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Abstract. The minimum feature size of a planar straight-line graph is the min-
imum distance between a vertex and a nonincident edge. When such a graph is
partitioned into a mesh, the degradation is the ratio of original to final minimum
feature size. For an n-vertex input, we give a triangulation (meshing) algorithm
that limits degradation to only a constant factor, as long as Steiner points are
allowed on the sides of triangles. If such Steiner points are not allowed, our algo-
rithm realizes O(lgn) degradation. This addresses a 14-year-old open problem
by Bern, Dobkin, and Eppstein.

1 Introduction

Meshing is a field frequently studied in the context of computational geometry; see
[BE95,She04] for surveys. In two dimensions, the typical forms of input are point sets,
polygons, and most generally, planar straight-line graphs (PSLGs). The typical desired
output is a decomposition into triangles or quadrangles, usually with Steiner points
allowed (though usually aiming to minimize their number). A wide variety of quality
measures dictate the desired decomposition. Often, decompositions are constructed so
that there are no large angles, or instead no small angles, short edges, or short triangle
heights. Most of these problems have been solved in the best sense possible. This paper
highlights one problem that has not been fully solved.

Problem statement. Our goal is to mesh a polygon P into a triangulationGwhile avoid-
ing the introduction of a small (Euclidean) distance between a vertex and a nonincident
edge in G, compared to distances already existing in P . The minimum such distance
in G (or more generally in any PSLG) is called the minimum feature size, denoted by
mfs(G). See [Rup93,Dey07,HMP06,Eri03]. We call the ratio mfs(P )

mfs(G) the degradation
of the decomposition of P into G.
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Minimum feature size effectively describes the global resolution needed to visu-
ally distinguish elements in a mesh. For example, it measures the maximum (uniform)
thickness that the edges in a mesh can be drawn without obscuring the individual com-
ponents. Also, mfs measures the (maximum) error allowed in the placement of vertices
while still guaranteeing preservation of the topology of the mesh. We were originally
motivated to study minimum feature size as a way to obtain pseudopolynomial bounds
on algorithms (specifically, geometric dissection) that start with a triangulation step; see
Section 5 for details.

One important issue is the type of desired triangulation, which we show has a sig-
nificant effect on the results that can be achieved. Refer to Figure 1. The most common
decomposition of a polygon is the classic triangulation, which adds noncrossing chords
between pairs of vertices of P , until the interior of P is partitioned into triangles. A
nonproper triangulation allows the addition of Steiner points (extra vertices), and non-
crossing edges between pairs of vertices (original or added), until each interior face has
the geometric shape of a triangle. A proper triangulation has the additional property
that any two edges that lie on the same interior face and are incident to a common ver-
tex are not collinear; in other words, each interior face consists of only three vertices.

Fig. 1. Triangulation types: classic, proper, nonproper. Steiner points are blue.

Related results. Steiner points are necessary to obtain a degradation smaller than linear.
Mitchell constructed two illustrative examples, described in [BDE95]. The first exam-
ple is a regular n-gon: all classic triangulations have a degradation of Ω(n) (consider
an ear). The second example is an r× 1 rectangle with two additional vertices approxi-
mately midway along one long edge, spaced at unit distance from each other: all classic
triangulations have a degradation of Ω(r). Here r is the ratio of the polygon’s diameter
divided by its minimum feature size, often called the spread. These lower bounds ex-
tend to quadrangulations or any decomposition with constant-complexity faces; in the
latter example, we simply add more vertices midway along the long edge.

When studying this problem, Bern, Dobkin, and Eppstein [BDE95] applied the no-
tion of internal feature size ifs(P ), which is the minimum distance inside P between
a vertex and a nonincident edge5. They proved that every polygon P (possibly with
holes) has a proper triangulation G in which every triangle has height Ω(ifs(P )), and
thus ifs(G) = Ω(ifs(P )). In other words, they achieveO(1) degradation for the interior

5 Note that “internal feature size” is called “minimum feature size” in [BDE95].
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of P . However, this process can substantially reduce the minimum feature size (exter-
nally). Consequently, the first open problem the authors list is whether their result can
be generalized to planar straight-line graphs.

In fact, Ruppert’s Delaunay mesh refinement algorithm had already claimed con-
stant degradation for proper triangulation of planar straight-line graphs [Rup93, Theo-
rem 1],6 but the “constant” actually depends on the minimum angle of the input graph
(as well as the minimum triangle angle guaranteed by the algorithm).

