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Abstract 

Decomposing and packing polygons 

Dania El-Khechen, Ph.D. 

Concordia University, 2009 

In this thesis, we study three different problems in the field of computational geometry: the 

partitioning of a simple polygon into two congruent components, the partitioning of squares 

and rectangles into equal area components while minimizing the perimeter of the cuts, and 

the packing of the maximum number of squares in an orthogonal polygon. 

To solve the first problem, we present three polynomial time algorithms which given 

a simple polygon P partitions it, if possible, into two congruent and possibly nonsimple 

components Pi and Pi: an 0(n2 logn) time algorithm for properly congruent components 

and an 0(n3) time algorithm for mirror congruent components. 

In our analysis of the second problem, we experimentally find new bounds on the optimal 

partitions of squares and rectangles into equal area components. The visualization of the 

best determined solutions allows us to conjecture some characteristics of a class of optimal 

solutions. 

Finally, for the third problem, we present three linear time algorithms for packing the 

maximum number of unit squares in three subclasses of orthogonal polygons: the staircase 

polygons, the pyramids and Manhattan skyline polygons. We also study a special case of 

the problem where the given orthogonal polygon has vertices with integer coordinates and 

the squares to pack are (2 x 2) squares. We model the latter problem with a binary integer 

program and we develop a system that produces and visualizes optimal solutions. The 

observation of such solutions aided us in proving some characteristics of a class of optimal 

solutions. 
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Chapter 1 

Introduction 

Consider the following questions: 

• Cowhide cutt ing. Cowhide is used in car industry to make car seat cushions, car 

flooring and other car parts. A ready-to-cut hide can have local damage. How can the 

undamaged parts of the hide be cut to minimize the wastage [262] ? 

• Flexible circuit layout. Suppose you are a VLSI layout designer. You want to place 

p functionally identical circuits on a rectangular chip of area A. Thin rectangles are 

not desirable since they lead to long wire length. How do you design your board [180]? 

• Collision detect ion. You have a set of objects that are represented with geometric 

models. Collision detection aims at detecting a geometric contact between these 

objects. How are collisions detected efficiently? 

• Terrain covering. Suppose you have a set of robots that need to explore a terrain. 

Each part of the terrain should be visited by one robot. The relative capabilities of 

the robots are determined based on the area of the terrain they can cover. How do 

you divide your terrain among the robots [153]? 

• Art gallery guarding. You are the owner of an art gallery with valuable paintings. 

You would like to place guards (cameras) so that each point in your gallery is visible to 
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some guard (camera) and you have budget constraints. How do you find the minimum 

number of guards (cameras) needed [83]? 

Consider also the following (less serious) questions: 

• Ice cream search. Suppose you are walking around Montreal and you feel an urgent 

need for an ice cream. There are many ice cream parlours around the city but you 

would like to go to the nearest one. How do you know which one is the nearest? 

• Animals and fence. Imagine you have p animals and you have a piece of land that 

you would like to divide equally among the animals without wasting too much fence 

material. How can you achieve such a partition? 

• Cake cutt ing. Imagine you have a cake (of arbitrary shape) and two kids. No matter 

how you try, the kids are convinced that unless you give them the exactly-same-shape 

pieces, the division will not be fair. How do you partition the cake in two similar 

shapes? Can you always do it? 

• Board filling. You have a kid to distract. You give her a board and a (very) large 

number of identical square pieces and you ask her to fill the board with the maximum 

number of squares. How fast can the kid do it? Are you asking her a too difficult 

question? 

The nine questions above are the sort of problems posed to (or by) a computational 

geometer. What is computational geometry? Computational geometry is a discipline of the 

field of algorithms (design and analysis) and data structures which involves studying problems 

of a geometric nature by analysing their computational complexity and developing algorithms 

and data structures to solve them. The foundations of what is called "Computational 

Geometry" nowadays were laid in the late 1970s by M.I. Shamos in his Ph.D. thesis [261,263]. 

Let us look again at the nine questions posed and formulate them in computational 

geometric terms: 

• Cowhide cutt ing. The cowhide can be approximated as a two-dimensional planar 

figure with straight line edges, call it polygon P. The damage can be considered to 
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be "islands" inside the polygon boundary which we call a set of H holes. The cutting 

equipment are objects of some shapes of which only the boundary is of interest to us, 

call them a set SCE of k polygons S — {CE\,CE2, •..,CEf.}. The problem is: what 

is the maximum number of CE{ that can be packed in P — H where 1 < i < k and i 

can be duplicated? 

• Flexible circuit layout. The circuit board can be represented as a rectangle R 

that needs to be decomposed into a set of p rectangles S = {r\, r%,..., rp} such that 

R = \\ r and that the maximum rectangle perimeter is minimized or the sum of the 
r£Sr 

perimeters is minimized [180]. 

• Collision detection. Polygons where all interior angles between edges are less than 

180° are called convex. Given two polygons P and Q for which we want to detect 

collision, how can it be detect efficiently given that the intersection of two convex 

polygons is faster to compute than the intersection of arbitrary ones? 

• Terrain covering. The terrain can be modelled by its two-dimensional projection, 

a polygon P [153]. Let Area(P) denote the area of P. The proportions of the area 

that each robot should be assigned are represented by a set of values c;, i = 1,2,... ,p 
p 

with 0 < Ci < 1 and / J c * = 1. The problem is: given P and p, partition it into p 
i=i 

nonoverlapping regions P\,...,PP such that Area(Pi) — CiArea(P) [153]. 

• Art gallery guarding. Consider the floor plan of the art gallery to be a polygon P. 

The problem can be formulated as follows: decompose P into the minimum number of 

star-shaped components. The number of guards is equal to the minimum number of 

components assuming that the guards can see 360° [83]. 

• Ice Cream Search. Consider the city of Montreal to be modelled as a polygon P 

with a set of q points M = {m\,m2, • • • ,mq} inside P representing the ice cream 

parlour locations. Partition P into q regions such that the region of ice cream parlour 

m, consists of all points that are closer to this parlour than they are to any other in 

the city (all points pj in P such that d{pj,m,i) < d(pj,rrik) for allmfc e M, k^i). 
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• Animals and fence. Consider the piece of land to be a polygon P. The problem 

is: partition P into p equal area components such tha t the perimeter of the cuts is 

minimized. 

• Cake cutt ing. Two polygons are congruent if they are equivalent up to an isometry. 

Consider the cake to be a polygon P. The problem is: can P be partitioned into two 

congruent components? 

• Board filling. The board can be modelled with a polygon P. The problem is: what 

is the complexity of computing the maximum number of identical squares that can be 

packed (without overlap) into P? 

The problems posed above belong to two areas of computational geometry: geometric 

object decomposition and geometric object packing. Geometric object decomposition involves 

decomposing a general geometric object into simpler components. The decomposition can 

be the goal of the algorithm but is often an intermediate or a preprocessing step. Fast 

existing algorithms are applied to the simpler components and the partial solutions are then 

combined to obtain a general one. The collision detection problem is an example where 

intersection is detected between convex components before reporting a collision. Also, Hert 

and Lumelsky assume a decomposition of the polygon into convex components prior to 

solving the terrain-covering problem [153]. There are two major kinds of decomposition: 

partition and covering. Covering allows components to overlap while partition requires 

them to be disjoint. Informally, packing can be defined as placing a given set (or subset) 

of objects in some containers. The goal is either to pack everything (all the given objects) 

in the best container or pack the best subset possible of objects. The cowhide cutting and 

the board filling problems are both of the latter sort. Both the decomposition and the 

packing problems have been extensively studied in the literature and yet many variants of 

the problems remain open. The existence of a huge literature on these types of problems 

can be informally explained by the fact that are many ways in which we can decompose 

(pack) an object and there many types of objects to decompose (pack into). The study of 

decomposition and packing problems is the subject of this thesis. Our focus is on problems in 
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the plane; our objects to decompose, our components, our objects to pack and our containers 

are all two-dimensional polygons. 

In this thesis, we make the following contributions: 

1. We design three polynomial time algorithms for partitioning a simple polygon P 

with n vertices into two congruent and possibly nonsimple components P\ and P2: 

an 0(n2 log n) time algorithm for properly congruent components (equivalent up to 

translation and rotation) and an 0(n?) time algorithm for mirror congruent components 

(equivalent up to reflection and glide reflection). The previous algorithms, which solve 

the problem, output simple components Pi and P2. However, the reported running time 

is erroneous and is not even polynomial for the case of mirror congruent components; 

our proposed algorithm is the first to provide a polynomial time algorithm for this 

latter case. 

2. We experimentally find new bounds on the optimal solutions for partitioning squares 

and rectangles into k equal area components while minimizing the perimeter of the 

cuts. Allowing straight line and sections of circular arcs cuts, we present the best 

determined solutions for partitioning the unit square and the 1 x 2 rectangle into 

k components where 3 < k < 10 and 3 < k < 6 respectively. We conjecture some 

characteristics of a class of optimal solutions. Most of the previous results use only 

straight line cuts and the bounds for circular cuts are only known for k = 3 and for 

fc = 4. 

3. We present three linear time algorithms for packing the maximum number of unit 

squares in three subclasses of orthogonal polygons: the staircase polygons, the pyramids 

and Manhattan skyline polygons. We also study a special case of the problem where 

the given orthogonal polygon has vertices with integer coordinates and the squares to 

pack are (2 x 2) squares. We model the latter problem with a binary integer program 

and we develop a system that produces and visualizes optimal solutions. We prove 

some characteristics of a class of optimal solutions. Our results support the long 

standing conjecture that the problem of packing the maximum number of squares in a 
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general orthogonal polygon is polynomial. 

In the next chapter, we define the terms and the notation that are needed for the 

rest of this thesis. The terms and the notation that are chapter-specific are defined In 

the corresponding chapter.In Chapter 3, we review the work done in the area of polygon 

decomposition and polygon packing. At the beginning of every chapter, we review in detail 

the previous work related to that chapter. In Chapter 4, we present two polynomial time 

algorithms for partitioning a polygon, if possible, into two properly and mirror congruent 

components. In Chapter 5, we present experimental work and conjectures on partitioning 

squares and rectangles into equal area components while minimizing the perimeter of the 

cuts. In Chapter 6, we present three polynomial time algorithms for packing the maximum 

number of unit squares in three subclasses of orthogonal polygons and we prove some 

characteristics of the optimal solution for packing (2 x 2) squares in general grid orthogonal 

polygons. Each chapter is concluded with a summary of the contributions and future work. 
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Chapter 2 

Background information and 

notation 

2.1 Polygon definitions 

A polygon P is defined as a closed plane figure bounded by straight line segments. In this 

thesis, the boundary of a polygon P will be referred to by SP. A polygon P is said to be 

simply connected or simple if it is not self-intersecting and it has no holes. Figure 1 shows 

two polygons: (a) shows a simple polygon and (b) shows a polygon with holes. 

(a) (b) 

Figure 1: (a) A simple polygon, (b) a polygon with a hole. 
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A polygonal chain or a polyline that is a subset of 6P is specified by a startpoint a and 

an endpoint b (not necessarily vertices). A polyline is always considered to be directed 

clockwise around the boundary of a simple polygon P. We denote it by P[a .. b]. 

Two points are visible if the line segment joining them lies entirely inside P. P is said to 

be convex if every pair of points in P are visible from each other. Note that in a nonconvex 

polygon, there exists at least two pairs of points in P that are not visible from each other, 

see points p and q in Figure 1 (a). A vertex of a polygon is said to be convex if its internal 

angle is less than 180° and is said to be reflex otherwise. A convex polygon is one that has 

only convex vertices (see Figure 2). In what follows, n will be used to refer to the number of 

vertices of a polygon and N to the number of reflex vertices of a polygon (N < n) unless we 

specify otherwise. P is regular if it is equiangular and all its sides are of equal length, see 

Figure 3 for examples. 

Figure 2: Two convex polygons. 

Figure 3: Regular 3-gon (equilateral triangle), 4-gon (square), 5-gon (pentagon), 6-gon 
(hexagon), 12-gon (dodecagon). 

P is star-shaped if there exists at least one point x £ P from which the entire polygon is 

visible. Figure 4 shows two star-shaped polygons. P is spiral if it has exactly one concave 

subchain (a chain with only reflex vertices). Figure 5 shows an example of a spiral polygon. 

A polygonal chain C is said to be monotone with respect to a line I if the projections of 

the vertices of C on I occur in the same order as in C. P is l-monotone if there exists a 



Figure 4: Two star-shaped polygons. 

Figure 5: A spiral polygon. 

9 



line / such that SP can be partitioned into two monotone polygonal chains with respect to I. 

Figure 6 shows an example of a y-monotone polygon and the projection of polygonal chains 

P[a .. b] and P[b .. a] on two lines parallel to the y-axis. 

a 

b 

Figure 6: A monotone polygon. 

P is orthogonal if all its edges are either horizontal or vertical. Figure 7 shows an example 

of an arbitrary orthogonal polygon. An orthogonal polygon P is said to be horizontally 

(vertically) convex if any horizontal (vertical) segment joining two of its vertices lies inside the 

polygon. A segment is called a chord in an orthogonal polygon P if it is interior to P and if it 

joins a pair of points p\{x\, y\) and P2{x2,2/2) hi P such that either x\ = X2 or y\ = 2/2- In an 

orthogonal polygon P, internal angles are either 90° or 270° and a dent is defined as an edge 

in which both endpoints have internal angles of 270°. The orientation of a dent is defined in 

terms of compass direction. If the polygon is aligned such that the north corresponds with 

positive y-axis and the dent is parallel to the x-axis then it is called a north dent and is 

referred to by iV-dent. Figure 8 shows a horizontally convex polygon with a west dent. 

There are several classes of orthogonal polygons defined in the literature according to 

the orientation of the dents. A class k orthogonal polygon contains dents of k different 

orientations. The class 0 is the class of orthogonally convex polygons of which an example is 

shown in Figure 9. A vertically or horizontally convex polygon is of class 2a. Class 26 refers 
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Figure 7: An orthogonal polygon. 

\ 

Dent S>-

Figure 8: A horizontally convex orthogonal polygon. 
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to polygons that have two dent orientations orthogonal to each other. Class 4 refers to gen­

eral orthogonal polygons. 

Figure 9: An orthogonally convex polygon. 

For orthogonal polygons, other notions of visibility are defined. Two points of a polygon 

P are said to be r-visible if there exists a rectangle (inside P) that contains the two points. 

Two points of a polygon P are said to s-visible if there exists an orthogonally convex polygon 

(inside P) that contains both points. Hence, it is natural to define r(s)-star-shaped polygons: 

an r(s)-star-shaped polygon is an orthogonal polygon P such that there exists at least one 

point for which all other points in P are r(s)-visible. Two examples of an r-star-shaped 

polygon and an s-star-shaped polygon are shown in Figure 10. Two points p\ and p2 

indirectly see each other in an orthogonal polygon P if there exists a third P3 in P such that 

P3 is s-visible to both p\ and pi. 

The kernel of a polygon P is defined as the set of all points from which each point in P 

is visible. The diameter of a polygon is the diameter of the smallest enclosing circle and the 

width of a polygon is the diameter of largest inscribed circle. The aspect ratio of a polygon 

is defined as the ratio of its diameter to its width. Figure 11 shows a hexagon with its 

inscribed circle and circumscribed circle. 

A diagonal of a polygon is a line segment that joins two vertices and that is interior-

disjoint from 5P. 

12 



m k 

(a) (b) 

Figure 10: (a) An r-star-shaped polygon with an example kernel point, (b) an s-star-shaped 
polygon with an example kernel point. 

Figure 11: The smallest enclosing circle and largest inscribed circle of a regular polygon. 

13 



2.2 Graph definitions 

Many problems in polygon decomposition and packing can be reduced to their dual in graph 

theory and hence are solved using a graph theoretic approach. Some graph theory definitions 

are needed in this context. A graph G is an ordered pair denoted by G = (V, E) where V is 

a set of vertices and J? is a set of edges. An edge is a 2-element subset of V. We say an 

edge is incident to the two vertices that define it and that are called the endpoints of the 

edge. The endpoints are said to be adjacent vertices in the graph. The degree of a vertex in 

a graph is the number of edges incident to that vertex, denoted by deg(v) for a vertex v. 

The maximum degree of a graph G is the maximum degree of its vertices and is denoted by 

A(G). 

A graph H = {V, E') is a subgraph of a graph G = {V, E) if V C V and E' C E. The 

subgraph of G whose vertices are V and whose edges are the edges of G that have both 

endpoints in V is called an induced subgraph of G. A walk in a graph G is a finite non-null 

sequence of alternating vertices and edges which starts and ends at a vertex. If the edges 

and the vertices of a walk are distinct except for its first and last vertex which are the same, 

it is called a cycle. 

An independent set of a graph G is a subset of its vertices such that no two vertices in 

the set are adjacent in G. A maximum independent set of a graph G is a largest such set in 

G and its size is denoted by a{G). The graph in Figure 12 has a{G) = 5. 

Figure 12: A graph G with a(G) = 5. 
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A clique of a graph is a subset of vertices such that each pair in the subset is connected 

by an edge. A maximum clique of a graph G is a largest such set in G and is denoted by 

u(G). The graph in Figure 13 has u{G) = 3. 

Figure 13: A graph G with u[G) = 3. 

A minimum clique cover of a graph G is a minimum set of subsets of vertices {V\, V2,..., V/J 

such that for every 1 < i < k, Vi is a clique and such that for every edge (u,v) £ E there is 

some Vi that contains both u and v. A chord is an edge joining two vertices that are not 

adjacent in a cycle. A chordal graph is a graph possessing no chordless cycle. The chromatic 

number of a graph is the smallest number of colours needed to color the vertices of a graph 

such that no two adjacent vertices share the same color; it is denoted by 7(G). A perfect 

graph G is such that for every induced subgraph of G, the size of the largest clique equals 

the chromatic number (UJ(G) = 7(G)). 

Given a set S = s\,S2, •. • ,sn of geometric objects in Md, the intersection graph of S, 

Gs — (V,E) is defined as follows: each vertex Vi €E V corresponds to the objects Oj and 

e*j e E if Oi n Oj ^ 0. 

2.3 Complexity classes and algorithmic techniques 

Problems are said to belong to complexity classes according to a measure of their "hardness". 

