items. Considering that the profit of each item equals its weight, [6] proposed a
1
2 -approximation.

We also use a well-known result concerning a variant of the NP-complete problem 3SAT [8], denoted subse-
quently by one-in-(2,3)sat(2,1̄): An instance of one-in-(2,3)sat(2,1̄) is described by the following elements:
we use V to denote the set of n variables. Let n be a multiple of 3 and let C be a set of clauses of cardinality 2
or 3. There are n clauses of cardinality 2 and n/3 clauses of cardinality 3 such that:

• Each clause of cardinality 2 is equal to (x ∨ ȳ) for some x, y ∈ V with x 	= y.
• Each of the n literals x (resp. of the n literals x̄) for x ∈ V belongs to one of the n clauses of cardinality 2,

thus to only one of them.
• Each of the n (positive) literals x belongs to one of the n/3 clauses of cardinality 3, thus to only one of them.
• Whenever (x ∨ ȳ) is a clause of cardinality 2 for some x, y ∈ V , then x and y belong to different clauses of

cardinality 3.

The aim of one-in-(2,3)sat(2,1̄) is to find if there exists a truth assignment I : V → {0, 1}, 0 for false and 1 for
true, whereby each clause in C has exactly one true literal. one-in-(2,3)sat(2,1̄) has been proven NP-complete
in [9].

As an example, the following logic formula is the smallest valid instance of one-in-(2,3)sat(2,1̄): (x0 ∨ x1 ∨
x2) ∧ (x3 ∨ x4 ∨ x5) ∧ (x̄0 ∨ x3) ∧ (x̄3 ∨ x0) ∧ (x̄4 ∨ x2) ∧ (x̄1 ∨ x4) ∧ (x̄5 ∨ x1) ∧ (x̄2 ∨ x5).

The answer to one-in-(2,3)sat(2,1̄) is yes. It is sufficient to choose x0 = 1, x3 = 1 and xi = 0 for i =
{1, 2, 4, 5}. This yields a truth assignment that satisfies the formula, and there is exactly one true literal for
each clause.
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2. Computational complexity for some classes

of compatibility graphs

In this section, we present two preliminary results of complexity for the problem that consists in scheduling a
set of stretched-coupled tasks with compatibility constraints. In such a context, we will consider the topologies
of chain and star.

First we show that the problem is solvable within a O(n3) time complexity algorithm when G is a chain
(Thm. 2.1). Then we prove that it is NP-hard even when the compatibility graph is a star (Thm. 2.3),

2.1. Chain graph

Despite of the simplicity of a chain topology, solving the scheduling problem on a chain is not as simple
as it appears: a main issue arise when two adjacent vertices x and y have the same stretch factor. In this
configuration, we cannot determine locally if x and y can be packed together in an optimal solution or not (this
requires to examine the neighbourhood of x and y, and this problematic configuration can be repeated all along
the chain). However, we show that the scheduling problem with a chain is polynomial using a similar method
as developed in [18].

Theorem 2.1. The problem 1|α(ti), G = chain|Cmax admits a polynomial-time algorithm.

Proof. This problem can be solved in polynomial-time by a reduction to the search for a minimum weighted
perfect matching. This problem can be polynomially solved in O(n3) time complexity [7].

First, note that if for a task x with two neighbors y and z, we have 3(α(y) + α(z)) ≤ α(x), the idle duration
of x is high enough to schedule both y and z. Thus one can schedule y and z into x without decreasing the cost
of any optimal solution, and remove tasks x, y and z from the studied graph. Thus, in the rest of the proof, one
can restrict our study to chains G = (V, E) such that for any x ∈ V , we have 3

∑
y∈NG(x) α(y) > α(x).

In order to obtain a graph with an even number of vertices and to find a perfect matching, we construct a
graph H = (VH , EH , w) and we define a weighted function w : E → IN as follows:

(1) Let I1 be an instance of our problem with a compatibility graph G = (V, E), and I2 an instance of
the minimum weight perfect matching problem in graph constructed from I1. We consider a graph H ,
consisting of two copies of G denoted by G′ = (V ′, E′) and G′′ = (V ′′, E′′). The vertex corresponding to
x ∈ V is denoted by x′ in G′ and x′′ in G′′. Moreover, ∀i = 1, . . . , n, an edge {x′, x′′} in EH is added
and we state w({x′, x′′}) = 3 × α(x)′. This weight represents the sequential time of the x′-task. We have
H = G′ ∪ G′′ = (V ′ ∪ V ′′, E′ ∪ E′′), with |V ′ ∪ V ′′| of even size.