Our results. We address the open problem of [BDE95] by showing that PSLGs have
proper triangulations with O(lg n) degradation. This is the first triangulation algorithm
to achieve a reasonable bound on degradation; even for polygons, the only previous
results bound internal feature size, not minimum feature size. Our algorithm usesO(n)
Steiner points and hence O(n) triangles, and runs in O(n) time.

In [ADD+11], we argue that Ω(lg n/ lg lg n) degradation is in fact necessary for
minimum feature size, even in polygons. This implies that our upper bound is nearly
tight, and resolves the open problem mentioned above. This lower bound applies even to
quadrangulation or any decomposition into constant-complexity faces. We are currently
working on the details of improving this result to Ω(log n), which would completely
settle this question.

We also show a separation between proper and nonproper triangulations. Specifi-
cally, by allowing Steiner points along the sides of triangles, we show that PSLGs have
nonproper triangulations with O(1) degradation, which is clearly optimal up to con-
stant factors. We actually present this nonproper upper bound first, in Section 2, before
describing the simple modifications needed to obtain O(lg n) degradation for proper
triangulations in Section 3. Our method can also be used to re-obtain the O(1) internal
feature size degradation result of [BDE95]; see Section 4.

In all of our upper bounds, we focus on the case of triangulating a single polygon
using small degradation. It is trivial to extend to polygons with holes. Because our
triangulations do not add Steiner points to the boundary of the polygon, and because
they approximately preserve minimum feature size instead of just internal feature size,
they can be applied separately to each face of a PSLG to obtain the claimed results.

Table 1 summarizes the best results on degradation for each type of triangulation.

Type of Degradation of
triangulation minimum feature size internal feature size

Classic Ω(n+ r) [BDE95] Ω(n+ r) [BDE95]

Proper Ω
(

logn
log logn

)
[ADD+11], Θ(1) [BDE95] [§4]

O(log n) [§3]
Nonproper Θ(1) [§2] Θ(1)

Table 1. Results on degradation, by triangulation type, when meshing a worst-case polygon or
PSLG with n vertices and spread r.

6 Incidentally, this is also the paper that first introduced the notion of feature size.
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2 Nonproper Triangulation

In this section, we show how to construct a nonproper triangulation of any polygon P
with a degradation of Θ(1). We use Θ(n) Steiner points, and the construction can be
computed in linear time.

We begin by explaining how to triangulate parallelograms and trapezoids. Trivially
any rectangle can be triangulated by placing a Steiner vertex at its center. The mfs will
degrade by a factor of 2. Suppose instead that we are given a parallelogram P with top
and bottom edges horizontal, and tilted toward the right. A segment with one endpoint
at the lower-right vertex determines mfs(P ). Its direction depends on the height of P
and the length of the horizontal edges, The segment is either vertical representing the
height, or orthogonal to the left edge of P . Either way, placing the Steiner vertex at
the center yields a degradation of 2, as can be easily verified by examining similar
parallelograms. Specifically the new mfs will be determined by a segment parallel to
the original one, from the Steiner vertex to the boundary of P .

Lemma 1. Any trapezoid H can be triangulated with a degradation dtrap ≤ 2.

Proof. Let L be the shorter of the parallel edges on H , with length `, and without loss
of generality, at the bottom of H . Let U be the top edge of H , and h be the height of
H . Consider the rectangle R obtained by projecting L vertically upward onto the line
through U . Suppose that R is contained in H . Then mfs(H) = min{h, `} (i.e., it is
determined by the dimensions of R). We place a Steiner vertex s at the middle of R.
The distance from s to L or U is h

2 . The distance from s to the sides of H is greater
than `/2. So if h ≤ `, the degradation of the resulting triangulation is 2. Otherwise it is
even less.