There are four main complexity classes that we refer to in this document: P , N P , N P -

complete and NP-hard. Before defining the complexity classes, let us look at the notion of 
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reduction. Problem Y is said to be polynomially reducible to problem X if X is no more 

than a polynomial factor harder than Y. In other words, if X can be solved in polynomial 

time, then Y can be solved in polynomial time. An algorithm is said to be efficient if it 

has a polynomial running time, i.e. given an input of size n, the worst case running time 

is 0(nk) for some constant k. The class P consists of all problems for which there exists 

an efficient algorithm. The class N P consists of all problems for which answers can be 

checked by a polynomial time algorithm, i.e. if we were given a "certificate" of a solution 

then we could verify the correctness of the certificate in polynomial time in the size of the 

input to the problem. The class NP-complete consists of all problems that are in N P such 

that all other N P problems are reducible to them (or no other N P problem is more than a 

polynomial factor harder). Informally, a problem is NP-complete if answers can be verified 

efficiently, and an efficient algorithm to solve this problem can be used to solve all other 

N P problems efficiently. The class NP-hard is informally the complexity class of problems 

that are harder than NP-complete problems: all N P problems are reducible to them. 

A problem is a decision problem if the solution to the problem is a yes or no answer 

and it is an optimization problem if it requires a function to be optimized (minimized or 

maximized) as part of the solution. An example of a decision problem would be: is polygon 

P partitionable into convex components such that the perimeter of the cuts is less than kl 

An optimization version of the same question: partition P into convex components such that 

the perimeter of the cuts is minimized. Following Motwani [235], we define an optimization 

problem IT as being characterized by three components: 

• Instances D: a set of input instances. 

• Solutions S(I): the set of all feasible solutions for an instance / G D and Sp — \J S(I) 

for all I e D. 

• Value / : a function which assigns a value to each solution, / : SD ~> K. 

A maximization problem II is: given I £ D, find a solution crj^ £ S(I) such that 

V a £ S ( / ) , / ( a ' ) > / ( < T ) 
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A minimization problem is defined similarly. Throughout the document we refer to 

/ ( ^ p t ) by OPT. 

A large number of the known optimization problems are NP-hard. Complexity theory 

states that it is impossible to find efficient algorithms for such problems unless the class P 

is the same as the class N P (i.e. P = NP). Relaxing the requirement to obtain an optimal 

solution for all instances of a problem results in an approximation algorithm which returns 

a near-optimal solution. Approximation algorithms are said to have an approximation 

guarantee (or performance guarantee) RA if for any input of size n, the cost A(I) of the 

solution produced by algorithm A on instance / is within RA of the cost OPT(I) of an 

optimal solution of the same instance I. An approximation is said to be a fc-approximation 

if its approximation guarantee is k. Approximation algorithm are classified according to 

their approximation guarantee: 

• Absolute (or additive) approximation guarantee. A polynomial time approx­

imation algorithm A for an optimization problem IT is said to have an absolute 

approximation guarantee of k if for every instance I of II we have \A(I) — OPT\ < k. 

• Relative (or multiplicative) approximation guarantee. The relative approx­

imation guarantee is defined as the RA(I) — max (0PT(I) ' A(I) ) (depending on 

whether the optimization problem is a minimization or a maximization problem). If 

for every e > 0 there is a polynomial approximation algorithm for II with a relative 

approximation guarantee of 1 + e then problem II is said to have a Polynomial Time Ap­

proximation Scheme (PTAS). The running time of an algorithm of the approximation 

scheme is expressed in terms of the size of the input and in terms of e. If the running 

time is polynomial in both the input size and 1/e the problem is said to have an Fully 

Polynomial Approximation Scheme (FPTAS). An algorithm such that RA is constant, 

is a constant guarantee approximation algorithm. An approximation guarantee k is 

said to be asymptotic if there exists an no > 0 such that an algorithm A achieves 

a k-approximation for all instances of the problem having OPT > no. Similarly, 

a problem has APTAS (asymptotic PTAS) and AFPTAS (asymptotic FPTAS) if 
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for each e > 0 there exists no > 0 and a polynomial time algorithm such that the 

approximation guarantee is 1 + e for all instances having OPT > no. 

Linear programming is a branch of applied mathematics concerned with linear program­

ming problems. If c\,c2,...,q are real numbers and x\,x2,...,xi are real variables a linear 

function is defined by 

I 

f(xi,X2,...,Xl) = C\X\ + C2X2 + . . . + C\Xi = y ^ CjXj 

. If / is a linear function and if b is a real number, then the equation f(x\,x2, •. •, xi) = b is 

called a linear equation and the inequalities f(x\,x2,... ,x{) < b and f(x\,x2, • • • ,xi) > b 

are called linear inequalities. Linear equations and linear inequalities are both referred to 

as linear constraints. A linear programming problem is the problem of maximizing (or 

minimizing) a linear function subject to a finite number of linear constraints [84]. When the 

variables are required to be integers, the problem is called an integer programming problem. 

The special cases of integer programming problems where the variables are binary are called 

binary integer programming problems. The following linear program is said to be in the 

standard form: 

l 

max y ,cjxj 

/ 
^2cijXj<bi (i = l,2,...m) (1) 
j=i 

Xj>0 (j = l,2,...,l) (2) 

Dynamic programming is an algorithmic technique to solve optimization problems by 

caching subproblems solutions rather than recomputing them in order to improve the running 

time of a given algorithm. 
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Chapter 3 

State of the art 

An instance of a decomposition problem consists of 

• A object O and 

• A set OP — {op\,op2,..., opj} of object properties, 

A solution to the decomposition problem consists of 

• A collection C = {o\, 02,03,..., Oi) that obey the given properties such that P = \\ o. 
o&C 

We call the elements of the collection C the components of the decomposition. 

As such, the collection C is called a covering of object O and it is called a partition if 

the shapes in C are interior disjoint. In this thesis, we are mainly interested in the object 

O and the elements of C being polygons. Hence, a decomposition of a polygon P is called 

a partition if the components {P\,P2,..., Pi} are not allowed to share a common interior 

point otherwise it is called a cover. An important property in the set of OP is to specify 

whether additional vertices are allowed or disallowed. These are called Steiner points. 

An instance of a packing problem consists of 

• A set of objects S = {s\,...}, 

• A set of containers B — {b\,...}, and 

• A set of transformations T — {t\,...}. 
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A solution to the packing problem consists of 

• The packed set of objects S* C S, S* = {si, S2, • • •} 

• A sequence of transformations which show how the packed objects are positioned: 

T* =< ti,t2,... > such that each U e T. 

• A container the objects are packed in: b* e B 

• The assertion that transformed objects Ufa) are disjoint subsets of b*. This is what 

makes it a packing. 

Both types of problems (decomposition or packing) have decision as well as optimization 

versions. In what follows, we review the partitioning, covering and packing literature. In the 

sections about decomposition, we first review the various decomposition of general polygons 

and then those of orthogonal polygons. Computational geometry has given particular 

attention to orthogonal polygons since they are encountered frequently in practice. For each 

type of polygon, we organize the sections around the shape of the components. 

3.1 Partitioning 

Although there are other types of planar objects that have been decomposed (e.g. spline-

gons [99], a splinegon being a polygon where edges have been replaced by well-behaved curves), 

we focus in this section on partitioning general polygons (arbitrary nonself-intersecting poly­

gons with or without holes). We encounter a variety of objective functions for the optimization 

versions of decomposition problems but the two main ones are: minimizing the perimeter of 

the cuts (also called minimum ink partition) and minimizing the number of components 

created. 
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3 .1 .1 G e n e r a l p o l y g o n s 

Triangles 

A decomposition of a polygon into triangles by a maximal set of nonintersecting diagonals is 

called a triangulation: it is known that every simple polygon admits a triangulation. Due 

to the huge amount of work done on polygon triangulation, triangulation has evolved to 

become a field of its own. Again, we follow Keil's survey on polygon decomposition [172] 

and omit this particular decomposition from this chapter. For comprehensive surveys on 

triangulation and related problems, we refer the reader to [43,44]. We mention that the 

triangulation of simple polygons can be computed in linear time [76] and that the problems 

of decomposition into triangles, trapezoids and convex, star-shaped, monotone and spiral 

polygons are linearly equivalent [120]. 

Convex components 

• Min imum number of components for a polygon wi th holes. The NP-hardness 

of the convex partition of polygons with holes is proved in [197] for both of the cases 

where Steiner points are allowed and disallowed. Lingas and Soltan [200] define F to be 

a given family of directions in the plane. They show that the problem of partitioning a 

planar polygon P with holes into a minimum number of convex polygons by cuts in the 

directions of F is NP-hard if | F | > 3 and that it admits a polynomial-time algorithm if 

| F | < 2. Martini and Soltan study a special case of the problem combinatorially [218]. 

• N o minimum-guarantee partit ion of polygons without holes. Several algo­

rithms polynomial in n and A'' that do no allow Steiner points are devised [116,258]. 

No optimization is done. Tanase and Veltkamp propose to partition simple polygons 

into unions of convex regions using straight skeletons, as a preprocessing step for shape 

matching in image processing [273]. A more recent work partitions a convex polygons 

into n convex parts each being based on a single side of P and containing a specified 

share of P [17]. 
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• Min imum number of components for polygons wi th neither holes nor Steiner 

points . Several constant factor approximation algorithms to approximate the num­

ber of components are developed disallowing Steiner points [74,154]. Green gives 

two algorithms for the optimal decomposition of polygons into convex parts under 

the minimum number of components criterion [141]. The running time of the first 

algorithm is 0(n log n) and the solution produced is at most four times the optimal 

partition. The second algorithm is an exact algorithm that gives an optimal par­

tition and runs in 0(N2n2) time. Independently, Keil solves the same problem in 

0(iV2n log n) time [169]. More recently, Keil and Snoeyink show that a partition of a 

simple polygon into a minimum number of convex regions without Steiner points can 

be computed in 0(n + N2 m'm(N2,n)) [174] . 

• Min imum number of components for polygons without holes wi th Steiner 

points . Chazelle and Dobkin give an 0(n + N3) t ime algorithm to decompose a 

polygon into the union of a minimal number of convex polygons while allowing Steiner 

points [77]. Since any decomposition must consider removing all the reflex vertices of P, 

the algorithm is based on the introduction of X^ patterns that remove k reflex vertices 

without the introduction of new ones and while minimizing the number of components. 

Figure 14 shows a decomposition with X2 and X3 patterns. The equivalent problem is 

NP-hard for polygon with holes. 

Figure 14: A decomposition with X2 and X3 patterns. 

• Min imum ink for a polygon with holes without Steiner points . In his doctoral 

thesis [168], Keil shows the NP-completeness for polygons with holes. 

• Min imum ink for a polygon with neither holes nor Steiner points. Keil 
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develops an 0(N2n2 log n) time exact algorithm based on dynamic programming [169]. 

• M i n i m u m ink for a polygon wi th holes and Steiner points . Lingas et al. prove 

NP-hardness and they devise, for polygons with holes, an O(nlogn) time algorithm 

that produces a convex partition of size 0((b + m) logN) where b is the perimeter of 

the polygon and the holes and m is the minimum perimeter of its convex partition. No 

optimal algorithms for the problem are known when Steiner points are allowed [199]. 

• Min imum ink for a polygon without holes wi th Steiner points . Levcopoulos 

and Lingas give an approximation algorithm for the convex partitioning with the 

minimum ink requirement. Their algorithm allows Steiner points and yields a solution 

of size 0(blogN) where b is the perimeter of the polygon [191] . 

Spiral components 

• Min imum number of components for polygons with holes without Steiner 

points . Keil proves that the problem is NP-complete [168]. 

• N o minimum-guarantee partit ion of polygons wi th neither holes nor Steiner 

points . Feng and Palvidis develop a polynomial time algorithm for partitioning a 

polygon without holes into spiral components without any minimum guarantee for the 

number of components [116]. 

• Min imum number of components for polygons wi th neither holes nor Steiner 

points . In his doctoral thesis, Keil solves this problem by developing a dynamic pro­

gramming 0 ( n 3 l o g n ) time algorithm based on his dynamic programming formulation 

of the convex partition [168]. 

• M i n i m u m ink for polygons with neither holes nor Steiner points . Similarly, 

Keil solves the minimum ink problem using an 0(n4 log n) time algorithm [169]. 
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Star-shaped components 

• Min imum number of components for polygons wi th holes without Steiner 

points . Keil proves the NP-completeness of the problem [168]. 

• N o minimum-guarantee partit ion for polygons w i th neither holes nor Steiner 

points . Toussaint and Avis provide an O(nlogn) time algorithm to partition into at 

most |"§~| star-shaped components [18]. As cited in Keil's survey [172], Aggarwal and 

Chazelle [6] improve this result. Their algorithm partitions a polygon into at most 

|~^] components in 0(n) time. 

• Min imum number of components for polygon with neither holes nor Steiner 

points . Keil presents an 0(n5N2 log n) time dynamic programming algorithm [169]. 

• Min imum number of components for polygon without holes wi th Steiner 

points . Shapira and Rappoport solve a restricted version of the problem where the 

kernel of each component contains a vertex of the polygon, a partition that does not 

always exist. They, therefore, allow Steiner points [264]. 

• Min imum ink for polygons wi th neither holes nor Steiner points. Keil 

provides an 0(n4logn) time algorithm [169]. 

Monotone components 

• Min imum number of components for polygon wi th holes without Steiner 

points . Keil proves the NP-completeness of the problem [168]. 

• N o minimum-guarantee partit ion for polygons wi thout holes. As a by­

product of their triangulation algorithm, Garey et al. provide an O(nlogn) time 

algorithm for partitioning a polygon in monotone components [128]. 

• Min imum number of components and minimum ink for polygons wi th nei­

ther holes nor Steiner points . Keil uses the same approach to solve both problems 

with an 0(Nn4) time algorithm [168]. 
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• Min imum number of uniformly monotone components for polygons with­

out holes. If all the components in a partition are monotone with respect to the 

same line then they are said to be uniformly monotone. Liu and Ntafos provide two 

algorithms for this partition problem, one that disallows Steiner points and runs in 

0(nN3 + N2nlogn + N5) time and one that allows them and run in 0(N3nlogn + N5) 

time [208]. 

Quadrilaterals 

Quadrilateralization (or quadrangulation) is the term given to partitioning a polygon into 

quadrilaterals (quadrangles). Quadrilateralization has received considerable attention in the 

literature. Several applications for this problem are mentioned in Toussaint's survey [277]. 

A special case of quadrilateralization is partitioning into trapezoids often referred to as 

trapezoidation. Trapezoidation is in many cases a by-product of an intermediate step in 

triangulation algorithms. 

• Quadrilateralization for polygons with holes. Lubiw shows that the prob­

lem of deciding whether a polygon with holes admits a quadrilateralization is N P -

complete [214]. 

• Convex quadrilateralization for polygons wi th or without holes. Using 

Steiner points, Everett et al. shows that polygons without (with h) holes can al­

ways be quadrilateralized into "̂3~ ' ( 3 ~ ) convex quadrilaterals [113]. 

• M i n i m u m convex quadrilateralization for convex polygons. Muller-Hannemann 

and Weihe present a linear time algorithm for partitioning convex polygons into the 

minimum number of strictly convex quadrilaterals. Steiner points are not allowed on 

the boundary of the polygon [238]. 

• Min imum ink quadrilateralization for polygons without holes. Conn and 

O'Rourke devise an 0 ( n 3 l o g n ) time algorithm [87]. 

• Fat convex quadrilaterals. Van Kreveld gives an 0(n log2 n) time algorithm to 
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partition a fat simple polygon P with n vertices into 0(n) fat convex quadrilaterals. 

Van Kreveld defines the fatness of a polygon P by the wideness of every quadrilateral 

formed by every four points in P [278]. 

• N o minimum-guarantee trapezoidation. As a by-product of a triangulation 

algorithm, Chazelle gives a linear time algorithm for trapezoidation with no minimum 

guarantee on the number of components [76]. Seidel presents an algorithm with 

0(nlog* n) expected running time [260]. 

• Min imum number of trapezoids. Asano et al. present an 0(n2) time algorithm 

for partitioning a polygon without holes into the minimum number of trapezoids. Also 

they present an 0(n log n) constant factor approximation algorithm in the case where 

the polygon has holes [13]. 

Other components 

• Min imum ink T-gon partit ion. Levcopoulos et al. give an algorithm that given an 

input polygon P and an integer T, partitions a polygon into T-gons while minimizing 

the perimeter of the cuts. The cuts are restricted to diagonals and thus, no Steiner 

points are allowed. The algorithm runs in 0(n3T2) time [193]. 

• Min imum number of a-fat components for polygons wi thout holes. Damian-

Iordache and Pemmaraju call a polygon fat if it has a small aspect ratio and is called 

a-fat if this ratio does not exceed a certain a. An a-small polygon is a polygon whose 

diameter does not exceed a. Damian-Iordache and Pemmaraju present polynomial time 

algorithms to partition simple polygons into a minimum number of a-fat and a-small 

components while disallowing Steiner points. The algorithms are based on a dynamic 

programming framework and special algorithms are given for convex polygons [93,94]. 

• Most circular partit ion of regular n-gons: convex and nonconvex compo­

nents. Damian and O'Rourke define the circularity of a polygon in terms of the 

closeness of its aspect ratio to 1 and they discuss partitioning regular n-gons into 
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convex circular components [92]. For the equilateral triangle, it is shown that the most 

optimal partition can only be achieved with an infinite number of components. For 

n > 5, the optimal partition is the one piece partition. The question remains open for 

the square. The idea is pursued for nonconvex circular partitioning in an unpublished 

manuscript [91]. 

• M i n i m u m ink N E W S partit ion. Motivated by geographic information retrieval, 

van Kreveld and Reinbacher presented polynomial time algorithms for partitioning a 

polygon into four parts that can be considered as the North, East, West and South 

(NEWS). There are several criteria to satisfy for such a partition (nonoverlapping simply 

connected adjacent regions, equal-area partition, boundary with simple shape) [279]. 

• M i n i m u m ink and nonoptimal area partitioning. Given a polygon P and a 

number p, an area partition of P is a set of components { P i , . . . , Pp} of P each of 

a specified area, such that union of the interior of the parts equals the interior of 

P. If, in addition, each polygon Pi (1 < i < p) has a particular point site Si in it 

the partition is called an anchored area partition on S\,.. ,,Sn. Given a set of areas 

A—a\,... ,ap, Bast and Hert propose a 0(pn) algorithm to partition a simple polygon 

into p components with the given areas [30]. The algorithm first partitions P into q 

convex components and then "sweeps" over the components to merge or divide them 

when necessary. The running time is actually 0(pq + n) , where q is the number of 

convex components but q is bounded by n since Steiner points are disallowed. The 

minimum ink partitioning for this problem is shown to be NP-hard. Anchored area 

partitioning is solved with a polynomial time divide-and-conquer sweep-line algorithm 

for any simply or nonsimply connected polygon [153]. 