(2) For two compatible tasks x′ and y′ with 3 × αx′ ≤ αy′ or 3 × αy′ ≤ αx′ , we add the edges {x′, y′} and
{x′′, y′′} in EH and we state w({x′, y′}) = w({x′′, y′′}) = 3×max{αx′ ,αy′}

2
.

(3) For two compatible tasks x′ and y′ with αx′ = αy′ , we add the edges {x′, y′} and {x′′, y′′} in EH , and we
state w({x′, y′}) = w({x′′, y′′}) = 4×αx′

2
.

Figure 1 shows an example of construction of H when G is a chain with 3 vertices.
One can show that there is a (weighted) perfect matching on H , which cover all the vertices of H . In fact

the construction implies that for any perfect matching W of cost C on H , one can provide a valid schedule of
processing time C for the scheduling problem: an edge e ∈ W with e = x′, x′′, x′ ∈ G′ ∧ x′′ ∈ G′′ implies that
task x is scheduled alone, while an edge e ∈ W with e = x′, y′, x′, y′ ∈ G′ implies that tasks x and y are packed
together in the resulting schedule – and the edge e = x′′, y′′, x′′, y′′ ∈ G′′ belong also to the matching -.

For a minimum weight perfect matching C, we can associate a schedule of minimum processing time equal
to C and vice versa. The detailed proof of the relationship between a solution to our problem with G and a
solution of a minimum weight perfect matching in H is presented in [18].

In the review of the literature, the Edmonds algorithm determines a minimum weight perfect matching in
O(n3) [7]. So the optimization problem with G is polynomial, and if one adds the execution of the blocks created
by removed vertices, this leads to the polynomiality of the problem 1|α(ti), G = chain|Cmax. �
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Figure 1. Example of the transformation.

2.2. Star graph

We focus on the case with a star graph, i.e. a graph with a central node β. In such a context, we show that the
complexity depends on the number of outgoing arcs from β. The following results also imply that the studied
problem can be NP-hard even on acyclic low-diameter graphs, when the degree of G is unbounded.

Theorem 2.2. The problem 1|α(ti), G = star|Cmax is polynomial if the central node admits at least one out-
coming arc.

Proof. Let S be the set of satellite nodes. According to the Remark 1.2, seq(S) is a lower bound for the cost of
an optimal solution. This bound is achieved if we can execute the central node in a satellite node. �

Theorem 2.3. The problem 1|α(ti), G = star|Cmax is NP-hard if the central node admits only incoming arcs.

Proof. We propose a reduction from the subset sum (ss) problem (see Sect. 1.2). From an instance of
ss composed by a set S of n positive values and v ∈ IN (with v ≥ x, ∀x ∈ S), we construct an instance of
1|α(ti), G = star|Cmax =

∑
t∈V α(t) + 2α(β) in the following way:

(1) For each value i ∈ S we introduce a coupled-task t with α(t) = i. Let V be the set of these tasks.
(2) We add a task β with α(β) = aβ = lβ = bβ = 3 × v.
(3) We define a compatibility constraint between each task t ∈ V and β.

Clearly the compatibility graph G is a star with β as the central node, and the transformation is computed in
polynomial time.

We will prove that there exists a positive solution for the subset sum (ss) problem iff there exists a feasible
solution for the scheduling problem with a length

∑
t∈V α(t) + 2α(β).

It is easy to see that 1|α(ti), G = star|Cmax =
∑

t∈V α(t) + 2α(β) ∈ NP .
Let W be the set of the nodes executed in the central node for a scheduling. The cost of this scheduling

in clearly seq(T ) − seq(W ). Therefore, the problem of finding a scheduling of cost seq(T ) − α(β) is clearly
equivalent to an instance of the subset sum with v = α(β) and S the set of the processing time of the satellite
tasks.

This concludes the proof of Theorem 2.3. �

3. On the boundary between polynomial-time algorithm

and NP-Completeness on 1-stage bipartite graphs

Preliminary results of Section 2 show that the problem is NP-hard on acyclic low-diameter instances when
the degree is unbounded. They suggest that the complexity of the problem may be linked to the maximum
degree of the graph.
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This section is devoted to the NP-completeness of several scheduling problems in presence of a 1-stage
bipartite compatibility graph, according to the maximum degree of vertices and some structural parameters like
the number of different values of coupled-tasks.