Now suppose that R is not contained in H , in which case we know that both side
edges of H are slanted in the same direction, and without loss of generality, toward the
right. Then mfs(H) is determined by a segment with one endpoint on the lower-right
vertex of H . Consider the parallelogram P obtained by sweeping a horizontal segment
of length ` from L to U , while keeping its left endpoint on the left side of H . Then
H and P have the same minimum feature size, determined by the same segment. The
center of P is suitable for s. By construction, s separates P into four similar parallel-
ograms. By preceding arguments described for parallelograms, the degradation of the
resulting triangulation is 2. �

Lemma 2 (Perturbation Lemma). Moving all the vertices of a PSLG G by at most
αmfs(G), for α < 1

2 , results in a PSLG G′ with degradation at most 1
1−2α relative to

G. The drawings of G and G′ are combinatorially equivalent.

Proof. Any distance determined by a point and a nonincident edge can be shortened by
at most αmfs(G) at each end, and thus 2αmfs(G) total. These distances were at least
mfs(G) to begin with. Combinatorial equivalence follows from the fact that no vertex
is allowed to move enough to cross a nonincident edge. �

The next lemma is essentially the most critical element of the main theorem that
will follow.
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Lemma 3. Let R be a rectangle with mfs(R) = w and height h > w. Let E be either
the top or bottom edge of R, with length c · w for some integer c. Let Z be the set of
positions on E, at distances j · w from one endpoint, for integers 0 ≤ j ≤ c. If R
has no Steiner vertices on its boundary, except possibly for positions in the set Z, then
R can be nonproperly triangulated, without placing any additional Steiner vertices on
its boundary, with constant degradation. Furthermore the number of additional Steiner
vertices (inside R) is O(c).

Proof. The proof is by construction, specifically the triangulation G shown in Fig-
ure 2 (C), where as a worst-case scenario we have placed Steiner vertices at every
multiple of w on the bottom edge of R.

The main construction has a set of edges anchored at one corner of R (upper-left in
the figure). Starting from the shortest (and most clockwise), each such edge ei reaches
to a horizontal coordinate twice as large as the previous one, and to a vertical coordinate
h
3 from the bottom, where it meets the midpoint of a vertical edge gi of length 2h

3 . Also,
between every two such successive edges gi, there is a region below one of the anchored
edges, that has a sawtooth pattern matching the Steiner vertices. Specifically, for ei, the
sawtooth region is bounded by ei, gi, gi−1, and the bottom edge of R.

Among the newly constructed Steiner vertices on ei (i.e., on the top side of its
corresponding sawtooth), the leftmost, s0, is closest to edge ei+1. This vertex happens
to be the intersection of ei with gi−1. Because ei+1 reaches twice as far as ei, but to
the same vertical coordinate, the vertical separation between ei+1 and s0 is h

6 . The
horizontal separation between ei+1 and s0 is at least w. We conclude that the distance
between ei+1 and s0 is at least w h

6
1√

(h
6 )

2+w2
. This distance lower bounds the feature

size of all triangles emanating from the top-left of R.
Each sawtooth consists of the bottom horizontal edge, two vertical edges (the left

twice the length of the right), and a tilted top, where the tilt angle gets closer to hori-
zontal as the sawtooths move further to the right. The minimum distance created within
any sawtooth occurs at its right hand side and is determined by the angle of the inter-
nal diagonals and by the tilt of the top. The distance is minimized as the tilt of the top
increases and as the diagonal becomes less vertical. So, the minimum distance overall
is to be found at the leftmost sawtooth, in its rightmost component (triangle). See Fig-
ure 3. The new distance introduced is at least h3

w
2

1√
(h
3 )

2+(w
2 )2

. Notice that both terms

calculated imply constant degradation. �

Now we prove the main theorem of this section:

Theorem 1. Every n-gon has a nonproper triangulation with constant degradation,
using O(n) Steiner vertices.

Proof. Let P be an n-gon with minimum feature size 1. Let the curve P2 be the locus
of points inside P that have minimum distance 1

4 from ∂P . This is obtained from the
well-known grassfire transformation. P2 is a closed curve consisting of n line segments
(one per segment of P ) as well as one circular arc corresponding to every reflex vertex
of P . Each such arc spans less than 180◦. See Figure 4 for an illustration of this process.
Because P has minimum feature size 1, each line segment in P2 has length at least 1

2
(see Appendix A).
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Fig. 3. Closeup of Figure 2 (C); a short blue edge highlights the distance that defines the minimum
feature size for the construction of R in Lemma 3.

P2 splits the interior of P into two regions, which we call the Interior and the Tube.
P2 itself belongs to both regions. We will modify and refine this boundary a few times,
and then triangulate each region separately. Any operations in the interior of one region
will not affect degradation in the other.

P
P2

Fig. 4. A polygon P and the closed curve P2 created by the grassfire transformation.