• Equal area partit ion of convex bodies . Guardia and Hurtado study the equipar-

tition (equal area) of convex bodies using chords. The authors show that there is no 

solution for the set of nonsymmetrically convex n-gons for m > n chords and that 

when the problem has a solution the straight lines determined by the chords are area 

bisectors of the polygon: i.e. each cuts the polygon into two equal areas [143]. 
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• M i n i m u m ink two equal partit ion. Even partitioning a polygon into two (possibly 

disconnected) equal area components under the minimum ink criterion for the cuts is 

shown to be NP-complete. Two algorithms are presented: a PTAS that partitions a 

polygon into approximately equal parts and an exact algorithm for partitioning convex 

polygons with 0(n2) running time [181]. 

• Perfect partitioning. A partitioning of a polygon P is said to be perfect if the 

components have the same perimeter as well as the same area. A partitioning into k 

perfect components is denoted by fc-partitioning (see Figure 15 for a 3-partitioning 

of a square). Akiyama et al. study perfect partitioning of convex sets in the plane 

and show that for any k, any convex set admits a perfect fc-partitioning. The authors 

also explore radial partitioning in which all cut lines are required to meet into a single 

point. They prove that every convex set admits a radial perfect 3-partitioning [9,10]. 

Figure 15: A perfect 3-partitioning of a square. 

• Two congruent components partit ion. Eriksson considers the partition of a 

polygon into two congruent components (see Figure 16 for such an example of such 

partition). The running time for his algorithm is claimed to be 0(n3) but he neglects 

the need for a data structure to check possible boundary intersections. The author 

also claims without proof that the algorithm generalizes to polygons with holes [111]. 

In a draft criticizing the paper, Rote gives a counterexample to this claim [252], This 

problem is the subject of Chapter 4. 

• Pseudo-convex partit ion. A novel partition is proposed by Aichholzer et al. [8]: the 

pseudo-convex partition is one where both convex polygons and pseudo-triangles are 

allowed. A pseudo-triangle is a planar polygon that has exactly three convex vertices, 

all other vertices are concave. They establish an existence proof of a pseudo-convex 
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(a) » ) 

Figure 16: (a) A polygon, (b) its decomposition into two congruent components. 

decomposition for every simple polygon. Gerdjikov and Wolf present an algorithm that 

determines a minimum pseudo-convex decomposition of a simple polygon in 0(n3) 

time [129]. 

3.1.2 Orthogonal polygons 

Rectangles and squares 

The use of Steiner points is inherent in partitioning orthogonal polygons into rectangles. 

• Minimum number of rectangles for polygons with holes. The first algorithms 
5 3 

for partitioning polygons with holes run in 0{n^) [117,207,243] and in 0(n5 logn) [159, 

205,206]. The results were extended to point holes in [270]. Gudmundsson et al. show 

an fi(nlogn) lower bound on the time complexity of the problem (for optimal or 

approximative partition) [144]. 

• Minimum number of rectangles for polygons without holes. The first two 

algorithms were constant factor approximation algorithms with 0(n2) [138] and 

O(nlogn) [241] respective running times as cited in Ken's survey [172]. Liou et al. 

present an 0(n log logn) time algorithm to find the optimal partition into rectangles 

for polygons without holes by taking a graph theoretic approach. They also present 

a linear time algorithm for convex and horizontally (vertically) convex orthogonal 

polygons [203]. More recently, Bajuelos et al. show tight lower and upper bounds on 

the number of rectangles in a partition [21]. 

• Minimum number of fat rectangles. O'Rourke et al. study the partition of 

orthogonal polygons into fat rectangles. The goal is to maximize the shortest side 7 of 
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the rectangles in a partition and among all partitions with the same 7, the authors 

seek the one with the fewest number of rectangles [244,246]. O'Rourke and Tewari 

study the structure of a partition for several types of cuts: vertex cuts that have 

at least one end at a vertex, anchored cuts that have endpoints on the boundary 

of the polygon and unrestricted cuts that are floating inside the boundary of the 

polygon [246]. Figure 17 shows a partition of an orthogonal polygon into rectangles 

with vertex and anchored cuts. O'Rourke et al. focus on vertex cuts and gives an 

0(n5) time dynamic programming algorithm. The authors prove that their algorithm 

generalizes for anchored cuts and give more specialized algorithms for monotone, 

pyramids and staircase polygons with better running times [244]. 

Anchored ' 

/ i 
Vertex ' 

Figure 17: An example of a partition into rectangles with vertex and anchored cuts. 

• M i n i m u m ink partition into rectangles for polygons wi th holes. Lingas et 

al. prove the problem to be NP-complete [199]. Approximation algorithms with 

constant factor approximations were presented by Lingas [198] and Levcopoulos [187] 

as cited in Keil's survey [172]. Levcopoulos presents an O(nlogn) time constant factor 

approximation improving on previous results [186]. 

• Min imum ink partit ion into rectangles for polygons wi thout holes. Lingas et 

al. give an 0(n4) to partition a rectilinear polygon into rectangles under the minimum 

ink criterion. Knowing that the optimal cuts lie on the grid induced by the polygon 

boundary, the search for optimal solution is restricted to the 0(n2) candidate points 

determined by the grid intersections for which there are 0(n2) matching points to 

complete the rectangles [199]. 

• Min imum ink partit ion of rectangles into rectangles. If the partitioned shape 
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is a rectangle with point holes, several constant factor approximation algorithms were 

presented [135,136,136]. Gonzalez et al. devise an approximation algorithm that 

allows only guillotine cuts, i.e cuts that are obtained by starting recursively cutting 

the rectangle into two rectangles by a line orthogonal to one of the axes [134]. 

• Min imum ink partit ion of rectangles, squares and circles into equal area 

components . Bose et al. study the optimal —in terms of the perimeter of the cuts— 

partition of squares, rectangles, circles and prisms into k equal area components. They 

show that the diameter cuts the circle into two equal areas optimally. The optimal 

solution to cut a circle into k equal area components such that the chords forming the 

cuts do not intersect and the solution to the same problem such that the cuts intersect 

into one Steiner point are also presented [51,52,54]. The minimum ink partition of 

rectangles and squares is reviewed in detail in Chapter 5. 

• Area partit ioning of rectangles under different opt imizat ion criteria. Given 

a rectangle with area a and a set of n positive real numbers A — {a\,CL2, • •. ,an} 

with ^2a.£Aai — a> t n e problem consists of partitioning R into n rectangles r, with 

area a* (i = 1 ,2 , . . . , n) while minimizing an objective function. The decision version 

of the problem is known to be NP-complete [32]. Three main objective functions 

are discussed in the literature: minimizing the sum of the perimeters of rectangles 

rj , minimizing the aspect ratio of the rectangles r» and minimizing the maximum 

perimeter of the rectangles r,. For the latter objective function, Kong et al. solve the 

problem in polynomial time when all the areas aj are equal [179,180]. Constant factor 

approximation algorithms for the general problems and all three objective functions 

can be found in [33,240]. 

Other components 

• Min imum number of L-shaped components and other optimization criteria. 

Lopez and Mehta present two algorithms for partitioning rectilinear polygons into 

L-shapes and rectangles by using horizontal cuts only. Both algorithms run in 0(n + 
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hlogh) time where h is the number of iV-dents (the authors call them if-pairs) [211]. 

• Minimum number of star-shaped components for monotone simple poly­

gons. Allowing Steiner points, Liu and Ntafos present a linear time algorithm for 

partitioning monotone orthogonal simple polygons into star-shaped components as 

well as an 0{n log n) constant factor approximation algorithm for general orthogonal 

polygons [209]. 

• Minimum number of < k and fixed number of vertices components. As cited 

in Keil's survey [172], Gunther gives a polynomial time algorithm for partitioning an 

orthogonal polygon into orthogonal polygons with k or fewer vertices [146] and Gyori 

presents a partition into components with fixed number of vertices [147] . 

• Minimum number of quadrilaterals. Toussaint and Sack show that a star-shaped 

orthogonal polygon can always be decomposed into convex quadrilaterals [256] and 

Kleitman et al. generalize the result for arbitrary simple orthogonal polygons [167]. 

Later, Sack and Toussaint give an O(nlogn) time algorithm [255,257] and Lubiw 

proves fi(nlogn) as a lower bound for the complexity of the problem [214]. 

• Minimum ink quadrilateralization. Two independent works show that the mini­

mum ink quadrilateralization can be computed in 0(nA) time [173,214], Toussaint and 

Sack show that star-shaped or monotone polygons can be quadrilateralized in linear 

time [256]. 

3.1.3 3D partition 

This thesis does not address partitioning of 3D objects. Therefore, our citing of the work on 

partitioning polyhedra is not comprehensive and is just cited to give a flavour of the work 

done in the field. It is important to note that whereas every polygon can be triangulated, 

this is not the case in three-dimensions as shown in a result from 1911 cited in [44]. Work on 

triangulation/tetrahedralization (when it is possible), convex partition and rectangle partition 

of polyhedra can be found in the literature [20,27,37,42,44,73,75,78,81,98,126,152,196,254]. 
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3.2 Covering 

Covering problems are known to be bound by partition since the minimal cardinality of 

a cover is at least equal to the cardinality of a partition. In other terms, any partition is 

a valid cover while a cover may or may not be a valid partition. In covering, Steiner and 

Steiner-free decomposition are also considered. Figure 18 shows a partition and a cover of 

the same polygon. 

Figure 18: (a) A simple polygon, (b) its partition into two components, (c) its cover with 
two components. 
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3.2 .1 G e n e r a l p o l y g o n s 

Convex components 

• Min imum number of components for polygons wi th holes. For polygons with 

holes, O'Rourke and Supowit show that the problem is NP-hard by with or without 

Steiner points [245]. 

• Min imum number of components for polygons without holes. Culberson and 

Reckhow prove that, for polygons without holes, covering the interior or boundary of 

an arbitrary polygon with convex polygon is NP-hard, that covering the vertices of an 

arbitrary polygon with convex polygons is NP-complete and that covering the interior 

or the boundary of a polygon with rectangles is NP-complete [90]. 

• Recognizing the polygons without holes that can b e divided into a fixed 

number of convex polygons. Shermer explores the properties of three classes of 

closely related polygons. U2 is a polygon that can be expressed as the union of two 

convex polygons. P3 is a polygon such that for any three points in the polygon, at 

least two of them are visible to each other. A KR polygon is one such that all its 

reflex vertices belongs to its kernel. A KR polygon where N ^ 3 is P3. A KR polygon 

with A'' even is U2- Shermer's linear time algorithm classifies an input polygon P by 

outputting: KR (if KR but not P3), P3 (if P 3 but not U2),U2 or NO (if P belongs to 

none of the classes) [266]. Keil mentions in his survey [172] Belleville's work that solves 

the problem of recognizing polygons that can be covered by three convex polygons in 

linear time [35,36]. 

• Min imum number of O-convex components for polygons without holes. Let 

O denotes a set of line orientations. A connected point set is called O-convex if its 

intersection with any line with orientation in the set O is connected. Two points in a 

polygon P are said to be O-visible if there is an O-convex path between them that 

does not intersect 5P. A polygon P is O-convex if and only if every pair of points 

is O-visible. Bremner and Shermer characterize a class of polygons that admits a 
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polynomial time algorithm for finding an O-convex cover [59]. 

• Covering a convex polygon wi th translates of convex polygons . Given a set 

of n convex polygons, determining whether they can be translated to cover a fixed 

convex polygon is proven to be NP-hard by Wang et al. [280]. 

Star-shaped components 

• Min imum number of components for polygons w i th holes. O'Rourke and 

Supowit show that the problem is NP-hard for polygons with holes with or without 

Steiner points [245]. 

• Min imum number of components for polygons without holes. For polygons 

without holes, it is mentioned in Keil's survey [172] that Aggarwal proves NP-hardness 

of the problem in his Ph.D. thesis [5]. Approximation algorithms with an O(logn)-

approximation factor are devised for restricted versions of the problem [7,132]. 

• Covering with two star-shaped polygons. Belleville, as cited in Keil's survey [172], 

solves the problem of recognizing polygons that can be covered by two star-shaped 

polygons in 0{nA) time [34]. 

Rectangles and squares 

• Min imum number of components for polygons wi th or without holes. It is 

not known whether the optimal covering can be computed in exponential time. Several 

experimental and theoretical results have been developed for this problem [150,185,188— 

190,192]. Gudmundsson and Levcopoulos present an O(logn) factor, 0{n log n + OPT) 

time approximation for covering obtuse-angle-only polygons (possibly with holes) with 

rectangles provided that the vertices of the input polygon are given as polynornially 

bounded integer coordinates. In a more recent work, the same authors give the first 

constant factor 0{n2+OPT) time approximation algorithm for covering with rectangles 

with bounded aspect ratio. They also present several constant factor approximations 

algorithms for covering with squares and fat rectangles [189]. 
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Other components 

• Min imum number of spiral components for polygons wi th holes. For poly­

gons with holes, O'Rourke and Supowit show that the problem is NP-hard with or 

without Steiner points [245]. 

• Covering a fat convex quadrilaterals wi th fat triangles. Van Kreveld develops 

a method to cover a fat convex quadrilateral with O( l ) fat triangles [278]. 

3 .2 .2 O r t h o g o n a l p o l y g o n s 

Rectangles and squares 

Covering with rectangles and squares refers to axis-aligned ones. 

• Min imum number of rectangles for polygons w i t h holes. As mentioned in 

Keil's survey [172] on polygon decomposition, covering an orthogonal polygon with 

holes with the minimum number of rectangles is NP-complete [219] even in the special 

case where only the boundary or only the reflex vertices need to be covered [86]. 

Berman and DasGupta prove that no polynomial time approximation schemes exists 

unless P = N P and present a few constant factor approximation algorithms for some 

variations of the problem such as covering the boundary and the vertices of a given 

polygon [39,40]. Franzblau presents an 0(logOPT)-approximation [122]. Bern and 

Eppstein [45] present a constant factor approximation algorithm for a polygon with 

holes when the polygon is in general position (no two boundary segments are collinear). 

The question whether the general problem admits a constant factor approximation 

remains open [45]. Heinrich-Litan and Liibbecke conjecture that it does and support 

their conjecture by experimental work (integer programming) [151]. Kumar and 

Ramesh present an 0(v
/ logn)-approximation algorithm for covering polygon with 

holes [182]. 

• Min imum number of rectangles for polygons wi thout holes. Culberson and 

Reckhow prove that the general problem is NP-complete [90]. However, several 
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polynomial time algorithms exist for special cases: orthogonally convex polygons [66, 

204], horizontally convex polygons [123], 2-staircase polygons [58], polygons that do 

not contain a rectangle that touches the boundary only at two opposite corners of the 

rectangle [215]. Two constant factor approximation algorithms are devised by Cheng 

et al. [80] and Franzblau [122]. 

• Optimal nonpiercing covering. Keil presents an algorithm for optimal nonpiercing 

covering for orthogonal polygons without holes. Nonpiercing covering consists of 

covering with rectangles where every rectangle R^ and Rj in the cover are such that 

R\ — i?2 or i?2 — Ri is connected [171]. 

• M i n i m u m number of squares for polygons with holes. Aupperle et al. prove 

that the problem is NP-complete [16]. 

• Min imum number of squares for polygons without holes. The problem is 

solved with a graph theoretic approach. A graph is associated with a given grid 

orthogonal polygon P (one with integer coordinates). P is seen as composed of unit 

squares called the blocks. A square is a square subset of the blocks of the orthogonal 

polygon. A square cover is a collection of squares whose unions is equal to the polygon. 

Each block in the polygon is made to correspond to a vertex in the graph and two 

vertices are adjacent in the graph if and only if the corresponding blocks belong to 

a square of P. Albertson and O'Keefe show that this graph is perfect for a polygon 

without holes [11] . Aupperle et al. show that the resulting graph is chordal and reduce 

the problem to that of finding a minimum clique cover in a chordal graph [16]. As 

chordal graphs are perfect, the problem is solvable in polynomial time and the running 

time of the algorithm is 0(B2\f~B) where B is the number of blocks in the polygon. It 

is mentioned in Keil's survey [172] that Aupperle, in his thesis, adapted this algorithm 

further to obtain 0(B\/~B) running time [15]. Moitra proposed a parallel algorithm 

linear in B for solving the same problem using also a graph theoretic approach [232]. 

Bar-Yehuda and Ben-Chanoch's algorithm runs in 0(n + OPT) time [26]. 
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Figure 19: The prolongation of the dents in an orthogonal polygon and its division into 
regions. 

Star-shaped components 

• Min imum number of s-star-shaped components for polygons without holes. 

Following a graph theoretic approach, Motwani et al. solve the problem of minimally 

covering orthogonal polygons with s-star-shaped polygons. The polygon is divided into 

regions defined by the prolongation of the dents supports until they hit the boundary 

as shown in Figure 19. A star graph H = (V, E) is defined from this partition. Each 

region is associated with a graph vertex in H and two vertices are adjacent in H if 

the two corresponding regions indirectly see each other. It is proven that a minimum 

clique cover of H corresponds exactly to a minimum cover of P by s-star polygons. 

The star graph is proven to be a weakly triangulated graph that are again perfect and 

hence the problem is solved in polynomial time (0(n8) time) [236]. 

• Min imum number of r-star-shaped components for polygons without holes. 

Keil follows a geometric approach to solve the problem of optimally covering horizontally 

convex polygons into r-star-shaped components in 0(n2) time [170]. This result is 

improved to 0(n) time by Gewali et al. [130] and more recently to linear time with 

only O(k) additional space where k is the size of the optimal solution by Lingas et 

al. [201]. Keil and Worman, following a graph theoretic approach, settle the open 

problem for general simple orthogonal polygons by showing that it can be solved in 

polynomial time (0 (n 1 7 ) where 0 ( ) hides polylogarithmic factors) [281,282]. More 
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recently, Lingas et al. present a simple linear time 3-approximation for the same 

problem [202]. 

• M i n i m u m number of components for other star-shapedness definitions. Op­

timal number of components algorithms for different star-shapedness definitions can 

be found in [62,102,216,257] and in [131] as cited by Keil in his survey [172]. 