We will sharp the line of demarcation between the polynomially solvable cases and the NP-hardness ones
according to several topologies. We focus our analysis when G is a 1-stage bipartite graph. We prove that the
problem is solvable within a O(n3) polynomial algorithm if ΔG = 2 (Thm. 3.1), but becomes NP-hard when
ΔG = 3 (Thm. 3.2).

We start by designing a polynomial-time algorithm for the scheduling problem in which the maximum degree
of incoming arcs on Y -tasks is at most two.

Theorem 3.1. The problem of deciding whether an instance of 1|α(ti),
G = 1 − stagebipartite, dG(Y ) ≤ 2|Cmax is polynomial. In fact, the previous result may be extended to a graph
G (not necessarily bipartite) such that ∀x, d−(X) ≤ 2 with 3(α(x1) + α(x2)) > α(x), where x1 and x2 are the 2
neighbors of x.

Proof. Let G = (X ∪Y, E) be a 1-stage bipartite compatibility graph (arcs oriented from X to Y only, implying
that only X-tasks can be executed in the idle time of and Y -task). Y -tasks will always be scheduled sequentially
as Y is an independent set of G (cf. Rem. 1.2). The aim is to fill their idle time with a maximum of X-tasks,
while the remained tasks will be executed after the Y -tasks. We just have to minimize the length of the remained
tasks. It is easy to see that all Y -tasks with incoming degree equal to one are executed sequentially with their
only X-task in their idle time. The following algorithm is focused on the case ΔG = 2. It is defined in two steps:

(1) For each task y ∈ Y such that 3× α(x1) + 3×α(x2) ≤ α(y) where x1 and x2 are the only two neighbors of
Y , we add y to the schedule and execute x1 and x2 sequentially during the idle time of y. Then we remove
y, x1 and x2 from the instance.

(2) Each remaining task y ∈ Y admits at most two incoming arcs (x1, y) and/or (x2, y). We add a weight
α(x) to the arc (x, y) for each x ∈ NG(y), then we perform a maximum weight matching on G in order to
minimize the length of the remained tasks of X . Thus, the matched coupled-tasks are executed, and these
tasks are removed from G.

(3) Then, remaining tasks are processed sequentially after the other tasks.

The complexity of this algorithm is O(n3) using the Hungarian method [13]. For the extension, it is sufficient
to use a maximum weight perfect matching [7]. �

Theorem 3.2. The problem of deciding whether an instance of 1|α(ti), G = 1 − stage bipartite, dG(X) =
2, dG(Y ) ∈ {2, 3}|Cmax has a schedule of length at most 54n is NP-complete where n is the number of tasks.

Proof. It is easy to see that our problem is in NP . Our proof is based on a reduction from one-in-(2,3)sat(2,1̄):
given a set V of n boolean variables with n mod 3 ≡ 0, a set of n clauses of cardinality two and n/3 clauses of
cardinality three, we construct an instance π of the problem 1|α(ti), G = 1−stage bipartite, dG(X) = 2, dG(Y ) ∈
{2, 3}|Cmax = 54n in following way:

(1) For all x ∈ V , we introduce four variable-tasks: x, x′, x̄ and x̄′ with (ai, li, bi) = (1, 1, 1), ∀i ∈ {x, x′, x̄, x̄′}.
This variable-tasks set is noted VT .

(2) For all x ∈ V , we introduce three literal-tasks Lx, Cx and C̄x with Lx = (2, 2, 2); Cx = C̄x = (6, 6, 6). The
set of literal-tasks is denoted LT .

(3) For all clauses with a length of three, we introduce two clause-tasks Ci and C̄i with Ci = (3, 3, 3) and
C̄i = (6, 6, 6).

(4) For all clauses with a length of two, we introduce one clause-task Ci with Ci = (3, 3, 3). The set of clause-
tasks is denoted CT .

(5) The following arcs model the compatibility constraint:
(a) For all boolean variables x ∈ V , we add the arcs (Lx, Cx) and (Lx, C̄x)
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(b) Fgr all clauses with a length of three denoted Ci = (y ∨ z ∨ t), we add the arcs (y, Ci), (z, Ci), (t, Ci)
and (ȳ′, C̄i), (z̄′, C̄i), (t̄′, C̄i).

(c) For all clauses with a length of two denoted Ci = (x ∨ ȳ), we add the arcs (x′, Ci) and (ȳ, Ci).
(d) Finally, we add the arcs (x, Cx), (x′, Cx) and (x̄, C̄x), (x̄′, C̄x).