Refinement of P2: Refer to Fig. 5. We create a polygon P3 by replacing all circular
arcs on P2 with polylines. Let O be a given circular arc with endpoints a1 and a2. If
O spans more than 90◦, we can replace it with segments a1m and ma2, where m is
the midpoint of the arc. The minimum distance between P3 and P is 1

4
√
2

(achieved
when O approaches 180◦). So far, this distance lower bounds the feature size of the
Tube, because (when O = 90◦) the segments on P3 can have length as short as the
side of a regular octagon of diameter 1

4 . That is, 1
42 sin

π
8 ≈ 0.19. We say that the

Tube degradation is at most dTube3 = 4
√
2. On the other hand, the feature size 1

d3
of

the Interior is 1
42 sin

π
8 , i.e., the feature size is smallest on its boundary P3. Distances

through the interior of P3 are still at least 1
2 .
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If instead O spans less than 90◦, we extend its adjacent edges on P2, through a1
and a2 respectively, until they meet. This extension remains at a distance greater than
1
4 from P , so the Tube degradation is unaffected. The extension also remains at most
√
2
4 from the vertex on P that generated the arc (the max is achieved when the angle is
90◦). All other points on P3 are even closer to the boundary of P . Thus no two points
from different edges on P3 will get closer than 1−

√
2
2 to each other (roughly 0.29, not

enough to reduce our bound on the feature size of the Interior).
























Fig. 5. How to transform P2 to P3. Left: arc spans more than 90◦; Right: arc spans less than 90◦.

Let P4 be formed by snapping the vertices of P3 vertically to a horizontal grid of
granularity g = 1

2d3
. Any point can snap at most a distance of 1

4d3
; half the grid size.

A pair of points on P3 at a nearly co-vertical position a distance of 1
d3

from each other
may snap toward each other, so snapping can degrade the feature size of P3, and thus
also the Interior, by a factor of 2. The effect on the minimum distance between P and P3

is smaller, because vertices of P remain fixed. This distance can drop to 1
dTube3
− 1

4d3
. At

this point though, the minimum distance in both regions is to be found on their common
boundary, and the value is 1

2d3
.

Triangulation of Interior: Let P5 consist of P4 and the horizontal trapezoidation of the
interior of P4. All vertices on P4 lie on the grid and thus the feature size is preserved.
Let P6 consist of the triangulation of P5 obtained by placing a vertex in each trapezoid
according to the method presented in Lemma 1. Thus, the degradation in this step is
d6 = dtrap.

The total degradation of the Interior is therefore 2d3d6. The feature size of the Inte-
rior is 1

8 sin
π
8 ≈ 0.047.

Triangulation of Tube: Obtaining a triangulation of the Tube is done without adding
more Steiner vertices to its boundary, and thus any degradation in this process will not
amplify the degradation of Interior, or affect feature size via the exterior of P .

Before proceeding to the algorithm, which has four main steps, we require one
definition: A quasi-trapz is a quadrilateral that can be transformed into a trapezoid by
perturbing its vertices by an amount small enough so that the Perturbation Lemma can
be applied.
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1. Subdivision of the Tube into triangles and quasi-trapz. Consider all convex
polygonal chains that were created in P3 as replacements of circular arcs span-
ning more than 90◦ on P2. Recall that such chains consist of two segments, which
by now can also contain Steiner vertices from the trapezoidation of P4. For each
chain, we connect the endpoints to the unique reflex vertex vr of P that generated
the corresponding (replaced) arc via the grassfire transform. Similarly, we connect
every convex vertex of P to its corresponding convex vertex on P4, and we connect
reflex vertices of P (with arcs spanning less than 90◦) to their unique correspond-
ing reflex vertex on P4. This subdivides the Tube into quasi-trapz and convex fans
(i.e., a vertex visible from a convex chain). In fact any such fan is just a quadrilat-
eral, because the chain opposite vr had only two edges on P3 (with Steiner vertices
added later on). See Figure 6.

 















Fig. 6. Phase 1 of Tube triangulation: Subdividing Tube into fans and quasi-trapz. Angles indi-
cated correspond to arc spans.