Orthogonally convex components 

• M i n i m u m number of orthogonally convex components . Keil provides an opti­

mal covering in quadratic time of horizontally convex polygons by orthogonally convex 

components using a geometric approach [170] . Reckhow and Culberson prove a lower 

bound of Q(n2) for any algorithm that needs to report an explicit representation of 

the output for an orthogonal polygon. They then provide a linear time counting-based 

algorithm for finding the minimum number of orthogonally convex polygons to cover 

a horizontally convex orthogonally polygon. Following a geometric approach, the 

authors also develop an 0(n2) time algorithm to optimally cover class 26 polygons with 

orthogonally convex components. A complex polynomial time algorithm is presented 

to handle orthogonal polygons with four dent orientations with the condition that at 

most a constant number of dent lines intersect any given dent line [250]. For class 

2 and 3 polygons, Motwani et al. reduce the problem to a minimum clique cover in 

the polygon's visibility graph which results in a polynomial time algorithm for this 

case [237]. 

3 .2 .3 3D c o v e r i n g 

Not much work has been done on covering polyhedra. Mookherje and Prabhajaran provide 

an algorithm (without an analysis of its complexity) for approximately covering a convex 

polyhedron with the minimum number of spheres, a work with an application in the radiation 

treatment of a tumour [233]. Wang and Yang present an algorithm for the following problem: 

given two simple polyhedra P° and P1 and a convex polyhedron P2, determine whether or 
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not P° can be covered by P1 \J P2. The running time is polynomial in the size of the three 

polyhedra [280]. 

3.3 Packing 

In surveying the literature on packing problems, we introduce a taxonomy of these problems: 

• Packing at fixed locations. Only a finite number of discrete locations for each 

object to be packed (in the set S = {s\,...}, each Sj C G) are considered. Such 

problems are equivalent to maximum independent set in a graph. 

• Strip packing. The container is a rectangular strip of a given width and the goal is 

to pack all the given objects into the strip so as to minimize its height. 

• Packing identical objects . The objects to pack are identical and the possible 

locations are not finite. 

• Packing different objects . The objects in S are different. 

For the optimization versions of packing problems, there are two main variants for the 

objective function: 

• Pack everything. If the container is unique, this is a decision problem. If it is not, 

then you want to pack everything into the best container. 

• Pack the "best" subset for varying definitions of best. 

In the following subsections of this chapter, n will not denote the number of vertices of a 

polygon. 

3.3 .1 P a c k i n g at fixed l o c a t i o n s 

• Packing in graphs. The problem of maximum independent set for general graphs 

with n vertices is hard to approximate even to within a factor of n 1 _ e [149]. 
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• Packing objects with fixed locations. A reduction from independent set on 

intersection graphs is shown to prove that the problem of finding the largest independent 

set of objects is NP-hard [121,158]. 

• Squares in grid orthogonal polygons. Hochbaum and Maass give a PTAS for 

the NP-complete problem of packing a maximum number of (k x k) squares in an 

orthogonal grid polygon [155]. Variations of this problem are studied in Chapter 6. 

• Uni t disks. Given a set of possible locations for unit disks, Hunt et al. present a 

polynomial time approximation scheme for solving maximum independent set for an 

intersection graph where th objects are unit disks [157], 

• Fat objects . Erlebach et al. focus on the case where the objects to pack have varying 

sizes but are fat. They give a PTAS for both maximum weighted independent set and 

minimum weight vertex cover [112]. Chan describes an improved PTAS [68]. 

• Line segments and convex objects . Agarwal and Mustafa present two approx­

imation algorithms for the independent set problem on line segments and convex 

objects [2]. 

• Rectangles (map labelling). Agarwal et al. describe an algorithm with an 

O(n logn) running time and 0(logn)-approximation factor for finding the maximum 

subset in a set of n arbitrary axis-parallel rectangles in the plane. When all rect­

angles are all unit height, they present a 2-approximation in O(nlogn) time and a 

(1 + e)-approximation in time 0 ( n l o g n + n 2 / e _ 1 ) time [4]. Khanna et al. [177], being 

interested in database applications of the maximum subset packing problem, state 

independently similar results to Agarwal et al. [4]. Berman et al. [41] and Chan [69] 

improve the previous on both arbitrary and unit height rectangles. 

• Weighted rectangles. Given a set of fixed weighted rectangles, a (2+e)-approximation 

algorithm is presented to find the maximum-weight packing [162]. 

• D-box graphs. A d-dimensional box (d-box) is a subset of M.d tha t is a Cartesian 

41 



product of d intervals in R. Chlebfk and Chlebikova prove that no PTAS exists for 

maximum independent set for d-bax. graphs for any fixed d > 3 unless P = N P [82]. 

3.3.2 Strip packing 

• Rectangle strip packing with no rotations. Given a set of different rectangles 

of width at most 1 and given a strip of unit width, place the rectangles in the strip 

so as to minimize the height of the strip. Baker et al. show that the bottom-left 

approximation algorithm has asymptotic performance guarantee of 3 [23]. Tarjan et al. 

study different level-oriented algorithms and show their performance guarantees to 

be 2 and 1.7 and 1.5 [85]. Other works present asymptotic performance guarantees 

of 2.5 [268], 3 [133] and | [22]. The best current absolute performance guarantee is 

2 [259,271]. Fernandez and Zissimopoulos present a (1 + e)-approximation for the 

restricted version of the problem where the height and width of rectangles are bounded 

by an absolute constant [96]. Kenyon and Remila present an AFPTAS for the same 

problem with no restriction on the size of the rectangles [175]. 

• Rectangle strip packing with 90° rotations. Miyazawa and Wakabayashi present 

two algorithms allowing orthogonal rotations: one has an asymptotic performance 

guarantee of 1.613 [230] and the other a performance guarantee of | [108]. Jansen and 

van Stee present an AFPTAS for this problem [161]. 

• 3D rectangle strip packing. Several approximation algorithms are developed for 

the three dimensional version of the problem [25,160,194,195,229,231]. 

• Variants. Variations of the strip packing are also considered such as online strip 

packing (with and without rotations) [19,89], as well as strip packing with precedence 

constraints or release times [14]. 

• Packing circles in a strip. The maximal density of circles in a strip of width w is 

determined for certain values of w [127]. 
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3.3.3 Packing identical objects 

• Heuristics. Many computer aided optimization algorithms lead to experimental 

results that do not contain meaningful algorithmic results. As examples we cite: 

finding the densest packing of equal disks in an equilateral triangle [212], finding the 

densest packing of equal disks in a square [63,64,217,272] and identifying patterns of 

packing equal circles in a square and in various shapes [139,210,213]. 

• Finite problems. Packing of small numbers of different simple shapes in larger 

simple shapes is addressed; the packing centre of Friedman is a clearinghouse for many 

results [124], and many nontrivial results remain without a proof. Proofs are found for 

specific cases [119,221,222], but others are simply the best known packings for very 

specific cases. For example, in [223] the packing of 16, 17 and 18 congruent circles in 

an equilateral triangle is presented with the following claim: "The results have been 

found by the use of simulated annealing and a quasi-Newton optimization technique, 

supplemented with some human intelligence." For a recent survey and new results on 

packing small numbers of unit squares in squares, see [125]. 

• Packing squares in squares. Earliest to ask the question of packing squares with 

unit squares are Erdos and Graham [109]. They prove that allowing rotations keeps 

the amount of area uncovered down to at most proportional to air which is for large 

a is better than linear waste produced by just stacking the squares row by row, where 

a is the side of the square. 

• Packing two identical disks in a polygon. The medial axis of a polygon P is 

defined as the locus of all centres of circles inside P that touch SP in two or more 

points. Bose et al. give two algorithms for packing two disks in a convex n-gon. 

Their first algorithm, which maximizes the radius of two equal disks, runs in 0(n) 

time. The second algorithm runs in 0(n2) time and maximizes the sum of radii of 

two disks. It is shown in both cases that the centres of the two optimal disks lie on 

the medial axis of the polygon [53]. The former problem was first discussed in the 
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context of finding a folding to hide the largest possible disk in a simple polygon and 

was solved in 0(n2) time. Kim et al. [178] presented an improved O(nlogn) algorithm 

for convex polygons. They also present a variation of the problem where the folding 

line is set to pass through vertices of the polygon and they solve it in 0(n2 log2 n) time. 

Bespamyatnikh [46] improves the running time of this latter version to 0(n log2 n) time. 

For simple polygons, he gives an 0 ( n l o g 2 n ) algorithm for the original problem. Bose 

et al. improve on this latter result by presenting a randomized algorithm that runs in 

0(n log n). Finally, Chan improves the result to a linear expected time algorithm [70]. 

• Packing disks in an orthogonal polygon. The algorithm packs a maximum 

number of unit disks in a rectangular region with obstacles, represented as holes. The 

approximation factor is | [38]. 

• Packing squares in a polygon. Baur and Fekete [31] present an approximation 

algorithm for the following NP-hard problem: Given a polygonal region P—possibly 

with holes—with n vertices, pack k many (L x L) squares into P such that L is as big 

as possible. The authors prove that the problem has no PTAS unless P = N P and 

give a | -approximation algorithm. The problem posed here belongs to a larger set of 

problems called dispersion problems or obnoxious facility location. 

• Packing rectangles in a rectangle. The pallet loading problem consists of packing 

a large containing rectangle with identical axis-parallel copies of a small rectangle. 

The problem is not known even to be in N P . Dowsland claims the problem to be 

NP-hard [100] and Exeler claims it to be in N P [114]. Both claims are erroneous [97]. 

Neliben presents several heuristics to solve the problem [242] and Tarnowsky proves 

that a special case of it can be solved in polynomial time under some unnatural 

assumptions as to the nature of an optimal solution [275]. This problem has received 

much attention in the literature; Ram surveys many solutions and their industrial 

applications [248]. 

• Heuristics for packing identical boxes into a polyhedron. Heuristics and 
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experimental results can be found for the problem of packing identical ( 4 x 2 x 1 ) 

boxes in a "car trunk" without rotations [104] and with rotations [103]. 

• Packing in infinite space. For more information on the packing density of objects 

in simple geometric shapes or infinite space see, for example, Toth's survey [276]. 

3 .3 .4 P a c k i n g different o b j e c t s 

• Packing similar triangles into a triangle. A sufficient condition to pack any 

sequence of triangles similar to a triangle T is discussed in several papers. Let a(T) 

denote the largest number such that any finite sequence of triangles similar to T with 

total area not greater than a(T) • area(T) can be packed into T. Richardson proves 

that a(T) > ^ [251]. Soifer conjectures that a(T) — \ for any triangle [269]. Finally, 

Januszewski proves the existence of a triangle with a(T) > \ [163]. 

• Packing squares in squares. It is proven that the problem of deciding whether 

a set of squares of different sizes can be packed into a larger square is strongly 

NP-complete [184]. 

• Packing harmonic squares in a small rectangle. Given a set of squares of side 

lengths \,\,\,-- • find the smallest rectangle in which these squares can be packed. 

Several results that improve on the upper bound of the size of such a rectangle are 

presented [24,67,164,220,247] with some generalizations to cubes [220]. 

• Convex hull packing. Given two convex polygons in the plane with respective 

complexities m and n and that are free to translate and rotate, a minimum convex 

packing of the two polygons is the smallest convex region that they can be packed in. 

The problem is first solved in linear time without allowing rotations [183]. Tang et al. 

present an 0(n + m)nm algorithm [274]. The problem is solved experimentally using 

simulated annealing for packing more than two polygons [283]. 

• Containment . Packing a variety of different polygons into some minimal shape is also 

known as the containment problem. Milenkovic et. al. has studied many variants of this 
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problem (some of which include strip packing) [95,224-228]. The variants examined 

do not have many of the simplistic assumptions that many other papers have, they 

directly tackle both approximate and exact solutions for packing real polygons (even 

nonconvex ones) into minimal shapes from various classes (e.g. rectangles). The cases 

of allowing rotations or translations only are addressed. However, their worst-case run 

times are all exponential. 

• Packing two polygons into a minimal rectangle. Alt and Hurtado, inspired by 

the work of Milenkovic et al. solve the minimum area-rectangle packing problem in 

polynomial time, but only when there are two polygonal objects to pack [12]. 
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Chapter 4 

Congruence 

4.1 Introduction 

In this chapter, we are interested in partitioning a simple polygon into two congruent 

components. Symmetry detection algorithms solve problems of the same flavour by detecting 

all kinds of isometries in a polygon, a set of points or a set of line segments and some 

classes of polyhedra [101]. Two open problems with unknown complexity were posed by 

Eades in [101]: the minimum symmetric decomposition (MSD) problem and the minimal 

symmetric partition (MSP) problem. Given a set D in M.d (d G {2,3}), the goal is to find a 

set of symmetric (nondisjoint for MSD and disjoint for MSP) subsets {D\, D2, •.., Dk) of D 

such that the union of the Di is D and k is minimum. The following problem is a decision 

version of a variation of MSP where k — 2: 

Problem 1. Given a polygon P with n vertices, compute a partition of P into two (properly 

or mirror) congruent polygons P\ and P%, or indicate such a partition does not exist. 

Eriksson claims to solve the aforementioned problem in 0(n3) time [111]. Rote observes 

that a careful analysis of Eriksson's algorithm yields a 0 ( n 3 l o g n ) running time for proper 

congruence and he shows that the combinatorial complexity of an explicit representation of 

the solution in the case of mirror congruence cannot be bounded as a function of n [252]. 

Rote also gives a counterexample where the algorithm fails for a polygon with holes. In 
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this chapter, we present two algorithms to solve the problem for a simple input polygon 

P: an 0(n2 logn) algorithm for properly congruent and possibly nonsimple P\ and P2 and 

an 0(ns) algorithm for mirror congruent and possibly nonsimple polygons Pi and Pi- In 

other words, our second algorithm is able to produce solutions unbounded by n in a time 

polynomial in n using an implicit representation of the output. Since we allow nonsimple 

polygons as outputs, we use a different definition of partition than the one found in the 

literature to solve Problem 1. 

The chapter is organized as follows. In Section 4.2, we define terms and notation needed 

for the rest of the chapter. In Section 4.3, we translate into pseudo-code the previous 

algorithm that solves Problem 1 and we present in detail Rote's critiques of the solution. In 

the remaining sections, we present our solution of Problem 1 along with some conjectures. 

4.2 Preliminaries 

Our notions of congruence follow those in [111]. Two polygons are said to be congruent if 

one can be transformed into the other by an isometry, i.e. a transformation that preserves 

distances. Two polygons are properly congruent if they are equivalent up to translations and 

rotations (see Figure 20) and are mirror congruent if they are equivalent up to reflection 

or glide reflection (see Figure 21). Note that a glide reflection is a reflection followed by a 

translation parallel to the reflection axis. A reflection along an axis g followed by a rotation 

or a translation is a reflection around an axis g'. Congruence transforms involving either a 

translation or rotation T — (p, 0) may be viewed as a rotation about an arbitrary point p, 

including points at infinity where 9 is the angle of rotation. Let T~l = (p, —6). Congruence 

transforms involving glide reflection are denoted by T = (g, v) where g is the axis of reflection 

and v is the vector of translation if any. Let T~l — (g, — v). 

Let Z_a be the interior angle of a point a on a polygon P. Let ab be the line segment 
p 

with endpoints a and b. 

A polyline can be viewed as an alternating sequence of lengths and angles, which always 

begins and ends with a length. The angles of a polyline are the ones measured in the interior 
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(a) 

(b) 

Figure 20: Properly congruent polygons: (a) two translationally congruent polygons with 
translation vector v, (b) two rotationally congruent polygons with rotation point p. 
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Figure 21: Mirror congruent polygons: (a) two mirror congruent polygons with reflection 
axis g, (b) two mirror congruent polygons with reflection axis g' and vector v. 



of the polygon. Let P[a .. b] be a polyline on the boundary of a polygon P and c be a point 

on that polyline. P[a .. b] can be written as the concatenation of two polylines and an angle: 

P[a .. b] = P[a .. c] + /_c + P[c .. b] (where + is the concatenation operator). A polygon P 

with vertices (pi,P2, • • • ,Pn) can be viewed as the concatenation of a polyline, an angle, a 

length and another angle: P[pi .. pn] + /_pn + \PnPi I + ZPi- A polygon can therefore, be 
p p 

written as the concatenation of several polylines (to which an angle is appended). 

Two polylines are congruent if they are represented by the same sequence (see Figure 22). 

Two polylines are flip-congruent if they are represented by the same sequence after replacing 

all of the angles a.{ in one by 27r — a, and reversing the order of the sequence (see Figure 23). 

In other words, two flip-congruent polylines are properly congruent in the pure geometric 

sense. Two polylines are mirror congruent if they are represented by the same sequence after 

reversing the order of the sequence (see Figure 24).We use = to denote proper congruence, 
FLIP MIRROR 

= to denote flip-congruence and = to denote mirror-congruence. Observe that 

Figure 22: Two translationally congruent polygons P (left) and Q (right) where polylines 
P[a .. b] and P[c .. d] are congruent. 

A simple polygon P is said to be partitionable into Pi and Pi if there exists two points 

b and e on 5P and a polyline sp connecting them such that P\ = P[e .. b] + x + sp + y 
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Figure 23: Two translationally congruent polygons P (left) and Q (right) where polylines 
P[a .. b] and P[c .. d] are flip-congruent. 

Figure 24: Two translationally congruent polygons P (left) and Q (right) where polylines 
P[a .. b] and P[c .. d] are mirror congruent. 
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and P2 = P[b .. e] + w + sp + z where x, y, w and z are some angles. A partitioning of P, 

if it exists, is a solution to Problem 1 under this definition of partition and is denoted by 

S = (Pi,P2). Components Pi and P^ are such that there exists a transformation Ts where 

Ts(Pi) = Pj- We say P\ and P2 are congruent if Ts involves rotation and translation such 

that Ts(Pi) = P2 and mirror congruent otherwise. Using the definition of a polygon as an 

alternating sequence of lengths and angles (which starts with a length and ends with an 

angle), components Pi and P2 are congruent if and only if their corresponding sequences 

are cyclic permutations of one another. The polyline sp is called the split-polyline and is 

denoted by Split(S). We are interested in a split polyline that has minimum complexity. 

When P is symmetric, we call the partition trivial and the problem reduces to symmetry 

detection which has been solved in linear time in [101]. 