This transformation can be clearly computed in polynomial time and an illustration is depicted in Figure 2.
The proposed compatibility graph is a 1-stage bipartite and dG(x) ≤ 3, ∀x ∈ VT ∪ LT ∪ CT .

In follows, we say that a task x is merged to a task y, if there exists a compatibility constraint from x to y;
i.e. the coupled-task x may be executed during the idle time of coupled-task y.

• Let us first assume that there is a schedule with length of 54n at most. We prove that there is a truth
assignment I : V → {0, 1} such that each clause in C has exactly one true literal (i.e. one literal equal to 1).
We make several essential remarks:
(1) The length of the schedule is given by an execution time of the coupled-tasks admitting only incoming

arcs, and the value is 54n = 3αCT |CT | + αLT (|LT | − |{Lx, x ∈ V}|) = 9|{Ci ∈ CT of length 2 and
3}|+ 18|{C̄i ∈ CT }| + 18|{Cx and C̄x ∈ LT }| = 9 × 4n

3 + 18 × n
3 + 18 × 2n.

Thus, all tasks from VT ∪ {Lx, x ∈ V} must be merged with tasks from CT ∪ (LT − {Lx, x ∈ V}).
(2) By the construction, at most three tasks can be merged together.
(3) Lx is merged with Cx or C̄x.
(4) The allocation of coupled-tasks from CT ∪ (LT −{Lx, x ∈ V}) leads to 18n idle time. The length of the

variable-tasks VT and Lx equals 18n (in these coupled-tasks there are 6n idle times).
(5) If the variable-tasks x and x′ are not merged simultaneously with Cx, i.e. only one of these tasks is

merged with Cx, then by with the previous discussion, it is necessary to merge a literal-task Ly, with
x 	= y one variable-task (ȳ or ȳ′) with Cy or C̄y . It is impossible by size of coupled-tasks. In the same
way, the variable-tasks x̄ et x̄′ are merged simultaneously with C̄x if they have to be into it.

(6) Hence, first x and x′ are merged with Cx or with a clause-task where the variable x occurs. Second, x̄
and x̄′ are merged with C̄x or a clause-task.

So, we affect the value “true” to the variable l iff the variable-task l is merged with clause-task(s) corre-
sponding to the clause where the variable l occurs. It is obvious to see that in the clause of length three and
two we have one and only one literal equal to “true”.

• Conversely, we suppose that there is a truth assignment I : V → {0, 1}, such that each clause in C has
exactly one true literal.
– If the variable x = true then we merged the vertices Lx with Cx; x with the clause-task Ci corresponding

to the clause of length three which x occurs; x′ with the clause-task Ci corresponding to the clause of
length two which x occurs; and x̄, x̄′ with C̄x.

– If the variable x = false then we merged the vertices Lx with C̄x; x̄ with the clause-task corresponding
to the clause of length two which x̄ occurs; x̄′ with the clause-task C̄i corresponding to the clause (C) of
length three which x occurs; and x, x′ with Cx.

The merged-tasks are given in Figure 2. For a feasible schedule, it is sufficient to merge vertices which are
in the same partition. Thus, the length of the schedule is at most 54n. �

Theorem 3.3. The problem of deciding whether an instance of 1|α(ti), G =
1 − stage bipartite, dG(X) ∈ {1, 2}, dG(Y ) ∈ {3, 4}|Cmax has a schedule of length at most 54n is NP-complete,
where n is the number of tasks.

Proof. We use a similar proof as given for the Theorem 3.2. It is sufficient to add for each clause C with a length
of two (resp. C′ of length three) a dummy coupled-task DC (resp. D′

C) with DC = (1, 1, 1) = D′
C , and the value

of the clause-task C (resp. C′) is now C = C′ = (6, 6, 6). In other words, we add these two compatibility
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∀x
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Lx = (2, 2, 2); Cx = C̄x = (6, 6, 6), x ∈ V

C(x,y,z) = (3, 3, 3)
C(x,y,z) = (6, 6, 6)

CC = CC = (3, 3, 3)

Case a)

Case b)

x is true and x̄ is false

x is false and x̄ is true

Figure 2. A partial compatibility graph for the NP-completeness of the scheduling problem
1|α(ti), G =1−stage bipartite, dG(X) = 2, dG(Y ) ∈ {2, 3}|Cmax = 54n. A truth assignment and
partial schedule.
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constraints:

• DC → C, for each clause C of length two,
• D′

C → C′, for each clause C′ of length three.