The only degradation caused can be due to a newly created edge, e, and some non-
incident vertex p on P4. What matters is the angle that e makes with P4, and the
proximity of p to the endpoint of e on P4. The latter is at least 1

2d3
. Without taking

snapping into account, the aforementioned angle would be no less than 45◦. See
Figure 7. So, adding these edges would only degrade feature size from 1

2d3
by a

factor of
√
2. This means that the feature size of the fans could drop to roughly

0.067. This is not close to the smaller feature size in other areas that will be cre-
ated, and snapping the vertices of the fan will not have any significant effect. The
snapping would have to be so extreme that the angle mentioned would drop from
45◦ to under 14◦. This is not possible when two vertices of a triangle move by less
than a quarter of the shortest length.
We continue to triangulate each fan by adding diagonals from vr to all remain-
ing vertices within. The preceding analysis follows verbatim. Structurally, the end
result is that any nontriangulated region of the Tube is a quasi-trapz that has an
edge of P (the bottom) and an edge of P4 (the top) on its boundary. Were it not
for the snapping, the top and bottom would be parallel, and the quasi-trapz would
be a trapezoid. Note that the top can contain Steiner vertices, generated during the
trapezoidation of P4.

9



P

P4
e

Fig. 7. Triangulating a convex fan: the angle between P4 (purple) and edge e (blue) is at least
45◦. The same holds for other edges (green) from P to Steiner points on the fan (which may have
been introduced when constructing P6 from P4). Dotted black segments are minimum distances
in newly created triangles.

2. Subdivision of quasi-trapz with Steiner vertices on the top. We will subdivide
quasi-trapz so that the only remaining nontriangulated regions will be quasi-trapz
without Steiner points on their boundary, and rectangles possibly with such Steiner
points.
Let Q be a quasi-trapz to be subdivided. By assumption, Q has at least one Steiner
vertex on its top, T . We will start adding diagonals from the bottom, B, to Steiner
vertices on T . This will progressively cut off triangles, leaving a smaller quasi-trapz
Q′. As we do this, we will be shortening T , so that it either has no Steiner vertices
on it, or the internal angles of Q′ at T are at least 135◦. This will also imply that T
comfortably projects onto the bottom, B, in a direction orthogonal to T .
For each endpoint t of T with internal angle smaller than 135◦ (note that the angle
is at least 45◦ to start with), do the following. Let v be the neighbor of t on Q, on
edge B. Traverse T from t until a Steiner vertex s is found, and join s to v. While
the angle condition is not met, keep forming such an edge to v for each successive
s. This repeatedly cuts off triangles from Q, until it is either a triangle or Steiner-
free quasi-trapz (if no more Steiner vertices remain), or until the angle condition is
satisfied. The triangles cut off on each side form a convex fan triangulation (with v
as the apex), identical in nature to those described in phase 1. Thus the degradation
caused so far can be absorbed into the preceding analysis. See Figure 8.

Let T ′ be the subset of T left over from this process (see Figure 8). Now T ′ and B
form the parallel edges of Q′, which is a subset of Q. Consider the shape of Q′ as
it existed before snapping. Recall that before snapping, T ′ and B were parallel, at
distance 1

4 . The minimum feature size of Q′ is lower bounded by the separation of
Steiner vertices on its boundary, i.e., 1

2d3
. Let a and b be the endpoints of T ′. Let

a′ and b′ be vertices placed at a distance 1
4 −

1
2d3

away from a and b, respectively,
so that baa′b′ is a rectangle R inside Q′. Notice that a′ and b′ are 1

2d3
from B, and

even further from the sides of Q′. So this placement doesn’t affect the feature size.
Now, connect a′ and b′ to the vertices on Q′. Inside Q′, we are left with a Steiner-
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t
s1 s2 s3 t'

s2 s1s's'

v v'

Q'Q

B

T
T' 

Fig. 8. Phase 2 of Tube triangulation: decomposing Q into Q′ and triangulated fans. Either the
internal angles of Q′ at the top are greater than 135◦, or Q′ has no Steiner vertices.

free trapezoid Q′′ (it is below a′b′ and will again become a quasi-trapz when we
account for snapping), the rectangle R with Steiner points on the edge ab, and two
triangles. See Figure 9.

a b

b'
> 45°

a' Q'

mfs

mfs Q''
R

Fig. 9. Phase 2 of Tube triangulation: decomposing Q′ into R and Q′′.

Finally we must reinstate the snapping of the segment ab. The positions of a′ and
b′ will follow so that R moves rigidly. We now examine the effect of the motion of
a′ on the feature size of the components of Q′. Recall that a′ is snapped by at most
1

4d3
= 1

16
√
2

(roughly 0.044). So it can reduce the feature size of Q′′ to 1
4d3

(by
moving half way to the fixed edge B on Q′′. The effect of a′ is even smaller on the
feature size of the triangles in Q′, because its distance to their nonincident edges is
greater than its distance to B. Of course, there is no effect on R.