Note if Ts is a reflection it can be determined by one pair of points (pi,Ts(pi))- If Ts 

is glide reflection, it can be determined by two pairs of points (pi,Ts(pi)) and (Pj,Ts{pj)) 

(i ^ j). We say that two subsets s\ C Pi and S2 Q P2 of congruent polygons Pi and P2 are 

transformationally congruent with respect to congruence transformation Ts if Ts(s\) — S2-

Let vd(a, b) be the vertical distance between the two points a and b. Let cwp(a) and ccwp(a) 

denote respectively the line segments incident to point a clockwise and counterclockwise 

around 6P (P is a simple polygon). A line determined by two points a and b is denoted by 

(ab). We normalize P to have unit perimeter. 

4.3 Eriksson's algorithm 

We present Eriksson's algorithm for partitioning a polygon into two congruent compo­

nents. We have rewritten his algorithm in pseudocode and separate it into two procedures: 

Algorithm 1 that checks for proper congruence and Algorithm 2 that checks for mirror 

congruence. 

Let us analyse the running time. S' is the set of all vertices and the midpoints of all 

segments in 8P. For every pair of points in S' (0(n2)), both procedures travel around 5P 

(0(n)) and check for the intersection of split-polyline with 5P (O(logn) assuming 0(n) 
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A l g o r i t h m 1 E r iksson ' s a lgor i thm for pa r t i t i on ing a po lygon in to two p rope r congruen t 

componen t s . 

Require: A polygon P with vertices S = {pi,P2, • • • >Pn) 
Ensure: Partitions P into proper congruent P\ and Pi or indicate tha t such a partition does not 

exist 
5 ' <— 5 U the set of the midpoints of all segments in 5P 
Pathi *- 0 
Path2 *- 0 
for all pairs (pi,Pj) of points in S' do 

Q<-Pi 
r <- Pi 
while PiPi+i = PiPi+i do {The two paths are constructed clockwise around 5P} 

Pathi <— Pathi + PiPi+i 
Pathi <— Pathi + PjpJ+T 
Pi <- Pi+i 
Pi <- Pj+i 

end while 
if Pathi and Pathi have reached r and q respectively t h e n 

Report that P can be partitionable into P\ <— Pathi and F2 <— Pathi with the line segment 
fg 

else {Pathi adds boundary segments and Pathi add duplicates of the line segments until it 
intersects the boundary again} 

repeat 
Pathi <— Pathi +PjPj+\ 
Pathi <— Pathi + PiPi+\ 

Pi *~ Pi+i 
until Pathi intersects the boundary again 
Check if the produced cut is valid and report a partition of P into Pi <— Pathi and 
Pi *— Pathi, if so 

end if 

Pi*-q 
Pi <- r 

while piPi-i = pjPj-i do {The two paths are constructed counterclockwise around 5P} 
Pathi <— Pathi + PiPi-i 
Pathi <— Pathi + PjPj-i 
Pi <- Pi-i 
Pi *~Pj-i 

end while 
if Pathi and Pathi have reached r and q respectively then 

Report that P can be partitionable into Pi *— Pathi and P2 *— Pathi with the line segment 
rq 

else {Pathi adds boundary segments and Pathi add duplicates of the line segments until it 
intersects the boundary again} 

repeat 
Pathi <— Pathi +PjPi-i 
Pathi <— Pathi + PjPj-i 

Pi «- Pi-i 
until Pathi intersects the boundary again 
Check if the produced cut is valid and report a partition of P into Pi <— Pathi and 
Pi <— Pathi, if so 

end if 
end for 
Report that P is not partitionable otherwise. 
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A l g o r i t h m 2 Er iksson ' s a lgor i thm for pa r t i t i on ing a polygon in to two mi r ro r congruen t 

componen ts . 

Require: A polygon P with vertices S = (pi,P2, • • • ,Pn) 
Ensure: Partit ions P into mirror congruent Pi and P2 or indicate that such a partition does not 

exist 
S' <— S U the set of midpoints of all segments in 6P 
Pathi <- 0 
Path2 <- 0 
intersect = false 
for all pairs (j>i,Pj) of points in S' do 

whi le PiPi+i = PjPj-i and Pathi r)Path,2 = 0 do {The two paths are constructed in opposite 
direction around 5P, say Pathi clockwise and Path2 counterclockwise} 

Pathi <— Pathi + PiPi+i 
Patli2 <— Path.2 + PjPj-i 
Pi <- Pi+i 
Pj * - P j - i 

end while 
if PtPi+i / PjPj-i t h e n 

TempPathi <— Pathi 
TempPath2 <— Path,2 
repeat 

Pathi <— Pathi +PjPj-i 
Path2 <— Path2 +PjPj-i 

Pj *~ Pj+i 
until Pathi intersects the boundary again 
if Pathi intersects the boundary again and the produced partition is valid t h e n 

Report a partition of P where Pi <— Pathi a n d P2 <— Path2 
else 

Pathi <- TempPathi + P\pi+i .. Pj] 
Path2 <— TempPath2 
repeat 

Pathi <— Pathi + P\pi+\ • • Pj] 
Path2 <- Path2 + P\pi+i • • Pj] 

until Pathi intersects the boundary of P 
Check if the produced partition is valid and report Pi <— Pathi and P2 <— Path2, if so 

end if 
end if 
Repeat the same construction of Pathi and Pat/12 exchanging their direction: the former goes 
counterclockwise and the latter clockwise around SP 

33: end for 
34: Report that P is not partitionable otherwise. 
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Pj = a 

(a) (b) (c) 

Figure 25: A bad example for Eriksson's algorithm. 

preprocessing and space [145]), a total of 0 ( n 3 logn) running time as opposed to the 0(n3) 

claimed by Eriksson [252]. 

In Algorithm 2, every pair of points in S' is considered to trace the congruence of the 

boundary and to find a potential split polyline to partition P into Pi and P^. Consider 

Figure 25. Suppose that pi = a and pj = b. (a, b) is a candidate pair that generates a 

congruent partition of P. Points pi and pj "travel" around 5P clockwise and counterclockwise 

respectively until they construct the split polyline and they reach b and a again (when 

Pi = d, pj = c and when pi = c, pj = e as shown in Figure 25). As we shall see later in this 

document, for this case, the split polyline is periodic with period P[a .. b] + x + Ts(P[a .. b]) 

(where x is some angle) and its complexity depends on the vertical distance between two 

points in 8P. Therefore, pi and pj might need more than linear time to "travel" around 

8P and construct the split polyline. This is where Eriksson's analysis of lines 27 to 30 in 

algorithm 2 fails. 
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4.4 Preprocessing 

Let the length of a polyline P[a .. b] (denoted dp(a, b)) be the sum of the lengths of all the 

line segments that form this polyline. Given a point a e 5(P), we need to locate another 

b G S(P) such that dp(a, b) = x. Let dp'1 (a, x) be the point b such that dp(a, b) — x. That is, 

it is the point on SP obtained by walking x units (in the given order of vertices) around 5P 

from a. Note that dp1 (a, 0.5) — bis equivalent to dj,1 (b, 0.5) = a. We need two preprocessing 

steps for our algorithms: one to detect the congruence of polylines and the other to, given a 

point a € S(P), locate another b £ S(P) such that dp{a,b) = x. 

Congruence of polylines is detected by string matching. Our string representation of 

polygons and polylines yields Corollary 3. 

Theorem 2 ( [115]). Given a string R of length n, an (n x n) table H of integers in the 

range 1.. .n2 can be computed in time 0(n2) such that Hitj — Hk,i iff'Rij — Rk,i where Rij 

is the substring of R from the ith to the jth character. 

Corollary 3. Given a simple polygon P, with 0(n2) preprocessing and space, queries of the 
? ? 

MIRROR FLIP 

form P[a .. b] = P[c .. d] and P[a .. b] = P[c .. d] can be answered in constant time. 

Theorem 4. Given a polygon P = (pi , . . . ,pn), with 0(n) preprocessing and space, the 

functions dp(a,b) and dj, (a,x) can be computed in constant time if the points a and b are 

vertices of the given polygon, and in O(logn) time if they are not, using standard point 

location techniques [239]. 

Proof. Let Dp[l .. n] be a vector of distances and let .Dp[l] = 0. For every vertex pi of P, 

we store its distance around 5P from pw Dp[i] = Dp[i — 1] + \pi ~ lpi\. Given two vertices 

a and b of the polygon P with respective indices k and I, dp(a,b) = D[l] — D[k] if k < I 

and dp(a,b) = 1 — (D[lj — D[k] otherwise. If a and b are not vertices then we locate in 

O(logn) time the segments they belong to on the boundary using standard point location 

techniques [239] and we calculate dp(a, b) similarly. Let Dp1 be a hash table of the distances 

in Dp. Given a point a and a distance x, consider that a is a vertex (if it is not locate it in 

O(logn) time using standard techniques) and let b the point which is at distance x from a. 
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We look Dp[a] + x up in the hash table. If 6 is a vertex, we find it in Dp in constant time. 

Otherwise, locate b in O(logn) time by binary searching in Dp. Both the distance vector 

and the hash table take linear time to construct and linear space to store. • 

4.5 Proper congruence 

In this section, we assume that if a solution exists then the transformation involves a rotation 

or a translation and is defined by Tg = (p, 0). Let b and e denote the endpoints of the 

split-polyline Split(S), if it exists. 

Lemma 5. Assume that P can be nontrivially partitioned into two properly congruent 

polygons then there is a solution S — ( P i , ^ ) such that either Pi[b .. e] is disjoint from the 

polyline Ts (Pi[6 • • e]) or P\[b .. e] must be a single line segment. 

Proof. Let S = (Pi,P2) where Pi and Pi are chosen to minimize the length of Split(S). 

Assume that Pi[b .. e] overlaps (fully or partially) with T(Pi[6 .. e]), i.e. T(Pi[6 .. e]) 

overlaps with P^\e • • b]. Let x be a point on P\\b .. e] and y be a point on Ts (Pi[b .. e]) such 

that y — Ts(x) and x =£ y. Cut the corners at x and y identically and the transformation 

is still preserved. A contradiction to the fact that the split-polyline was the shortest 

possible. • 

The section is organized as follows. We first show the necessary conditions for the 

existence of a solution in Lemma 6, namely that a solution S = (Pi,P2) can be specified 

by a sextuple of points on 5P satisfying some properties. In Lemma 7, we show how to 

verify if a given sextuple specifies a solution to Problem 1 or not. In Lemma 8, we show how, 

given two points of a solution sextuple, we can find the rest of the points in the sextuple. 

Finally, in Theorem 9, given that (by Lemma 6) at least four points of a solution sextuple 

are vertices, we present an 0(n2 log n) algorithm that solves Problem 1 for the case discussed 

in this section. 

For Lemmas 6, 7 and 8, assume that P can be nontrivially partitioned into two congruent 

components Px and P2 where S = (Pi.Pa) and let c = Ts(b), d = Ts{e), a = ^(b), 
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Figure 26: A simple polygon partitioned into two simple rotationally congruent components. 

and / = Tg x(e). Figures 26 and 28 show two polygons respectively partitioned into two 

rotationally and translationally congruent simple components Pi and P2. Figure 28 shows a 

polygon partitioned into two translationally congruent nonsimple components Pi and P2; 

Figure 29 shows the details of the partition. 

Lemma 6. The following facts hold (see Figures 26, 21 and 28): (a,b,c,d,e, f) appear 

clockwise order on 5P; P[f .. a] 3* P2[e .. 6]; P[c .. d] = Pi[b .. e}; P[a .. b] S P[b .. c]; 
FLIP 

P\d .. e] =* P[e .. / ] ; P[f .. a] = P[c..d];Za+/_c=Zb+Zb;Zf+Zd=Ze+Ze 
Pi P2 Pi P2 Pi P2 Pi P2 

and at least two of the points in {a, b, c} and two of the points in {d, e, / } are vertices of P. 

Proof. Since, by definition, P\[b .. e] is a subset of the boundary of Pi then its flip-congruent 

polyline Pi\e .. b] is a subset of the boundary of P2. By Lemma 5, Ts(P\[b .. e]) and 

59 



Figure 27: A simple polygon partitioned into two simple translationally congruent compo­
nents. 
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Figure 28: A simple polygon partitioned into nonsimple translationally congruent compo­
nents. 
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(a) 

Figure 29: A simple polygon partitioned into nonsimple translationally congruent compo­
nents. 
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Ts(P2[e .. b]) are subsets of SP. Therefore, points a, b, c, d, e, / belong to SP and their 

order is implied by Ts- Given that a — T^xif)) and / = Tg1(e), we can immediately conclude 

that the image of P[f .. a] by transformation T$ is P\[b .. e\. Similar arguments apply 

to prove that P[c . . d] ^ Pi[b . . e], P[a .. b] = P[b .. c] and P[d .. e] = P[e .. / ] . Since 

polylines P[f .. a] and P[c .. d] are respectively congruent to Pi[b .. e] and P2[e .. b], 
FLIP 

then P[f .. a] = P[c .. d\. Also, by preservation of angles, both angles Z a and Z c are 
Pi P 2 

congruent to Zb. Since b € 5P\ and b £ 8P2, then /_a= /_b and /_c= /_b. It follows that 
P Pi Pi Pi Pi 

Za + Z.c— Zb+ Zb. Similarly, it can be shown that Zf+Zd=Ze+Ze. It follows 
Pi P 2 Pi P2 Pi P 2 P i P 2 

that at least two of the points in {a, b, c} and two of the points in {d, e, / } are vertices of 

P. • 

Lemma 7. Given the preprocessing in Corollary 3 and the positions of six points (a, b, c, d, e, f) 

on SP, it can be checked that the points specify a solution S — (P\,P2) to Problem 1 in 

constant time. 

Proof. P\ and P2 are properly congruent if their respective boundaries are properly congruent. 

Component Pi is composed (in order) of the following alternation of polylines and angles: 

P[a .. b], Z b, Pi[6 .. e], Z e, P[e .. / ] , Zf, P[f • • a] and Za. Component P2 is composed 
P i P i P p 

(in order) of the following alternation of polylines and angles: P[b .. c], Zc, P[c .. d], Zd, 
p p 

P[d .. e], Z e, P2[e .. b] and Z b. Hence, if P[a .. b] S P[b .. c], Px[6 .. e] ^ P[c .. d], 
P2 P2 

P[e .. f] = P[d .. e], P[f .. a] S P2[e .. b], \aj\ = \be\ = \c~d\, Zb = Za + Zc and 
p p p 

Ze — Zd + Zf', the sextuple represents a congruent partition of P since the boundaries 
P p p 

of Pi and P2 consist of respectively congruent polylines and copying the reversed string 

representation of P[f .. a] onto be is possible. Otherwise, the sextuple does not represent a 

solution to Problem 1. This verification can be done in constant time by Corollary 3. • 

Lemma 8. The points {a, b, c, d, e, / } are as defined in Lemma 6. Given the position of two 

points of {a, b, c} or {d, e, / } and the preprocessing in Theorem 4, the positions of all six 

points (a,b,c,d,e,f) can be computed in O(logn) time. 

Proof. Suppose without loss of generality that the given pair is (a, b). The arguments are 

similar if (b, c), (a,c), (d,e), (d, f) or ( e , / ) is given. Since Pi[6 .. e] is the split-polyline, it 
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cuts the perimeter into two equal components thus, e = dp (b, 0.5). By the congruence of 

P[a .. b] and P[b .. c] and since a, b and c are consecutive on 5P, we obtain the following 

equality dpl(b, dp(a, b)) — c (in constant time if c is a vertex and in O(logn) time otherwise). 

From the properties of the transformation Ts, we can conclude that the circles Q>abc and 

Qdef are concentric with center p. Calculating p, d = Ts(e) and / = TgX{e) are all 

constant-time operations. • 

Theorem 9. Given a simple polygon P and given that Ts, if it exists, is either a rotation 

or a translation, a solution S = (P\,P2) to Problem 1 can be found in 0(n2 logn) time if 

and only if P can be partitioned into two congruent polygons. 

Proof. For every pair of vertices of P, we verify if it is (a, 6), (b, c), (a,c), (d,e), (d,f) or 

(/, e) by computing the four remaining points as shown in Lemma 8. We then verify that 

the obtained sextuple specifies a solution to the problem as stated in Lemma 7 and if it 

does then copying P\f .. a] onto be such that /_a = /_b (and /_c = /_b) yields a valid 
P P2 P Pi 

partition. The "if" part is trivial. The "only if" part stems from the previous lemmas; 

if the polygon is partitionable then by Lemma 6, (a, b, c, d, e, / ) exist and appear in that 

order on 6P. Note that the algorithm allows for degeneracies (a, b and c may be colocated 

for example). The split-polyline is by construction congruent to P[f .. a] and P[c .. d\. 

The string matching checks for congruence of P[a .. b] and P[b .. c] and for congruence of 

P[d .. e] and P[e .. / ] . Therefore, Pi and P2 having the same polylines forming them, are 

congruent. The split-polyline might however intersect 5P. This will result in two congruent 

sub-polygons Pi and P2 that might be nonsimple. Since we check every pair of vertices in P 

and we locate the four remaining points in O(logn) time for each pair, the algorithm runs 

in 0(n2 log n) time. • 

4.6 Mirror congruence 

In this section, we assume that if a solution exists then the transformation involves a glide 

reflection and is defined by Ts — (g, v). Let b and e denote the endpoints of the split polyline 

Split(S), if it exists. 
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L e m m a 10. Assume that P can be nontrivially partitioned into two mirror congruent 

polygons then there is solution S = ( P i , / ^ ) such that either P\[b .. e] is disjoint from the 

polyline Ts (Pi [6 • • e]), Ts (Pi[6 •. e]) partially overlaps with Pi[6 .. e], or Pi[b .. e] and 

p2[e .. b] are line segments. 

Proof. Suppose that Ts {P\[b .. e}) = P^e .. b]. We know that by definition Pj[6 .. 
FLIP 

e] = Pi\e .. b\. Therefore, the polyline Pi[b .. e] and its flip congruent Pj[e .. b] are 

mirror congruent which cannot happen unless P\[b .. e] and P%[e . . b] are line segments. • 

In Section 4.6.1, we present an algorithm for the case where Split(S) is disjoint from 

Ts (Split(S)) (see Figure 30) and in Section 4.6.2, we present an algorithm for the case where 

they partially overlap (see Figure 31). 

4 . 6 . 1 D i s j o i n t s p l i t - p o l y l i n e 

In this section, we assume that if a solution exists then the split-polyline Split(S) is disjoint 

from its mirror image by the transformation Ts- We first show the necessary conditions for 

the existence of a solution in Lemma 11, namely that a solution S = (Pi, P2) can be specified 

by a sextuple of points on 5P satisfying some properties. In Lemma 12, we show how to 

verify whether a given sextuple specifies a solution to Problem 1 or not. In Lemma 13, we 

show how, given two points of a solution sextuple, we can find the rest of the points in the 

sextuple in O(logn) time except when both the endpoints of Split(S) are not vertices of P . 