There is a schedule with length of 54n at most iff there exists a truth assignment I : V → {0, 1} such that each
clause in C has exactly one true literal (i.e. one literal equal to 1). �

Corollary 3.4. The problem of deciding whether an instance of 1|α(ti) 	= α(tj), ∀i 	= j, ΔG = 3, G = 1 −
stage bipartite|Cmax has a schedule of length at most 54n is NP-complete, where n is the number of tasks.

Proof. The proof of Theorem 3.2 can be adapted by using the classical scaling arguments assigning α(x) + ε to
each task. �

4. Polynomial-time approximation algorithms

This section is devoted to design some efficient polynomial-time approximation algorithms for several topolo-
gies and mainly for bipartite graphs. In [16], authors proposed a simple algorithm, which consists in scheduling
all the tasks consecutively, with a performance ratio bounded by 3/2 for a general compatibility graph. The
challenge for the remaining section, is to propose some efficient algorithms with a ratio strictly lower than 3/2.
We propose a FPT AS for the star graph whereas some APX -algorithms are developed in the remaining section
according to the characteristics of the 1-stage bipartite graph. At last, we extend the result is extended to the
2-stage bipartite graph.

4.1. Star graph

Theorem 4.1. The problem 1|α(ti), G = star|Cmax admits a FPT AS.

Proof. The central node admits only incoming arcs (the case of the central node admits at least one outcoming
arc is given by Cor. 2.2). Therefore, we may use the solution given by the subset sum (ss) (see [11] and [12]).
Indeed, based on the reduction used in the proof of Theorem 2.3 and the optimization version of ss: the aim is
to find W ∗ (an optimal set of tasks executed during the idle time of the central node) which maximizes seq(W ∗)
such that seq(W ∗) ≤ α(β).

Let us suppose that seq(W )
seq(W∗) ≥ 1− ε, where W designates the value of the approximation solution for subset

sum.
Note that α(β) ≥ seq(W ∗) and seq(T ) ≥ 3α(β) lead to seq(T ) ≥ 3seq(W ∗).

seq(T ) − seq(W )
seq(T ) − seq(W ∗)

= 1 +
seq(W ∗) − seq(W )
seq(T ) − seq(W ∗)

≤ 1 +
seq(W ∗) − seq(W )

2seq(W ∗)

≤ 1 +
1 − seq(W )

seq(W∗)

2
≤ 1 +

1 − (1 − ε)
2

= 1 + ε/2.

Therefore the existence of a FPT AS for the subset sum involves a FPT AS for our scheduling problem. �
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4.2. 1-stage bipartite graph

Scheduling coupled-tasks during the idle time of others can be related to packing problems, especially when
the compatibility graph G is a bipartite graph. In the following, we propose several approximations when G is
a 1-stage bipartite graph.

Lemma 4.2. Let Π be a problem with Π ∈ {mkar,mssdc,mss} such that Π admits a ρ-approximation, then
the following problems

(1) 1|α(ti), G = 1 − stage bipartite|Cmax,
(2) 1|α(ti), G = complete 1 − stage bipartite|Cmax,
(3) 1|α(ti), G = complete 1 − stage bipartite|Cmax, where G = (X ∪ Y, E) and all the tasks from Y have the

same stretch factor α(Y ),

posses a ρ′-approximables within a factor ρ′ = 1 + (1−ρ)
3 using an approximability reduction from mkar,mssdc

and mss respectively.

Proof.

(1) Consider now an instance of 1|α(ti), G = 1 − stage bipartite|Cmax with a graph G = (X ∪ Y, E) (for any
arc e = (x, y) ∈ E, we have x ∈ X and y ∈ Y ) and a stretch factor function α : X ∪ Y → IN.
In such an instance, any valid schedule consists in finding for each task y ∈ Y a subset of compatible tasks
Xy ⊆ X to pack into y ∈ Y , each task of x being packed at most once. Let Xp = ∪y∈Y Xy be the union of
X-tasks packed into a task from Y . Let Xp̄ the set of remaining tasks, with Xp̄ = X \ Xp. Obviously, we
have:

seq(Xp) + seq(Xp̄) = seq(X) (4.1)

As Y is an independent set in G, Y -tasks have to be scheduled sequentially in any (optimal) solution. The
length of any schedule S is then the time required to execute entirely the Y -tasks plus the one required to
schedule sequentially the tasks from Xp̄. Formally:

Cmax(S) = seq(Y ) + seq(Xp̄) (4.2)

