8 research outputs found

    Meshes Preserving Minimum Feature Size

    Get PDF
    The minimum feature size of a planar straight-line graph is the minimum distance between a vertex and a nonincident edge. When such a graph is partitioned into a mesh, the degradation is the ratio of original to final minimum feature size. For an n-vertex input, we give a triangulation (meshing) algorithm that limits degradation to only a constant factor, as long as Steiner points are allowed on the sides of triangles. If such Steiner points are not allowed, our algorithm realizes \ensuremathO(lgn) degradation. This addresses a 14-year-old open problem by Bern, Dobkin, and Eppstein

    Degree-Driven Design of Geometric Algorithms for Point Location, Proximity, and Volume Calculation

    Get PDF
    Correct implementation of published geometric algorithms is surprisingly difficult. Geometric algorithms are often designed for Real-RAM, a computational model that provides arbitrary precision arithmetic operations at unit cost. Actual commodity hardware provides only finite precision and may result in arithmetic errors. While the errors may seem small, if ignored, they may cause incorrect branching, which may cause an implementation to reach an undefined state, produce erroneous output, or crash. In 1999 Liotta, Preparata and Tamassia proposed that in addition to considering the resources of time and space, an algorithm designer should also consider the arithmetic precision necessary to guarantee a correct implementation. They called this design technique degree-driven algorithm design. Designers who consider the time, space, and precision for a problem up-front arrive at new solutions, gain further insight, and find simpler representations. In this thesis, I show that degree-driven design supports the development of new and robust geometric algorithms. I demonstrate this claim via several new algorithms. For n point sites on a UxU grid I consider three problems. First, I show how to compute the nearest neighbor transform in O(U^2) expected time, O(U^2) space, and double precision. Second, I show how to create a data structure in O(n log Un) expected time, O(n) expected space, and triple precision that supports O(log n) time and double precision post-office queries. Third, I show how to compute the Gabriel graph in O(n^2) time, O(n^2) space and double precision. For computing volumes of CSG models, I describe a framework that uses a minimal set of predicates that use at most five-fold precision. The framework is over 500x faster and two orders of magnitude more accurate than a Monte Carlo volume calculation algorithm.Doctor of Philosoph

    Decomposing and packing polygons / Dania el-Khechen.

    Get PDF
    In this thesis, we study three different problems in the field of computational geometry: the partitioning of a simple polygon into two congruent components, the partitioning of squares and rectangles into equal area components while minimizing the perimeter of the cuts, and the packing of the maximum number of squares in an orthogonal polygon. To solve the first problem, we present three polynomial time algorithms which given a simple polygon P partitions it, if possible, into two congruent and possibly nonsimple components P 1 and P 2 : an O ( n 2 log n ) time algorithm for properly congruent components and an O ( n 3 ) time algorithm for mirror congruent components. In our analysis of the second problem, we experimentally find new bounds on the optimal partitions of squares and rectangles into equal area components. The visualization of the best determined solutions allows us to conjecture some characteristics of a class of optimal solutions. Finally, for the third problem, we present three linear time algorithms for packing the maximum number of unit squares in three subclasses of orthogonal polygons: the staircase polygons, the pyramids and Manhattan skyline polygons. We also study a special case of the problem where the given orthogonal polygon has vertices with integer coordinates and the squares to pack are (2 {604} 2) squares. We model the latter problem with a binary integer program and we develop a system that produces and visualizes optimal solutions. The observation of such solutions aided us in proving some characteristics of a class of optimal solutions

    Efficient mobile robot path planning by Voronoi-based heuristic

    Get PDF
    [no abstract

    Polygon trapezoidation by sets of open trapezoids

    No full text
    A new efficient algorithm is described for the simple trapezoidation of polygons based on a sweep-line paradigm. As the sweep-line glides over the plane, a set of so-called open trapezoids is generated and maintained. It is shown that a boundary case (more polygon vertices are located on the sweep-line) can be solved safely and does not slow down the algorithm. If desired, the polygon holes can be trapezoidated simultaneously. This proposed algorithm when compared with the fastest known algorithm developed by Seidel resulted in more efficiency for different classes of polygons

    Large bichromatic point sets admit empty monochromatic 4-gons

    No full text
    We consider a variation of a problem stated by Erd˝os and Szekeres in 1935 about the existence of a number fES(k) such that any set S of at least fES(k) points in general position in the plane has a subset of k points that are the vertices of a convex k-gon. In our setting the points of S are colored, and we say that a (not necessarily convex) spanned polygon is monochromatic if all its vertices have the same color. Moreover, a polygon is called empty if it does not contain any points of S in its interior. We show that any bichromatic set of n ≥ 5044 points in R2 in general position determines at least one empty, monochromatic quadrilateral (and thus linearly many).Postprint (published version
    corecore