3. Triangulate all remaining Steiner free quasi-trapz. Here we triangulate any
quasi-trapz Q′′ constructed in the previous phase. One Steiner vertex s suffices,
as with any trapezoid. There is a placement for s in the corresponding unsnapped
trapezoid Q so that degradation is no more than 2. Because Q has height ( 1

2d3
), s
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would normally be placed between the parallel edges of Q, i.e., 1
4d3

from B. How-
ever the edge a′b′ might snap by this much, and this would create an arbitrarily
small distance to s. So, instead we will place s at a distance 1

8d3
from B, because

B will remain fixed. The effect is that the feature size of Q′′ can be reduced to 1
8d3

,
but no less. Currently, this quantity lower bounds the overall feature size, at roughly
0.022. See Figure 10.

mfs
Q''
s

snap snap

Fig. 10. Phase 3 of Tube triangulation: handling the last remaining quasi-trapz.

4. Triangulate rectangles generated in phase 2. For each rectangle R = abb′a′, we
use the construction presented in Lemma 3. R has height h = 1

4 −
1

2d3
, and Steiner

vertices are placed on one of its longer sides, at distances of 1
2d3

. Then the formula
in Lemma 3 yields a value of greater than 0.024 for mfs(R).

The important conclusion is that each step described incurs a constant degradation,
therefore the aggregate is also constant. Most of the steps described probably have
tighter bounds. Furthermore, these steps could be optimized to work more harmonically,
or replaced with more efficient constructions. For the record, we claim here that the
degradation is under 45 (the inverse of 0.022 calculated in phase 3 in the Tube).

The construction of P3 adds a linear number of Steiner vertices, since a constant
number of them is associated with each vertex of P . No Steiner vertices are added
when we form P4, since this only involves snapping. P5 is a trapezoidation formed
by extending a line from every vertex. This creates a linear number of Steiner vertices
(and trapezoids). As we construct P6, we add one Steiner vertex per trapezoid. Thus the
boundary and interior of P2 contain a linear number of Steiner vertices. Finally, when
we triangulate the Tube, we only add Steiner vertices to the interior. Step 1 adds no
vertices. Step 2 adds two vertices to form Q′′ and R, in each quasi-trapz. Step 3 adds
one vertex per quasi-trapz. There is one quasi-trapz per edge of P , so all of these steps
add a linear number of Steiner vertices. Step 4 adds a number of vertices proportional
to the number of vertices on the boundary of the rectangle R (by Lemma 3). The total
number of vertices on all such rectangle boundaries is O(n), because they are formed
when processing the interior of P2. �

3 Proper Triangulations

Next we describe the few modifications necessary for proper triangulations, which lose
a logarithmic factor in minimum feature size:

Theorem 2. Every n-vertex polygon has a proper triangulation with O(log n) degra-
dation.
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Proof. Use the algorithm of Section 2, with the exception of the nonproper triangulation
of the rectangle R = abb′a′. That triangulation is instead done using the construction
of Figure 2 (B). This is a simple recursive decomposition of a rectangle into proper
triangles. For n vertices on the bottom of R, there are O(log n) horizontal layers in
the construction. The separation between those vertices defines the minimum feature
size of the input. The height of R could also equal this value (any more only helps to
preserve feature size). Therefore the construction of these layers can cause a degradation
of O(log n). Triangulating the layers only affects the multiplicative constant. �

4 Internal Feature Size

For internal feature size in a polygon, we can avoid losing constant degradation or
properness. This result is already known [BDE95], but can also be obtained by our
methods:

Theorem 3. Every n-vertex polygon has a proper triangulation with O(1) internal
feature size degradation.

Proof. The only component where our triangulation from Section 2 is nonproper is
within the quasi-trapz in the Tube, or more specifically, the rectangular regions. Instead,
if we are not concerned with external feature size, we can triangulate the quasi-trapz by
creating Steiner vertices on the boundary of P , to match those on the inner boundary of
the Tube. �

5 Pseudopolynomial Dissection

Our original motivation for finding meshes that approximately preserve minimum fea-
ture size came from the classic problem of geometric dissection. The nearly 200-year-
old algorithm of Lowry [Low14,Fre97] dissects any two given polygons P 1, P 2 of
equal area into polygonal pieces such that the pieces of P 1 can be translated and ro-
tated to make up the pieces of P 2. Unfortunately, the number of pieces it uses can be
extremely large.