From equations (4.1) and (4.2) we have:

Cmax(S) = seq(Y ) + seq(X) − seq(Xp). (4.3)

We use here a transformation into a mkar problem: each task x from X is an item having a weight 3α(x),
each task y from Y is a bin with a capacity α(y), and each item x can be packed into y if and only if the
edge (x, y) belongs to the bipartite graph.
Using algorithms and results from the literature, one can obtain an assignment of some items into bins. We
denote by Xp the set of these packed items. The cost of the solution for the mkar problem is seq(Xp). If
mkar is approximable to a factor ρ, then we have:

seq(Xp) ≥ ρ × seq(X∗
p ), (4.4)

where X∗
p is the set of packable items with the maximum profit. Combining equations (4.3) and (4.4), we

obtain a solution for 1|α(ti), G = 1 − stage bipartite|Cmax with a length:

Cmax(S) ≤ seq(Y ) + seq(X) − ρ × seq(X∗
p ). (4.5)

As X and Y are two fixed sets, an optimal solution S∗ with minimal length Cmax(S∗) is obtained when
seq(Xp) is maximum, i.e. when Xp = X∗

p . The length of any optimal solution is equal to:

Cmax(S∗) = seq(Y ) + seq(X) − seq(X∗
p ). (4.6)
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Using equations (4.5) and (4.6), the ratio obtained between our solution S and the optimal one S∗ is:

Cmax(S)
Cmax(S∗)

≤
seq(Y ) + seq(X)− ρ × seq(X∗

p )
seq(Y ) + seq(X) − seq(X∗

p )
≤ 1 +

(1 − ρ) × seq(X∗
p )

seq(Y ) + seq(X) − seq(X∗
p )

· (4.7)

By definition, X∗
p ⊆ X . Moreover, as the processing time of X∗

p cannot excess the idle time of tasks from Y ,
we obtain:

seq(X∗
p ) ≤ 1

3
seq(Y ). (4.8)

Combined to equation (4.7), we obtain the desired upper bound:

ρ′ =
Cmax(S)
Cmax(S∗)

≤ 1 +
(1 − ρ)

3
· (4.9)

(2) For the problem 1|α(ti), G = complete 1-stage bipartite|Cmax, the proof is similar to the previous one. We
remind that mssdc is a special case of mkar in which each item can be packed in any bin.

(3) For the problem 1|α(ti), G = complete 1 − stage bipartite|Cmax where G = (X ∪ Y, E) and all the Y -tasks
have the same stretch factor α(Y ), the proof is similar to the previous one since mssdc is a generalization
of mss. �

Theorem 4.3. The following problems admit a polynomial-time approximation algorithm:

(1) The problem 1|α(ti), G = 1 − stage bipartite|Cmax is approximable to a factor 7
6 .

(2) The problem 1|α(ti), G = complete 1 − stage bipartite|Cmax admits a PT AS.
(3) The problem 1|α(ti), G = complete 1− stage bipartite|Cmax where G = (X ∪Y, E) and all the Y -tasks have

the same stretch factor α(Y ):
(a) is approximable to a factor 13

12 .
(b) admits a PT AS.

Proof.

(1) Authors from [6] proposed a ρ = 1
2−approximation algorithm for mkar. Reusing this result with Lemma 4.2,

we obtain a 7
6−approximation for 1|α(ti), G = 1 − stage bipartite|Cmax.

(2) We know that mssdc admits a PT AS [3], i.e. ρ = 1 − ε. Using this algorithm to compute such a PT AS,
with Lemma 4.2 we obtain an approximation ratio of 1 + ε

3 for this problem.
(3) In this case we have two different results:

(a) Authors from [5] proposed a ρ = 3
4−approximation algorithm for mss. Reusing this result with

Lemma 4.2, we obtain a 13
12−approximation for 1|α(ti), G = complete bipartite|Cmax.

(b) They also proved that mss admits a PT AS [4], i.e. ρ = 1 − ε. Using the algorithm to compute such
a PT AS, with Lemma 4.2 we obtain an approximation ratio of 1 + ε

3 for 1|α(ti), G = complete 1 −
stage bipartite|Cmax when Y -tasks have the same stretch factor. �

4.3. 2−stage bipartite graph

In the following, we extend the previous result for 2-stage bipartite graphs.

Theorem 4.4. The problem 1|α(ti), G = 2 − stage bipartite|Cmax is approximable to a factor 13
9 .