Given that (by Lemma 11) at least four points of a solution sextuple are vertices, we present 

an 0(n3) time algorithm in Lemma 14 and Theorem 15 to solve the problem for the case 

discussed in this section. 

For Lemmas 11, 12, 13, 14 and 25, assume that P can be nontrivially partitioned into 

two mirror congruent polygons Pi and P2 where S — (P\,P2) and Split(S) is disjoint from 

Ts (Split(S)) and let d = Ts(b), c = Ts(e), f = T j a (6) , and a = Tg x(e). 

L e m m a 1 1 . The following facts hold (see Figure 30): {a,b,c,d,e, f) appear in clockwise 
MIRROR MIRROR MIRROR 

order on 5P; P[f ..a] ^ P2[e .. b]; P[c .. d] = P\[b .. e}; P[a .. b] =* P[d .. e}; 
MIRROR FLIP 

P[b..c] ^ P[e.. f};P[f ..a] = P[c..d}; Za + Zc= Ze+Ze; </f + Zd= Zb+Zb; 
P P Pi P2 P P Pi Pi 

64 



at least two of the points in {a, c, e} and two of the points in {b, d, / } are vertices of P; 

dpl(a,0.5) =d; dp1 (b,0.5) = e; and d^l{c,0.5) = / . 

Proof. Given that P\[b .. e] is a subset of 5P\ then its flip-congruent polyline Pi\e .. b\ 

is a subset of 5P2- We also know that Ts(P\[b .. e]) and Ts(P2[e • • b]) are subsets of 8P. 

Therefore, the order of {a, b, c, d, e, / } around 5P is implied by Ts. Since a = Tg1(e) and 

/ = T^"1(6), then the image of P[f .. o] by transformation Ts is Pz[e .. b]. Similarly, we 
MIRROR MIRROR MIRROR 

show that P[c .. d] = Pi [6 .. e], P[a .. b] ^ P[d .. e] and P[b .. c] ^ P[e .. / ] . 

Since polylines P[f .. a] and P[c .. d] are, respectively, mirror congruent to i-^e • • b] 

and P\[b .. e] and since the mirror images of two flip-congruent polylines are themselves 
FLIP _ 1 

flip-congruent, then P[f .. a] = P[c .. d]. Given that a — Ts (e) and c = Ts(e), then 
Z a — Z. e and /_c—/_e. It follows that /_a + /_c — Z e + /_e. Similarly, we show that 
P P2 P P\ p P Pi p2 

Zf + Zd— ^b+Zb. It follows that at least two of the points in {a, c, e} and two of 
P P Pi Pi 

the points {b, d, / } are vertices of P. Assume the preprocessing described in Theorem 4. 

Observe that the sequence of lengths in polyline P[a .. d] is composed of the sequence of 

lengths in polylines P[a .. b], P[b .. c] and P[c .. d], and also the sequence of lengths in 

polyline P[d .. a] is composed of the sequence of lengths in polylines P[d .. e], P[e .. / ] 

and P[f .. a}. Hence, by the respective congruence of these polylines, given the position of 

a, the position of d can be determined n O(logn) time by computing dp (a, 0.5) = d. The 

sequence of lengths in polyline P[b .. e] is composed of the sequence of lengths in polylines 

P\b .. c], P[c .. d] and P[d .. e], and also the sequence of lengths in polyline P[e .. b] is 

composed of the sequence of lengths in polylines P[e .. / ] , P[f .. a] and P[a .. b]. Hence, 

by the respective congruence of these polylines, given the position of e, the position of b can 

be determined in O(logn) time by computing dp1 (e, 0.5) = b. The sequence of lengths in 

polyline P[c • • / ] is composed of the sequence of lengths in polylines P[c .. d], P[d .. e] and 

P[e .. / ] , and also the sequence of lengths in polyline P[f .. c] is composed of the sequence 

of lengths in polylines P[f .. a], P[a .. b] and P[b .. c]. Hence, by the respective congruence 

of these polylines, given the position of c, the position of / can be determined in O(logn) 

time by computing dp^{c, 0.5) = / . • 
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Figure 30: Polygons partitioned into two simple mirror-congruent components with a 
nonoverlapping split-polyline. 

Lemma 12. Given the preprocessing in Lemma 3 and the positions of six points (a, b, c, d, e, f) 

on 5P, it can be checked that the points specify a solution S = (P\, Pi) for the disjoint split 

polyline case of Problem 1 in constant time. 

Proof. P\ and Pi are mirror congruent if their respective boundaries are mirror congruent. 

ComponentPi is composed (in order) of the following alternation of polylines and angles: 

P\a .. b], Z b, P\[b .. e], Z e, P\e .. / ] , Z / , P[f • • a] and Z a . Component Pi is composed 
Pi Pi p P 

(in order) of the following alternation of polylines and angles: P[d .. e], Z e, Pi[e .. b], /_b, 
Pi Pi 

MIRROR MIRROR 

P\b..c], Z c, P[c .. d] and Z d. Hence, if P[a .. b] ^ P[d .. e], P[b .. c] S P[e .. / ] , 
FLIP 

P[f ..a] = Pled], \af\ = \be\ = \cd\, Ab = Zd + Zf and Ze = Za + Z.c, the sextuple 
p p p p p p 

specifies a solution of the problem since the boundaries of Pi and Pi consist of respectively 

congruent polylines and copying the reversed string representation of P[f .. a) onto be 

is possible. Otherwise, the sextuple does not represent a congruent partition of P. This 

verification can be done in constant time by Corollary 3. • 

Lemma 13. The points {a,b,c,d,e,f} are as defined in Lemma 11. Given the position of 

two points of {a, c, e] or {b, d, / } and the preprocessing in Theorem 4, the positions of all 

six points {a,b,c,d,e, / } can be computed in O(logn) time except in the case where both b 

and e are not vertices of P. 
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Proof. If (a,e) are vertices of P, then the positions of d and b are given in O(logn) time 

by Lemma 11. The pairs (a, e) and (b, d) form two pairs of points and their respective 

mirror images by Ts and hence, they are sufficient to compute the glide reflection Ts- Since 

c - Ts(e) and / = T J 1 ^ ) , c and / can then be found in constant time. Similarly, if (c, e) 

are vertices of P, b and / can be found in O(logn) time by Lemma 11. The pairs (b,f) 

and (c, e) are also two pairs of points and their mirror images and a and d can be found in 

constant time. If both a and e are not vertices and if both c and e are not vertices of P, 

then (a,c) are vertices and then d and / can be found in O(logn) time. Symmetrically, if 

pairs (b, d) or (b, f) are vertices, then we can find all six points. Else, similarly, (d, f) are 

vertices and we can then compute a and c in O(logn) time. However, in both cases ((a, c) or 

(d, f) are vertices) none of the obtained points form a pair of a point and its mirror image 

by Ts- Therefore, the remaining case is when {a, c, d, / } are vertices of P and both 6 and e 

are not (see Lemma 14). • 

A n 0(n3) algorithm 

Lemma 14. Given the positions of {a, c, d, / } , the fact that both b and e are not vertices 

(equivalent to {a, c, d, / } being all vertices by Lemma 11) and the preprocessing in Corollary 3, 

the positions ofb and e can be computed in 0(n) time. 

Proof. Since 6, in this case, is not a vertex of P, cw(b) and ccw(b) have the same slope. 

Since Ts(ccw(f)) — cw(b) and Tg (cw(d)) = ccw(b), then cwp(d) and ccwp(f) have the 

same slope. Similarly for cuip(a) and ccwp(c). For every segment s in 5P such that s has 

the same slope as cwp(a) and ccwp(c), compute the potential b and e (the distances of 

b from the endpoints of the line segment that contains b should be equal respectively to 

\cwp(a)\ and \ccwp{c)\ and e is half the perimeter away from b) and check, in constant time, 

the congruence of polylines as stated in Lemma 12. • 

Theorem 15. Given a simple polygon P and given that Split(S), if it exists, is disjoint 

from Ts (Split(S)), a solution S =• {P\,P2) to Problem 1 can be found in 0(n3) time if and 

only if P can be partitioned into two mirror congruent polygons. 
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Proof. For every pair of vertices of P, we verify it is (a, e) or (c, e) or (b, d) or (b, / ) by 

computing the four remaining points as shown in Lemma 13. We verify the solution as 

stated in Lemma 12. If none of the previous pairs form a pair of vertices then by Lemma 13, 

{a, c, d, / } are vertices and both b and e are not. For every pair of vertices of P, we consider it 

is either (a, c) or (d, / ) and we compute b and e as discussed in Lemma 14. If the verification 

succeeds in one the cases, then copying P\f .. a] onto be such that /_a = /_e (and /_c= /_e) 
P P2 P Pi 

yields a valid partition. The "if" part is trivial. The "only if" part stems from the previous 

Lemmas; if the polygon is partitionable then by Lemma 11, a,b,c, d, e, / exist and appear in 

that order on 5P. The split-polyline is by construction congruent to P[f .. a] and P[c .. d]. 

The string matching checks for congruence of P[a .. b] and P[d .. e] and for congruence of 

P[b .. c] and P[e .. / ] . Therefore, P\ and P2, having the same polylines defining them, are 

congruent. The split-polyline might however intersect SP. This will result in two congruent 

sub-polygons Pi and P2 that are nonsimple. Since we check every pair of vertices in P and 

we locate the four remaining points in 0(n) time for each pair, the algorithm runs in 0(nz) 

time. • 

4.6.2 Partial overlap 

In this section, we assume that if a solution S exists then the split-polyline Split(S) is 

partially overlapping with its mirror image by the transformation Ts- We first prove a 

sufficient condition for the periodicity of a string (representing a polyline) needed for the 

rest of the section. We then show the necessary conditions for the existence of a solution in 

Lemma 17, namely that a solution S — (Pi, P2) can be specified by a sextuple of points on 

5P that obey one of two sets of properties (which we call case 1 and case 2). In Lemma 18, 

we show how to verify if a given sextuple specifies a solution to Problem 1 or not. In 

Lemmas 19 and 20, we show how, in each one of the two cases, given two points of a solution 

sextuple, we can find the rest of the sextuple points. Finally, in Theorem 21, given that (by 

Lemma 17) at least four points of a solution sextuple are vertices, we present an 0(n3) time 

algorithm that solves Problem 1 for the case discussed in this section. 

For Lemmas 17, 18, 19 and 20, assume that P can be nontrivially partitioned into 
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two mirror congruent polygons Pi and P^ where Split(S) is partially overlapping with 

Ts (Split(S)) and let Ts(e) = c, T^"1(6) = / . Assume without loss of generality that the axis 

of glide reflection g is vertical. 

Lemma 16. Let R be a string representing a polyline, let m(R) denote the representation 

of the mirror image of this polyline by some glide reflection and let substi(R, i,j) denote 

a substring of R from index i to index j . Given a string R such that R — r\m{ri)r2rz for 

some strings r 1 ; r<i and r3 where |r"21 > | n | and such that the substrings m(r i)r2r 3 and 

nm(ri)r2 represent a polyline and the reverse of its mirror image, then R is a periodic 

string with period \r\\. 

Proof. Given that the substrings m(r i ) r 2 r3 and r\m{r\)r2 represents a polyline and the 

reverse of its mirror image, then: 

m(m{ri)r2rz) = r 1 m(r i ) r 2 

which implies that: 

r im(r2)m(r 3 ) = rim(ri)r2 

Removing r\, we obtain: 

m(r2)m(r3) — m{r\)r2 

Since \r<i\ > | r i | and by doing the appropriate replacement of strings, we get: 

m(r i )subs t r (m(r 2 ) , | m ( r i ) | - l , |m(r2) | - l )m(r3) = m(r i ) subs t r ( r 2 ,0 , | r 2 | - | m ( r 3 ) | - l ) m ( r 3 ) 

Hence, 

substr(m(r2), |m(r i ) | - 1, \m(r2)\ - 1) = substr(r2 ,0, |r2 | - |m(r 3 ) | - 1) 

Therefore r2 (and hence R) is a periodic string with period r\m(r\). Note that if \R\ is not 

divisible by |r"im(ri)|, R will end with a prefix of r\ or m{r\). D 
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MIRROR 

Lemma 17. The following facts hold (see Figure 31): P[e .. f) = P[b .. c}; P\[f .. 
MIRROR MIRROR 

e] = P2[c .. b]; there exists two points a and d on 5P such that either P[f .. a] = P[c .. 
FLIP 

d), P[a .. b] = P[d .. e], Z (2n - Id) + Z f = Zb + Zb and Zc + Z (2?r - Za) = 
p p p Pi p2 p p p 

FLIP 
Ze + Ze (this is case 1, see the left polygon in Figure 31), or P[f .. a] = P[c .. d], 
P i Pi 

MIRROR 
P[a .. b] = P[d .. e], Zd + Zf = Zb+ Zb and Zc + Za = Ze+ Ze (this is case 2, see 

P P Pi P2 P P Pi Pi 

the right polygon in Figure 31); if q — vd(b,e)/vd(f,b) then for case 1, q is an odd integer 

and for case 2, q is even; at least two of the points in {a, c, e} and two of the points in 

{b,d,f} are vertices of P; (a,b,c,d,e, f) appear in clockwise order on 5P; dp1 (a, 0.5) = d; 

dpl{b,Q.b) = e and d p ^ c , 0.5) = / . 
MIRROR 

Proof. Given that c = Ts(e) and b — Ts(f), we conclude that P\[f .. e] = P2[c .. b], 
MIRROR 

P[e..f] ^ P[b..c},Zf=Zb<mdZc=Ze. 
P Pi P Pi 

Let v denote some angle and let x = Z f + Z(2ir — Zb), y = Zb and z — Ze. Since 
P P P Pi p2 

MIRROR 

Pi[f ..e] ^ P2[c .. b] and P[f .. b] is a prefix of Pi[f .. e], then Ts(P[f .. b}) is a suffix 

of P2[c .. b}. The polyline P i [ / .. e] starts with P[f .. b], angle y and Ts{P[f .. b\). Let 

us denote the remaining suffix of P\[f • • e] by W. The reverse of polyline P[c .. b] is then 

formed of the concatenation of Ts(P[f •. b}), angle x and P[f .. b], angle v and Ts(W). 

Let Tg (e) be denoted by e'. Let us split the subpolyline represented by W into w\ and 

w<i around e'. P[f .. e] is formed of the concatenation of P[f .. b], angle y, Ts(P[f • • b]), 
angle v, w\, angle Z e and Wi and the reverse of P[c .. b] is formed of the concatenation of 

Pi 

Ts(P[f • • b}), angle x, P[f .. b], angle v, Ts{w\), angle z and Ts{u>2). We also know that 

Pi\e .. b] is the mirror image of P\[f .. e']. Now, consider the string R from Lemma 16. 

P[f .. b] has the same properties as R, hence, P\[f .. e] is a periodic polyline and is of the 

form (P[f .. b] + y + Ts(P[f ..b}) + x)k+ j(P[f .. b}) + r. Similarly, the reversed string that 

represents P2[c .. b] will be of the form (Ts{P{f .. b])+x + P[f .. b]+y)k+jTs{P[f .. b})+r 

where j'• — 0 ,1 , k > 1, + is the concatenation operator for polylines and the arithmetic 

operator for angle x and y. Note that r is a string representation of a polyline that by 

Lemma 16 can be any prefix of P[f .. b] or Ts(P[f • • b}). If j — 0 then r is a prefix of 

P[f .. b] (see Figure 31 (left) ), else if j — 1 then r is a prefix of Ts(P[f • • b]) (see Figure 31 
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(right)). Due to the periodicity of P[b .. e], we conclude that q is an odd number in case 1 

and q is an even number in case 2. The order of {a, b, c, d, e, / } around 5P is implied. 

Let d! be the start point of r on P\[f .. e] and let a be the endpoint of the copy of r 

on P[f .. b] then there exists a point d o n ? 2 [ c b] such that d — Ts(d'). If j = 0 then 
MIRROR MIRROR FLIP 

P[c . . d] S* Pj [d' .. e] which implies that P[c .. d] 3* P [ / . . o], P[d .. e] = P[a . . 6], 
FLIP 

Z b = Z (2TT - Zd) and Z e = Z (2TT - Z a ) . If j = 1 then P[c . . d] ^ PWd' . . el which 
Pi P p p2 P P 

FLIP FLIP 
implies that P[c .. d] S P [ / .. a], P[d . . e] =* P[a .. 6], Z 6 = Z (2TT - Z d) and Z e = Z a. 

Pi p p P2 P 

It follows that at least two of the points in {a, c, e} and two of the points {b, d, / } are vertices 

of P . 

Since the sequence of lengths in polyline P[a .. d] is composed of the sequence of lengths 

in polylines P[a .. b], P[b .. c] and P[c .. d], and also the sequence of lengths in polyline 

P[d .. a] is composed of the sequence of lengths in polylines P[d .. e], P[e .. f] and P[f .. a], 

by the respective congruence of these polylines (in both cases 1 and 2), given the position of 

a, d can be found in O(logn) time by dp1 (a, 0.5) = d. Also, since the sequence of lengths in 

polyline P[b .. e] is composed of the sequence of lengths in polylines P[b .. c], P[c .. d] and 

P[d .. e], and also the sequence of lengths in polyline P[e .. b] is composed of the sequence of 

lengths in polylines P[e .. / ] , P[f .. a] and P[a .. b], by the respective congruence of these 

polylines (in both cases 1 and 2), given the position of b, e can be found in O(logn) time by 

dp1 (6,0.5) = e. Finally, since the sequence of lengths in polyline P[c .. f] is composed of 

the sequence of lengths in polylines P[c .. d], P[d .. e] and P[e .. / ] , and also the sequence 

of lengths in polyline P[f .. c] is composed of the sequence of lengths in polylines P[f .. a], 

P[a .. b] and P[b .. c], by the respective congruence of these polylines (in both cases 1 and 

2), given the position of c, / can be found in O(logn) time by dp (c, 0.5) = / . • 

Lemma 18. Given the preprocessing in Corollary 3 and the positions of six points (a, b, c, d, e, / ) 

on 5P, it can be checked that the points specify a solution S = (Pi ,P2) for the partially 

overlapping split polyline case of Problem 1 in constant time. 