How many pieces does polygon dissection need? In particular, do a pseudopolyno-
mial number of pieces suffice? In computational geometry, a pseudopolynomial bound
is polynomial in the number n of input coordinates and the size of a grid needed to
express those coordinates. The latter bound is typically approximated by the spread
r = D/w, where D is the diameter and w is the minimum feature size.7 Some depen-
dence beyond n is necessary for dissection: for example, dissecting a square into an
r × 1 rectangle requires Ω(

√
r) pieces by a simple diameter argument.

We prove here that any two polygons P 1 and P 2 have a dissection using (n(P 1) +
n(P 2)) · (r(P 1) + r(P 2)) pieces. This result follows by combining Lowry’s original
algorithm with an ifs-preserving triangulation algorithm, such as ours or the one in
[BDE95]. More generally, for k polygons P 1, . . . , P k, we obtain a dissection using
k(n(P 1) + · · ·+ n(P k)) · (r(P 1) + · · ·+ r(P k)) pieces.

7 This parameter also arises in many meshing results; we saw one in Table 1.
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Lowry’s algorithm starts by triangulating the polygon P 1, and then uses a dissection
of Montucla from 1778 (see [Fre97]) to convert each triangle into a rectangle with a
common height ε. The largest suitable ε is half the minimum height of all triangles, i.e.,
half the internal feature size of the triangulation. The common-height rectangles can
then be assembled into one A/ε× ε rectangle, where A is the area of P 1. The resulting
number of pieces isO(nA/ε); furthermore, each piece is bounded by a constant number
of cuts, and the number of cuts hit by any vertical line is O(1). Finally the algorithm
repeats this process for P 2, and overlays the two dissections of theA/ε×ε rectangle. By
the properties above, this overlay increases the number of cuts and thus pieces by only
a constant factor, resulting in O((n(P 1) + n(P 2))A/ε) pieces. More generally, for k
polygons, each cut can be divided k times, so we obtain a piece bound of O(k(n(P 1)+
· · ·+ n(P k))A/ε).

Lowry’s algorithm does not specify a triangulation, so cannot efficiently bound ε.
While a classic triangulation was originally intended, any nonproper triangulation suf-
fices. Using an ifs-preserving triangulation, we obtain a triangulation with ε = Θ(ifs(P 1)).
Rescaling to make A = 1 does not affect the algorithm, and uses a scale factor no
smaller than O(1/D), where D is the diameter of any polygon. Thus we obtain ε =
Ω(ifs(P 1)/D) = Ω(1/r) and A = 1. Plugging these bounds into the piece bound
above, we obtain the desired result.

6 Discussion

Although several steps in our construction require subtle constructions and details to
keep things at constant distance, we believe that the essential hurdle was how to trian-
gulate rectangles with many Steiner points on a side, without adding new Steiner points
on the boundary. This was the breakthrough needed to solve the problem at hand.

Preserving minimum feature size is by no means the only priority in meshing, but
it is still a meaningful (and well-studied) measure of mesh quality. We leave to future
work the possibility of simultaneously attaining small feature-size degradation with
other important mesh properties, such as maximum angle bounded away from 180◦.
This goal may be attainable by simply combining algorithms in a careful way.

Another direction for further research would be to extend our results to 3D. Our
grassfire approach should work just as well. The central challenge, as in 2D, would
seem to be the proper triangulation (tetrahedralization) of a box that is very thin in one
or two of its dimensions.
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A Offset Edge Lengths

Claim: Let C be the curve that is the locus of points inside polygon P , at distance 1
4

from the boundary of P . If mfs(P ) = 1 then every straight edge of C has length at least
1
2 .

C is obtained from P using the grassfire transform, commonly used as a visualiza-
tion of the construction of the medial axis. Note that each edge e on P transforms to an
edge e′ on C continuously as the grassfire progresses. The shape of e′ depends on local
conditions; specifically the angles of vertices at the endpoints of e. Let e be positioned
horizontally, between vertices p1, p2. Suppose that the interior of P is below e. The
edge e′ must reside on the horizontal line at a distance 1

4 below e.
If both endpoints of e are reflex vertices on P , then e′ will have the same length.