Proof. The main idea of the algorithm is divided into three steps:

(1) First we compute a part of the solution with a 7
6 -approximation on G0 thanks to Theorem 4.3, where

G0 = G[V0 ∪ V1] is the 1st stage of G.
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(2) Then we compute a second part of the solution with a 7
6 -approximation on G1 thanks to Theorem 4.3,

where G1 =G[V1∪V2] is the 2nd stage of G.
(3) To finish we merge these two parts and we resolve potential conflicts between them, i.e. by giving a preference

to tasks packed in G1. Computing the cost of this solution gives us an approximation ratio of 13
9 .

Reusing the notation introduced for k-stage bipartite graphs (see Sect. 1.1), we consider an instance of
1|α(ti), G = 2− stage bipartite|Cmax with G = (V0 ∪ V1 ∪ V2, E1 ∪E2), where each arc in Ei has its extremities
in Vi−1 and Vi, for i ∈ {1, 2}.

∀i = {0, 1} we denote1 by Vip (resp. Via) the set of tasks merged (resp. remaining) in any task from y ∈ Vi+1

in a solution S. Moreover, ∀i = {1, 2} let Vib be the set of tasks scheduled with some tasks from Vi−1 merged
into it. This notation is extended to an optimal solution S∗ by adding a star in the involved variables.

Considering the specificities of the instance, in any (optimal) solution we propose some essential remarks:

(1) Tasks from V0 are source nodes in G, and they can be either scheduled alone, or merged only into some
tasks from V1 only. Given any solution S to the problem on G, {V0p, V0a} is a partition of V0.

(2) Tasks from V1 can be either scheduled alone, merged into some tasks from V2, or scheduled with some tasks
from V0 merged into it. Given any solution S to the problem on G, {V1p, V1a, V1b} is a partition of V1.

(3) Tasks from V2 form an independent set in G, and have to be scheduled sequentially in any schedule (cf.
Rem. 1.2), either alone or with some tasks from V1 merged into it. Given any solution S to the problem
on G, {V2a, V2b} is a partition of V2.

Any solution would consist first to schedule each task with at least one task merged into it, then to schedule the
remaining tasks (alone) consecutively. Given an optimal solution S∗, the length of S∗ is given by the following
equation:

S∗ = seq(V1
∗
b) + seq(V2b) + seq(V0

∗
a) + seq(V1

∗
a) + seq(V2

∗
a) (4.10)

or, more simply
S∗ = seq(V2) + seq(V1

∗
b) + seq(V0

∗
a) + seq(V1

∗
a). (4.11)

Note that V0
∗
p and V1

∗
p are not part of the equation, as they are scheduled during the idle time of V1

∗
b and V2

∗
b .

The main idea of the algorithm is divided into three steps:

(1) First we compute a part of the solution with a 7
6 -approximation on G0 thanks to Theorem 4.3, where

G0 = G[V0 ∪ V1] is the 1st stage of G.
(2) Then we compute a second part of the solution with a 7

6 -approximation on G1 thanks to Theorem 4.3,
where G1 =G[V1∪V2] is the 2nd stage of G.

(3) To finish we merge these two parts and we solve potential conflicts between them.

Let consider an instance restricted to the graph G0. Note that G0 is a 1-stage bipartite graph. Let S∗[G0] be an
optimal solution on G0. Let us denote by V0

∗
p[G0] the set of tasks from V0 packed into tasks from V1 in S∗[G0],

and by V0
∗
a[G0] the set of remaining tasks.

Obviously, we have:
S∗[G0] = seq(V1) + V0

∗
a[G0]. (4.12)

Given any solution S[G0], let V1b[G0] be the set of tasks from V1 with at least one task from V0 merged into
them, and V1a[G0] be the remaining tasks. Let us denote by V0p[G0] the set of tasks from V0 merged into V1,
and by V0a[G0] the set of remaining tasks. Using Theorem 4.3, Lemma 4.2, and the demonstration presented in
the proof from [6], we compute a solution S[G0] such that:

seq(V0p[G0]) ≥
1
2
seq(V0

∗
p[G0]). (4.13)

1Notations: p for packed, a for alone, and b for box
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Note that we have:

seq(V0p[G0]) + seq(V0a[G0]) = seq(V0
∗
p[G0]) + seq(V0

∗
a[G0]) = seq(V0) (4.14)

Combining equations (4.13) and (4.14), we obtain:

seq(V0a[G0]) ≤ seq(V0
∗
a[G0]) +

1
2
seq(V0

∗
p[G0]) ≤ seq(V0

∗
a) +

1
2
seq(V0

∗
p[G0]) (4.15)

as we know by definition that seq(V0
∗
a[G1]) ≤ seq(V0

∗
a).