Proof. P\ and P2 are mirror congruent if their respective boundaries are mirror congruent. 

ComponentPi is composed (in order) of the following alternation of polylines and angles: 
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Figure 31: Polygons partitioned into two simple mirror-congruent components with an 
overlapping split-polyline. 
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Figure 32: A simple polygon partitioned into nonsimple mirror congruent components. 
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P[e .. / ] , Z / , P\f • • a], Za, P[a .. b], Zb, P\[b .. e] and Z e. Component P2 is composed 
p P Pi P2 

(in order) of the following alternation of polylines and angles: P[b . . c], Zc, P[c .. d], Zd, 
p p 

P[d .. e], Ze, P2V. . . b] and Z b. Let m = vd(b,e)/vd(f,b). We need to consider two 
P2 P2 

FLIP MIRROR MIRROR 

cases. First, if P[a .. b] = P[d .. e], P[b .. c] S P[e . . / ] , P[f .. a) ^ P[c .. d], 
MIRROR 

vd{f,b)\vd(b,e) mod vd(s) where s = P[c .. d], Z(2ir - Zd) + Zf = Zb and Z c + 
p p p p p 

FLIP MIRROR 

Z (2TT - Z a) = Z e, we are in case 1. Else, if P [ / .. a] =* P[c .. d] and P[a .. b] = P[d .. 
MIRROR FLIP 

e},P[b..c] = P[e.. f},vd(f, b)\ vd(b,e) mod vd(s) where s S P[c . . d], Zd + Zf = Zb 
p p p 

and Zc + Za = Ze,we are in case 2. In both cases, the given sextuple specifies a solution of 
p p p 

the problem since copying an alternation of T$(P[f • • b]) and P[f .. b], m times followed by a 
MIRROR 

copy of P[f .. a] (case 1) or P[c .. d] (case 2) onto be will imply that P\ [/ .. e] = P2 [c • • b] 

and hence that the boundaries of P\ and P2 consist of respectively congruent polylines. 

Otherwise, the given sextuple does not represent a solution to Problem 1. This verification 

can be done in constant time by Corollary 3. • 

Lemma 19. The points (a,b,c,d,e,f) are as defined in Lemma 17. Given the position of 

any two of {a, c, e) or {b, d, / } and the preprocessing in Theorem 4, the positions of all six 

points (a,b,c,d,e, f) can be computed in O(logn) time except in the cases where either both 

b and e or both c and f are not vertices (Figures 33 and 34). 

Proof. By Lemma 17, at least two of {a, c, e} and at least two of {b, d, / } are vertices of P. 

If (c, e) are vertices of P, then the position of the four remaining points can be found in 

the following way. / and b are given in O(logn) time by Lemma 17. The pairs (b,f) and 

(c, e) form two pairs of points and their respective mirror images by Ts and hence, they 

are sufficient to compute the glide reflection. It remains to compute the positions of a and 

d. Let d' = Tg1(d). By definition, d' is on the polyline Pi [b .. e\. In case 1, see left of 

Figure 31, d can be directly computed by translating b in the direction of the glide and 

the norm of the translation vector is given by ( L ^ / M ] + l)vd(f, b). In case 2, see right of 

Figure 31, d! is the translate of b in the direction of the glide and the norm of translation 

vector is given by: [vJ>f'
eA\vd(f,b). We can then compute d since its the image of d' by the 

glide reflection. In both cases, we can find a by d'j3
1(f,d(c,d)) = a. If (b, f) are vertices 
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i 
ii 
iii 
iv 
V 

vi 

a 
E 
E 
E 
E 
V 
V 

b 
E 
V 

Not V 
V 
V 

Not V 

c 
V 
E 

Not V 
V 

Not V 
V 

d 
E 
E 
E 
E 
V 
V 

e 
V 
E 
V 

Not V 
V 

Not V 

f 
E 
V 
V 

Not V 
Not V 

V 

Table 1: Sub-Cases for the sextuple: V stands for "is a vertex", Not V for "is not a vertex" 
and E for "either". 

of P, finding the position of the four remaining points is similar. However, if neither the 

pair (c, e) nor the pair (6, / ) specifies a solution, then it is easy to see by Lemma 17 and a 

combinatorial counting that four sub-cases remains to be considered, see table 1. Sub-cases 

iii and iv are similar to the sub-cases above (since if (e, / ) (or (6, c)) are vertices, we can 

compute 6 and c in O(logn) time by Lemma 17 (e and / ) . Sub-cases v (where both c and / 

are not vertices of P) and vi (where both b and e are not vertices of P) are the remaining 

ones (see Lemma 20). 

• 

An 0(n3) algorithm 

Let la and 16 denote two subcases of case 1. Subcase la is one where {a, c, d, / } are vertices 

and {6, e} are not and subcase 16 is one where {a,b,e,d} are vertices and {c, / } are not. 

Similarly 2a and 26 denote two subcases of case 2. Subcase 2a is one where {a, 6, e, d} are 

vertices and {c, / } are not and subcase 26 is one where {a, c, d, / } are vertices and {6, e} are 

not. Figure 33 and Figure 34 show the four subcases. 

Lemma 20. Given the positions of {a, c, d, / } and the preprocessing in Corollary 3, the 

positions ofb and e can be computed in 0(n) time for subcases la and lb. Similarly, given 

the positions of {a, b, d, e) and the preprocessing in Corollary 3, the positions of c and f can 

be computed in 0(n) time in subcases 2a and 26. 

Proof. In subcases la and 16, (see Figure 33), given the positions of {a, c, d, / } and the fact 

75 



= 3 

Figure 33: Subcase la (left) where {a, c,d, / } are vertices and {b, e} are not. Subcase 16 
(right) where {a, b, e, d} are vertices and {c, / } are not. 
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Figure 34: Subcase 2a (left) where {a,b,e,d} are vertices and {c, / } are not. Subcase 26 
(right) where {a,c, d, / } are vertices and {b,e} are not. 
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FLIP 

tha t P[a .. b] = P[d . . e] by Lemma 17, we observe that ccwp(b) and cwp(d) have the 

same length and slope. In subcase la , since b is not vertex then cwp(b) and ccwp(b) have 

the same slope. For every segment s G S(P) (clockwise from a) that has the same slope as 

cwp(d), compute the potential b (distance \cwp(d)\ from the first encountered endpoint). 

The potential e can be computed in O(logn) time by Lemma 17. In subcase 16, b is a vertex 

of 6P. For every vertex p G S(P) (clockwise from a) such that ccwp(p) has the same slope 

and length as cwp(d), we consider p as the potential b and we compute e in O(logn) time by 

Lemma 17. In subcases 2a and 2b, (see Figure 34), given the positions of {a, b, d, e} and the 
FLIP 

fact that P[f .. a] = P[c .. d] by Lemma 17, we observe that ccwp(a) and cwp(c) have the 

same length and slope. In subcase 2a, since c is not vertex then cwp(c) and ccwp(c) have 

the same slope. For every segment s £ S(P) (counterclockwise from a) that has the same 

slope as ccwp(a), we compute the potential c (distance \ccwp(a)\ from the first encountered 

endpoint). The potential / can be computed in O(logn) time by Lemma 17. In subcase 26, 

c is a vertex of SP. For every vertex p G 5(P) (counterclockwise from a) such that cwp(p) 

has the same slope and length as ccuipip), we consider p as the potential c and we compute 

/ using the function dp. In all four cases, the validity of the solution can be checked in 

constant time as stated in Lemma 18. O 

Theorem 21. Given a simple polygon P and given that Split(S), if it exists, is partially 

overlapping with Ts (Split(S)), a solution S — {P\,P2) to Problem 1 can be found in 0 (n 3 ) 

time if and only if P can be partitioned into two congruent polygons. 

Proof. For every pair of vertices of P, we verify it is (c, e) or (b, f) or (e, / ) or (6, c) by 

computing the remaining four points as shown in Lemma 19. For every computed sextuple, 

we verify (in constant time as stated in Lemma 18) if they specify a solution to the problem 

considering both cases 1 and case 2. If none of the previous pairs form a pair of vertices, then 

either {a, c, d, / } (case 1) or {a, 6, d, e} (case 2) are vertices by Lemma 19. In subcase la: 

for every pair of vertices, assume it is (a, c), then d and / can be computed in O(logn) time. 

Find 6 and e and do the verification as discussed in Lemma 18. In subcase 16: for every pair 

(p, s) where p is a vertex of SP and s is a line segment in 5P, we verify if p is a and s is the 
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line segment such that c e s (c is positioned \ccwp(a)\ from an endpoint of s) by computing 

d and / in O(logn) time, by computing b and e and doing the verification as discussed in 

Lemma 18. In subcase 2a: for every pair of vertices, assume it is (a,e), then d and b can be 

computed in O(logn) time. Find c and / and do the verification as discussed in Lemma 18. 

In subcase 2b: for every pair (p, s) where p is a vertex of 6P and s is a line segment in 8P, 

we verify if p is a and s is the line segment such that e G s (e is positioned |cctop(a)| from 

an endpoint of s) by computing b and d in O(logn) time, by computing c and / and doing 

the verification as discussed in Lemma 18. Let m = vd(b, e)/vd(f, b) (m should be greater 

than one and vd{b,e) mod vd(f,b) — vd(f,a) for a partition to exist). If the verification 

succeeds in any of the previous cases then either : 1) if m is odd and we are in case 1, setting 

P![b.. e) to (Ts(P[f .. b}) + x + P[f .. b}+y)f +Ts(P[f ..b]) + x + P[f .. a] yields a valid 

partition, 2) if m is even and we are in case 2, setting P\{b . . e] to (Ts(P[f .. b]) + x + P[f .. 

b] + y ) T + V + Ts(P[f .. a]) yields a valid partition, or 3) the current sextuple does not 

specify a congruent partition. Note that x — /_ f + Z(2TT — Z b) and y = /_b (which is equal 
P P P Px 

to Z (27r — Ad) in case 1 and /_dm case 2). The "if" part is trivial. The "only if" part 
p p P 

stems from the previous Lemmas; if P is partitionable then by Lemma 17, {a, b, c, d, e, / } 

exist and appear in that order on 5P. The split-polyline allows by construction for P\[f .. e] 

to be congruent to P2[c .. b]. The string matching checks for congruence of P[e .. f] and 

P[b .. c\. Therefore, Pi and P2 having the same polylines defining them, are congruent. The 

split-polyline might however intersect 8P. This will result in two congruent sub-polygons Pi 

and P2 that are nonsimple (see Figure 32). • 

4 .6 .3 C o m b i n e d a l g o r i t h m for t h e t w o mirror c o n g r u e n t c a s e s 

T h e o r e m 22. Given a simple polygon P, we can decide if it can be partitioned into two 

mirror congruent polygons and find a solution S — (P\,P2) to Problem 1, if it exists, in 

0(n 3 ) time. 

Proof. By Lemma 10, the split-polyline Split(S) is either disjoint or partially overlapping 

with its mirror image T$ (Split(S)). Hence, given a simple polygon P , we run the algorithm 

for the disjoint case from Theorem 15. If it fails, we run the algorithm for the partially 
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overlapping case from Theorem 21. If either of the two cases succeeds report the partition 

else report that P is not partitionable into two mirror congruent components. • 

4.7 Ideas toward a better algorithm 

4.7 .1 P r o d u c i n g s i m p l e c o n g r u e n t c o m p o n e n t s 

Conjecture 23. Limiting the output to simple components P\ and P2 will still result in an 

0(n2 log n) time algorithm. 

We believe that conjecture 23 is true at least in the case of proper congruence. The 

idea stems from our belief that if nonsymmetric polygon P is partitionable into two proper 

congruent components in two different ways (i.e. using two different split-polylines) then P 

consists of four copies of a monomorphic tile arranged around the midpoints of the two split-

polylines. A monomorphic tile is a tile that can form a monohedral tiling of the plane, in other 

words, it tiles the plane with copies of itself [142]. By Lemma 6, we conclude that if a polygon 

P is partitionable into two proper congruent subpolygons in two different ways (Pi , P2, P{ 

and P'2 pairwise congruent), there exist two sextuples (a, b, c, d, e, / ) and (a', b', c', d'', e', / ' ) 
FLIP 

around 8P such that : Px\a .. b] = P2[b .. c]; Px[f .. e] = P2[e .. d}; Px[a .. / ] = P2[c .. d}; 

P[[a! ..b'}^ P&V .. c']; P[[f .. e'} =* Pfc' .. d'} and P{[a' . . / ' ] = P'2\d .. d'}. 

Figure 36 shows details of the properties for translationally congruent subpolygons. The 

following properties hold in the translation congruence case: \ab\ = \bc\; \fe\ = \ed\; {a,b,c} 

are on a line, say (ac); {d,e,f} are on a line, say (df); (ac) \\ (df); acdf is a parallelogram; 

abef is a parallelogram; bcde is a parallelogram; the respective segments forming P\ [a .. f] 

and P2[c .. d] form (pairwise) a series of parallelograms; \a'b'\ = \b'c'\\ \f'e'\ = \e'd'\; 

{a',b',c'} are on a line, say (aV); {d',e',f} are on a line, say (d'f); {a'c') \\ (d'f); a'c'd'f 

is a parallelogram; a'b'e'f is a parallelogram; b'c'd'e' is a parallelogram and the respective 

segments form (pairwise) P{[a' .. / ' ] and P2[c' .. d'\ form a series of parallelograms. 

Since our algorithm checks 0(n2) potential positions for the sextuple (a,b,c,d,e, f) and 

we believe that if there is more than one candidate tuple, the input polygon P has the 

properties presented above, we can preprocess P to check if it obeys these properties otherwise, 
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Figure 35: If a nonsymmetric polygon P is partitionable into two congruent components in 
two different ways then it consists of four copies of a monomorphic tile. 

Figure 36: Properties of a simple polygon partitionable into two translationally congruent 
components into two different ways. 
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we run our algorithm on P and we test the obtained solution, if any, for nonsimplicity and 

output it only if it is simple. This check is linear and is done only once which does not affect 

the running time of our algorithm and hence, the conjecture. 

4.7.2 A n 0{n2 log n) algorithm for the disjoint split-polyline mirror con­

gruence case 

In his manuscript [252], Rote made the following observation about the axis of glide reflection. 

Lemma 24 ( [252]). The axis of glide reflection g goes through the center of gravity gp of P. 

This observation yields a better algorithm for the disjoint split-polyline case as shown 

in Lemma 25 and Theorem 26 assuming that the center of gravity of P is precomputed in 

linear time. 

Lemma 25 . Given the positions of {a,c}, the fact that both b and e are not vertices 

(equivalent to {a, c, d, / } being all vertices by Lemma 11) and the preprocessing in Theorem 4, 

the positions of {b,d,e,f} can be computed in O(logn) time. 

Proof. By Theorem 4, the positions of d and / can be computed in constant time (d and 

/ are both vertices in this case): dp(a,0.5) = d and dp(c,0.5) = / . Observe that since 

Ts(a) — e and Ts(e) — c then the image of a~e by Ts is ec. Mirror congruence preserves 

distances, therefore \ae\ — \ec\ and e belongs to the perpendicular bisector of ac. Similarly, 

we show that b belongs to the perpendicular bisector of df. The axis of glide reflection g 

passes through the midpoints of ae, ec, bd and bf and is hence parallel to ac and to df. 

By Lemma 24, the axis of glide reflection g is determined given the positions of {a, c, d, / } . 

Therefore, the transformation is determined in constant time and so are the positions of 

points b and e. Checking if b and e belong to 5P takes O(logn) time. • 

Theorem 26. Given a simple polygon P and given that Split(S), if it exists, is disjoint 

from Ts (Split(S)), a solution S = (Pi, P2) to Problem 1 can be found in 0(n2 logn) time if 

and only if P can be partitioned into two mirror congruent polygons. 
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Proof. For every pair of vertices of P , we verify if it is (a, e) or (c, e) or (6, d) or (6, / ) by 

computing the four remaining points as shown in Lemma 13. We verify in constant time if 

the obtained sextuple specifies a solution of the problem as stated in Lemma 12. If none of 

the previous pairs form a pair of vertices then by Lemma 13, {a, c, d, / } are vertices and 

both 6 and e are not. For every pair of pair of vertices, we consider it is (a, c) by computing 

{6, d, e, / } in O(logn) time as stated in Lemma 25 and verifying if the obtained sextuple 

specifies a solution. If the verification succeeds in any of the cases, then copying P[f .. a] 

onto be such that Za = Ze (and Zc — Z e) yields a valid partition. The "if" part is trivial. 
P P2 P Pi 

The "only if" part stems from the previous Lemmas; if the polygon is partitionable then 

by Lemma 11, a,b,c,d,e, f exist and appear in that order on SP. The split-polyline is by 

construction congruent to P [ / . . o] and P[c .. d]. The string matching checks for congruence 

of P[a .. b] and P[d . . e] and for congruence of P[b .. c] and P[e .. / ] . Therefore, Pi and Pi, 

having the same polylines defining them, are congruent. The split-polyline might however 

intersect 6P. This will result in two congruent sub-polygons Pi and P2 that are nonsimple. 

Since we check every pair of vertices in P and we locate the four remaining points in 0(log n) 

time for each pair, the algorithm runs in 0 ( n 2 l o g n ) time. • 

In Lemma 20 we show how given the positions of any two of {a, c, e} or {6, d, / } , we can 

find the positions of the remaining four points in logarithmic time except in subcases v and 

vi of Table 1. In subcase v, given any two points of {a, b, d, e} the remaining two can be 

computed in logarithmic time. Similarly, in subcase vi, given any two points of {a,c, d, / } 

the remaining four can computed in logarithmic time. In the former case, it remains to 

compute c and / while in the latter it remains to compute b and e. For subcase l a (subcase 

2a), given {a, c, d, / } ({a, 0, d, e}) and given that P[d .. c] (P[a .. b}) is a translated reflection 

of P[f .. a] {P[d .. e]), the axis g of glide reflection Ts can be computed. For subcase 16 

(subcase 2b), given {a, 6, d, e} ({a, c, d, / } ) and given that P[d .. e] (P[c .. d]) is a translated 

copy of P[a .. b] along the axis g (P[f • • a]), the axis g of glide reflection Ts can be computed 

as follows: g is parallel to (ae) and (bd) in subcase 16 (parallel to (fe) and (be) in subcase 26) 

and by Lemma 24 goes through the center of gravity of P . However, in all previous cases, 
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(a) (b) 

Figure 37: (a) A polygon P is partitionable into two congruent components in several 
different ways, (b) a polygon that is not partitionable into two congruent components. 

computing g is not enough to determine the glide reflection: the translation vector remains 

unknown and the four computed points in each cases do not contain a pair of a point and 

its glide reflection. We think that it is possible to compute the remaining two points in 

each case without an additional linear factor in the running time. The idea stems from our 

belief that if there are multiple b's and e's or multiple c's and / ' s then the input polygon P 

consists of a polyline and a flip-congruent copy of it separated by two line segments and 

this polygon has the properties of case 1 (see Figure 37 (a)). We also conjecture that if the 

input polygon P has the properties of case 2 it is not partitionable (see Figure 37 (b)). 