If one of the vertices is reflex (without loss of generality, the left, p1), then the left
endpoint v1 of e′ will be located vertically below p1, at a distance of 1

4 . Note that e′ is
just a subset of a longer edge on C. Follow a ray to the right of v1 for a distance of 1

2 , to
construct a point, x. Let Jp1 be the unit quarter-circle in the lower-right quadrant of p1.
Then x is inside Jp1 and at a distance greater than 1

4 from the arc of Jp1 . Thus x cannot
be a vertex on C, because it is not at a distance 1

4 from any point on P (excluding e
itself). This implies that e′ has length greater than 1

2 .
Finally, there is the case where both endpoints of e are convex vertices. Note that

e′ can have a length of 1
2 if e has length 1 and both convex angles are 90◦. Then, the

endpoints of e′ are directed inward at angles of 45◦, relative to the endpoints of e. If
|e| = 1, then both convex angles must be at least 90◦, so |e′| ≥ 1

2 .
We can make e larger to allow for smaller convex angles at its endpoints. If we do

so, the worst scenario is one where the edges adjacent to e in P are angled in a way
that they eventually have a distance of 1 with each other (i.e., we close the angles as
much as possible without violating feature size of P ). So, without loss of generality,
assume that the angle at p1 is less than 90◦. Follow the edge u neighboring e to the
left until hitting a horizontal line at a distance of 1 from e. Note that this intersection
point, y, must exist, otherwise we contradict the mfs assumption about P (the endpoint
of u would be too close to e). In other words y belongs to u. Construct the point z at
a distance 1 vertically above y. This must be part of e, by construction. No part of the
boundary of P intersects the triangle yzp1. The left endpoint t1 of e′ cannot be more
than 1

4 to the right of the segment yz; this happens if the angle at p1 is 90◦, and as this
angle decreases t1 moves to the left relative to yz. To visualize this, it is convenient to
consider yz fixed, and move p1 to the left.

Consider the unit quarter-circle Jy centered at y, in its top-right quadrant. No part
of P can intersect Jy; if an edge not adjacent to y does so, it will be too close to y,
and if an adjacent edge does so (if y were a real vertex), it will be too close to e. Now
consider the vertex p2, common to e and its edge er to the right. Wherever p2 is, |e′|
will be minimized if we minimize the angle at p2. If this angle is less than 90◦, then
because er must miss Jy , we follow the same reasoning as above to easily conclude that
e′ has length greater than 1. That is, the right end t2 of e′ will not be more than 1

4 to the
left of some vertical segment y′z′ analogous to yz.
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So we are left with the case where p2 has angle greater than 90◦ and is located
within one unit of z, i.e., its vertical projection intersects Jy . As mentioned, |e′| will be
minimized if the angle at p2 is minimized, which is to say that er should be rotated as
clockwise as possible, until it becomes tangent to Jy . This means that the bisector at p2
intersects y. So p2 should be placed as close to z as possible, to minimize |e′|. We will
now work within the triangle p1yp2.

Let q be the intersection of yz with the line through e′. We know that t2 will be to
the right of q. On the other hand, t1 can be arbitrarily to the left, or slightly to the right
(specifically no more than 1

4 ). Let t2 − z be e′2, and z − t1 be e′1. Then |e′| is equal to
e′1 + e′2.

There is another constraint on the location of p2: it cannot be too close to u. Let ω
be the angle at p1. Then sinω = 1

|e| , meaning p2 is placed so that its distance to u is 1.
Let z − p1 be e1. From triangle yzp1 we have tanω = 1

e1
.

Let e2 be p2 − z. Triangle yzp2 is similar to triangle yqt2, so e′2 = 3e2
4 . From the

triangle formed by p1, t1, and the projection of t1 onto e, we have tan ω
2 = 0.25

e1−e′1
; (t1

is 1
4 below e, and on the bisector of ω).
Reordering and combining from above, we have:

e′1 = e1 − 1
4 tan ω

2
= 1

tanω −
1

4 tan ω
2

. Because e2 = 1
sinω − e1, we have

e′2 = 3
4 (

1
sinω − e1) =

3
4 (

1
sinω −

1
tanω ).

Notice that when ω increases to 90◦ (i.e., p1 approaches z from the left), we have
e′1 = − 1

4 and e′2 = 3
4 , so |e′| = 1

2 . For ω ≤ 90◦, e′ is longer.
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