We use a similar reasoning on an instance restricted to the graph G1. Let S∗[G1] be an optimal solution
on G1. Let us denote by V1

∗
p[G1] the set of tasks from V1 packed into tasks from V2 in S∗[G1], and by V1

∗
a[G1]

the set of remaining tasks. Given any solution S[G1], let V2b[G1] be the set of tasks from V2 with at least one
task from V1 merged into them, and V1a[G1] be the remaining tasks. One can compute a solution S[G1] based
on a set of tasks V1p[G1] packed in V2 such that:

seq(V1p[G1]) ≥
1
2
seq(V1

∗
p[G1]) (4.16)

and
seq(V1a[G1]) ≤ seq(V1

∗
a[G1]) + 1/2seq(V1

∗
p[G1]) ≤ seq(V1

∗
a) + 1/2seq(V1

∗
p[G1]) (4.17)

as we know by definition that seq(V1
∗
a[G1]) ≤ seq(V1

∗
a).

We design the feasible solution S for G as follows:

(1) First we compute a solution S[G1] on G1, then we add to S each task from V2 and the tasks from V1 merged
into them (i.e. V1p[G1]) in S[G1].

(2) Second we compute a solution S[G0] on G0, then we add to S each task v from V1b[G0] \ V1p[G1] and the
tasks from V0 merged into them.

(3) Third the tasks V1a[G1] \ V1b[G0] and V0a[G0] are added to S and scheduled sequentially.
(4) At last we denote by Vconflict the set of remaining tasks, i.e. the set of tasks from V0 which are merged into

a task v ∈ V1 in S[G0], thus that v is merged into a task from V2 in S[G1].

Observe that:
seq(V1b[G0] \ V1p[G1]) + seq(V1a[G1] \ V1b[G0]) = V1a[G1]). (4.18)

Thus the cost of our solution S is:

S = seq(V2) + seq(V1a[G1]) + seq(V0a[G0]) + seq(Vconflict). (4.19)

It is also clear that:
seq(Vconflict) ≤

1
3
seq(V1p[G1]) ≤

1
3
seq(V1

∗
p[G1]). (4.20)

Using equations (4.15), (4.17) and (4.20) in equation (4.19), we obtain:

S ≤ seq(V2) + seq(V1
∗
a) +

5
6
seq(V1

∗
p[G1]) + seq(V0

∗
a) +

1
2
seq(V0

∗
p[G0]). (4.21)

Using equations (4.11) and (4.21), we obtain:

S ≤ S∗ +
5
6
seq(V1

∗
p[G1]) +

1
2
seq(V0

∗
p[G0]) (4.22)

We know that S∗ ≥ seq(V2), and that tasks from V1
∗
p[G1] must be merged into tasks from V2 and cannot

exceed the idle time of V2, implying that seq(V1
∗
p[G1])) ≤ 1

3seq(V2). We can write the following:

5
6seq(V1

∗
p[G1])

S∗ ≤
5
6 × 1

3seq(V2)
seq(V2)

≤ 5
18

(4.23)
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We know that tasks from V0
∗
p[G0] must be merged into tasks from V1 and cannot exceed the idle time of V1,

implying that seq(V0
∗
p[G0]) ≤ 1

3seq(V1). We also know that S∗ ≥ seq(V1), as V1 is an independent set of G. One
can write the following:

1
2seq(V0

∗
p[G0])

S∗ ≤
1
2 × 1

3seq(V1)
seq(V1)

≤ 1
6
. (4.24)

Finally, with equations (4.22), (4.23) and (4.24) we conclude the proof:

S

S∗ ≤ 1 +
5
18

+
1
6

=
13
9

(4.25)

�

5. Conclusion

In this paper, we investigate a particular coupled-tasks scheduling problem 1|ai = li = bi, G|Cmax in
presence of a compatibility graph with regard to the complexity and approximation. We also establish the
NP-completeness for the specific case where there is a bipartite compatibility graph. In such context, we pro-
pose a 7

6 -approximation algorithm and the bound is tight. We extend the result to the 2-stage bipartite by
designing a 13/9-approximation.

A further interesting question concerns the study of the complexity on tree graphs with bounded degree.
As we known, no complexity result exists. Another perspective consists in extending the presented results to
k-stage bipartite graphs.
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