Conjecture 27. An 0(n2 log n) time algorithm is possible for the mirror congruence case. 
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4.8 Conclusion 

In this chapter, we presented an O^) time algorithm that partitions a simple polygon 

P into two congruent subpolygons P\ and Pi if possible or reports that such a partition 

does not exist. Pi and Pi can possibly be nonsimple, i.e. self-intersecting subpolygons. 

We presented several conjectures that, if true, improve the running time of the algorithm. 

It would be interesting in the future to study a more general version of Problem 1. We 

conjecture Problem 28 to be NP-complete for polygons with holes. 

Problem 28. Given a polygon P with n vertices, compute a partition of P into k where 

k > 3 (properly or mirror) congruent polygons {P\, P2,..., Pk}, or indicate such a partition 

does not exist. 

Another interesting problem to study would be covering a polygon with two congruent 

components. 

Problem 29. Given a polygon P with n vertices, compute a covering of P by two (properly 

or mirror) congruent polygons P\ and Pi or indicate such a covering does not exist. 

A polygon that can be covered with two congruent components seems to have a structure 

similar to a polygon that is partitionable into two congruent components. Let the covering 

polylines be the polylines that separate the polygon P into two components that cover it. 

Figures 38 and 39 show four polygons covered by two translationally congruent compo­

nents. If a polygon is coverable by two translationally congruent components, there seems to 

exist a 12-tuple of points {a,b,c,d,e, f,g, h,i,j, k,l} on 5P such that: P[a .. b] = P[b .. c]; 

P[a .. e} = P[b .. f\; P[d ..e}^ P[e .. / ] ; P[g .. h] S P[h .. i]; P[g .. k] £* P[h .. 1} and 

P[i .. k] = P[k .. I]. The covering polylines P[k .. b] and P[e .. h] are respectively congruent 

to P[l .. a] and P[e .. h]. 

Figure 40 shows three polygons covered by two rotationally congruent components. If 

a polygon is coverable by two rotationally congruent components, there seems to exist an 

octuple of points {a,b,c,d,e,f,g,h} on 5P such that: P[a .. b] = P[c .. d]; P[d . . e] = 

P[f .. g\. The covering polylines P[c .. d], P[d .. e], P[e .. h], P[h .. c] are such that: 

P[e .. a] = P[g .. c] and P[b ..d] = P[d.. / ] . 
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(a) 

- J T L j n L ^ 

Figure 38: Three polygons (a), (b) and (c) covered each by two translationally congruent 
components. 
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Figure 39: A polygon covered by two translationally congruent components where the 
endpoints of the covering polylines are colocated pairwise. 

Figures 42 and 41 illustrate four polygons each covered by two mirror congruent compo­

nents. If a polygon is coverable by two mirror congruent components, there seems to be 

three cases: 

• either there exists a 12-tuple of points {a,b,c,d,e, f,g,h,i,j,k,l} on 5P such that 
MIRROR MIRROR MIRROR 

P[a ..b) S P\k .. j \ ; P[b .. c] ~ P[j .. %]; P[a .. e] ~ P[g .. k}; P[b .. 
MIRROR MIRROR MIRROR 

/ ] = P[h .. I]; P[g .. h] = P[e..d\; P[h .. i] ^ P[c .. d] and the covering 

polylines P[k .. 6] and P[e .. h] are respectively mirror congruent to P\l .. a] and 

P[f--9], 
MIRROR 

• there exists a sextuple of points {a, b, c, d, e, / } on 5P such that P[a .. b] = P[d .. e]; 
MIRROR 

P[b .. c] = P[e .. f] and the covering polylines P[e .. b] and P\b .. e] are 

respectively mirror congruent to P[f .. a] and P[c .. d], 

• or there exists a quadruple of points {a, b, c, d} on 8P such that P[d .. a] 
MIRROR 

P[b 
MIRROR 

and the covering polylines P[d .. b] and P[b .. d] are such that P[a .. d] = P[c .. b]. 

The structure of the covering seems to indicate that a polynomial time algorithm—similar 

to the partition algorithm—is possible for covering a polygon with two congruent polygons. 

Therefore, we conjecture the following: 

Conjecture 30. Covering a polygon with two congruent components is polynomial. 
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Figure 40: Three polygons (a), (b) and (c) each covered by two rotationally congruent 
components. 



Figure 41: Two polygons each covered by two mirror congruent components. 
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(a) 

Figure 42: Two polygons each covered by two mirror congruent components where the 
endpoints of the covering polylines are colocated pairwise. 
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Chapter 5 

Partitioning squares into equal 

area components with minimum 

ink 

5.1 Introduction 

In this chapter, we explore experimentally the partition of squares (and partially rectangles) 

into k equal area components while minimizing the perimeter of the cuts that is, in other 

words, an equal area minimum ink partition for some constant k > 1. As we saw in 

Chapter 3, several variants of the problems have been discussed in the literature. We 

summarize the previous results in two tables: Table 2 for general and convex polygon 

partition and Table 3 for rectangle and square partition. In Table 3, we follow Nagamochi 

and Abe [240] and Beaumont et al.'s [33] definitions for the different rectangle and square 

partition problems: PERI-SUM denotes the total perimeter minimization problem where the 

sum of the perimeters of the resulting rectangles or squares in the partition is minimized; CUT 

denotes the minimization of the perimeter of the cut lines and is equivalent to PERI-SUM; 

PERI-MAX denotes the maximum perimeter minimization problem where the maximum 

perimeter of the resulting rectangles or squares is minimized; and ASPECT-RATIO denotes 
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the maximum aspect ratio minimization problem where the maximum aspect ratio of the 

resulting rectangles or squares is minimized. 

Most of the previous results in Tables 2 and 3 solve problems that are quiet different 

than the one we explore in this chapter. Hert and Lumelsky partition arbitrary simple and 

nonsimple polygons and do not consider equal areas (except for the NP-hardness proof) [30]. 

Guardia and Hurtado consider Steiner free partition of convex bodies [143]. Note that Steiner 

free partition for rectangles and squares becomes quickly impossible (for values of A; > 3). 

Akiyama et al. consider equal area and equal perimeter partition of convex polygons [9,10]. 

None of these works consider optimizing the perimeter. Kong et al. consider the PERI-MAX 

but not CUT and PERI-SUM that are of interest to us [179,180]. Although the more 

recent works of Nagamochi and Abe [240] and Beaumont et al. [33] focus on rectangle and 

square partition and although they minimize the perimeter (PERI-SUM), they consider 

areas that are not necessarily equal. Bose et al. partition rectangles and squares into equal 

area components while minimizing the perimeter of the cuts (the CUT problem) but they 

mainly consider straight line orthogonal cuts [51,54]. The authors restrict their attention to 

orthogonal cuts. They prove that if k is a perfect square then orthogonal cuts are optimal. 

A recursive algorithm that is exponential in the number of cuts but guaranteed to cut a 

rectangle optimally into k equal areas is given. Two approximation algorithms are described 

that output a near optimal partitioning of rectangles and prisms into equal area components. 

A third approximation algorithm that runs in 0(1) time and that finds near optimal cuts of 

a unit square is also presented. Their optimal partitioning of the square in 2 ,3 ,4 ,5 and 6 

components using straight lines cuts is shown in Figure 43. The closest problems to the one 

we consider are posed by Koutsoupias et al. [181] and Bose et al. [55]. Allowing straight line 

and curved cuts, Koutsoupias et al. present a PTAS for partitioning a simple polygon into 

equal area components while minimizing the perimeter of the cuts [181]. They also give an 

O(rologn) time algorithm for convex polygons. However, the number of areas is restricted to 

two and the areas are allowed to be disconnected. Bose et al. quarter the square optimally 

(with some assumptions about the optimal solution), i.e. partition it into k = 4 equal area 

components with minimum perimeter cuts [55]. Assuming symmetry, the optimal 4-partition 
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Polygon 
Arbitrary 
Arbitrary 

Convex 
Convex 
Convex 
Simple 

Description 
Not necessarily Equal Area 
Not necessarily Equal Area 

No Steiner points 
Equal Area, Equal Perimeter 

Two, not necessarily connected 
Two, not necessarily connected 

Minimum Ink 
Yes 
No 
No 
No 
Yes 
Yes 

Algorithm 
NP-hard 

0(pn) 
No 
No 

0(n log n) 
PTAS 

Reference 
[30] 
[30] 

[143] 
[9,10] 
[181] 
[181] 

Table 2: Area partitioning results. 

of the square using straight line cuts and sections of circular arcs are given. The conjectured 

to be optimal 3-partition of the square using straight line (not necessarily orthogonal) cuts 

and sections of circular arcs is presented [52]. Our work is an extension of this latter work. 

Our goal is to investigate a characterization of the optimal solution for partitioning the unit 

square into k equal area components while minimizing the total perimeter of the cuts, where 

3 < k < 10. We use only straight line cuts (which may be orthogonal) or only circular cuts 

(which may be straight lines as well). The solution for partitioning the ( 1 x 2 ) rectangle into 

k equal area components is investigated as well, where 3 < k < 6. We start by describing the 

set of experiments we have accomplished in Section 5.2. In Section 5.3, we list the results we 

obtained and finally in Section 5.4, we strengthen the experimental result for the 5-partition 

of the square by obtaining it analytically. 

5.2 Experiments description 

The characterizations of the determined best solutions for partitioning the unit square and 

the ( 1 x 2 ) rectangle into equal area components were obtained experimentally using Surface 

Evolver. Surface Evolver is an interactive program for the study of surfaces shaped by 

surface tension and subject to various constraints [57]. The Surface Evolver's role in this 

context is to evolve the surface toward minimal energy: minimal perimeter of the internal 

cuts in our case. There are two main commands in Surface Evolver useful for our purposes: 

the iteration command, g, which evolves the surface toward its minimal energy and the 

vertex popping command, o, which creates new vertices, Steiner points, in the interior of 
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Polygon 
Square 

Rectangle 
Rectangle 

Square 

Rectangle 

Square 
Square 

Square 
Rectangle 
Rectangle 

Rectangle 

k Components 
Squares 

Rectangles 
Rectangles 
Rectangles 

Rectangles 

Rectangles 
Rectangles 

k = 4, arbitrary* 
Rectangles 
Rectangles 

Rectangles 

Equal Area 
Yes 
Yes 
Yes 
Yes 

Yes 

No 
No 

Yes 
No 
No 

No 

Obj. Func. 
P-M 
P-M 
CUT 
CUT 

CUT 

P-S 
P-M 

P-S 
P-M 
P-S 

A-R 

Algorithm 
Oik*5) 
0(fcb) 
0(4fc) 

1 ' 2(Vk-D a p p r O X 

1 ' 2(Vk-D a p p r 0 X 

NP-complete, ^-approx 
NP-complete, -4=-approx 

No 
1.25-approx 
^ - a p p r o x 

bounded aspect ratio 

Reference 
[179] 
[180] 
[54] 
[54] 

[51] 

[33] 
[33] 

[55] 
[240] 
[240] 

[240] 

Table 3: Area partitioning results where "P-M", "P-S", "A-R" abbreviate PERI-MAX, 
PERI-SUM and ASPECT-RATIO respectively and * indicates a partition with straight line 
or circular cuts. 

Figure 43: Optimal orthogonal straight line cut partitions of the square into 2,3,4,5 and 6 
components. 
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square or the rectangle if their creation would allow a more minimal solution. 

The experiments necessitate having an idea of the initial topology of the solution. A 

comprehensive set of starting cases is required where each case is given as an input datafile to 

Surface Evolver. Let us consider the square partitioning first. For the number of partitions 

k, where 3 < k < 10, we consider the case where all the k partitioned regions are adjacent 

to the boundary of the square. For 4 < k < 10, we consider the additional case where only 

k — 1 regions are adjacent to the boundary of the square and one region is in the interior. 

For 6 < k < 10, we consider one more case where k — 2 regions are adjacent to the boundary 

of the square and two regions are in the interior. For k — 9 and k = 10, we add the case 

where three regions are in the interior and k — 3 regions are adjacent to the sides of the 

square. The number of edges touching the boundary varies for each of the cases and we 

determine all the possible ways to arrange the varying number of edges on the sides of the 

square. We eliminate possible duplicates occurring due to rotational or mirror symmetry. 

For each possible starting partition, we allow Surface Evolver to minimize the perimeter of 

the cuts while permitting it to pop vertices if necessary. Note that in the case of two or more 

regions in the interior, we try the two possibilities of connecting them by either a common 

edge or common vertex. It is worth mentioning as well that we examined the case where we 

start with triangular faces for the interior regions and the minimization process would pop 

new vertices to find a minimal solution (up to k — 1 Steiner points for the instance of one 

internal region for example). 

The same procedure described above was followed for the (1 x 2) rectangle. However, 

the number of topological starting combinations to try in the case of the rectangle was 

higher because of the loss of symmetry, since all the sides of the original are no longer the 

same length. For the circular cuts, the same procedure was followed while allowing Surface 

Evolver to refine the internal edges. Note that the refinement process was not started from 

the straight line cuts that we have determined to be the best but rather all combinations 

were tried again in this case. It turned out for the cases considered in this chapter, the 

circular cut solutions were simple refinements of the best straight line solutions. 
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k = 3 

k = 5 

1.634912 

2.523943 

3.934344 

1.623278 

2.502132 

3.921669 

k = 4 

k = 6 

k = 8 

k = 1 0 

1.981089 

2.953714 

3.607823 

4.238941 

1.975593 

2.939949 

3.597895 

4.229713 

Figure 44: The determined best partitions of the unit square. 

5.3 Results 

To summarize the results, Figure 44 shows a list of what we have determined to be the best 

solutions for the three to ten equal area partitions of the unit square for both straight lines 

and circular cuts. Each partition is labelled with the corresponding number of partitions k 

and the sum of the perimeters of the cuts. Figure 45 exhibits the found best straight line 

partitions of the (1 x 2) rectangle for the cases where 3 < k < 6. 

Examining the comprehensive set of experimental results obtained, the following obser­

vations can be made regarding the optimal solution: 
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k = 3 k = 4 H] "TTrT'Fffl 
2.0000 1936491 3.460053 3.913906 

Figure 45: The determined best partitions of the (1 x 2) rectangle. 

Observation 31 . Total circular cuts perimeter is less than total straight line cuts perimeter. 

Observation 32. All Steiner points in the interior of the square (and the rectangle) are of 

degree 3. 

Observation 33. For circular cuts, the interior angles at a Steiner point are 120° (this has 

been confirmed by using analytical representations of the best solutions for k = 3,4,5). The 

interior angles of edges with vertices on the boundary of the original square are 90° (again, 

this has been confirmed for k = 3,4, b). 

Observation 34. All partitions have mirror symmetry: either with respect to vertical or 

horizontal lines or with respect to the diagonal. In addition, several partitions have a 180° 

rotational symmetry where the same partition is obtained after rotating the square by 180°. 

Note that for k = 5 the partition has 90° symmetry as well. 

Based on the previous set of observations, we make the following conjecture: 

Conjecture 35. For a large number of components in partitions, we expect a "honeycomb" 

pattern shape - a tiling of approximately regular hexagons. 

We agreed on Conjecture 35 with Simon who has unpublished results on this problem [267]. 

This conjecture is further supported by the relatively recent proof—by Hales—of the very 

long standing "Honeycomb Conjecture" (attributed to the Greek mathematician Pappus 

of Alexandria). The honeycomb conjecture, now the honeycomb proof, states that for any 

equal area partition of the plane, the regular hexagonal grid is the one with minimum 

perimeter [148]. 
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Figure 46: 5-partition of the unit square. 

5.4 Analytical backing 

The goal of this section is to strengthen the result obtained from Surface Evolver for the 

five partition by obtaining it analytically. We consider the partition of the unit square into 

five equal areas as shown in Figure 46. 

The perimeter of the cuts I can be expressed as I = 2b + 2c + 2d + e + / . 

The areas of the regions on the right of the line (AB) (the top-right, bottom-right and 

middle one) can be expressed as follows and are known respectively to be 

( I -b) 
areal = ( l - e - / ) V 2

o
 ; 

where 

area2 = %- + j + \j s(s - d)(s - We2 + - ) ( s - \ / a 2 + b2) 

d+yJe2 + l + Va^TV 

areaS = i l _ ^ + I + J a / ( y _ c ) ( s ' _ ^ / 2 + I ) ( s / _ ^ / ( l _ a)2 + h2) 
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Figure 47: 5-partition of the unit square while allowing b to move. 

where 

, _ c + v//2 + i + \ / ( 1 -«) 2 + ^2 

s — 

Assuming symmetry along the line (AB) and assuming b to move horizontally, the 

optimization of the perimeter function can be reduced to the optimization of a function of 

the three parameters a, e and / . 

If we remove the assumption for b and let it move as in Figure 47, the angle between a 

and b is introduced as a new parameter. Again, we reduce the problem to the optimization 

of a function of three parameters a, e and / while varying the angle explicitly. The value is 

minimized when b is horizontal as was assumed above. 

In both cases, the result is the same as the numerical approximation given by Surface 

Evolver: 2.523943. 

5.5 Conclusion 

Tables 4 and 5 display a summary of the perimeter of the cuts with a comparison with 

previously published results. Table 4 shows the results for nonorthogonal straight line cuts 
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Table 4: Straight line partitions. 

k 
3 
4 
5 
6 
7 
8 
9 
10 

Previous Result 
1.63282 [52] 

1.9810890 [55] 
-
-
-
-
-
-

Surface Evolver Approximation 
1.63491250321 
1.98108902015 
2.52394331793 
2.95371443853 
3.29267460641 
3.60782394229 
3.93434474798 
4.23894158524 

Our Analytical Result 
1.634912503 
1.981089020 
2.523943328 

-
-
-
-
-

Table 5: Circular cut partitions. 

k 
3 
4 
5 
6 
7 
8 
9 
10 

Previous Result 
1.592 [52] 

-
-
-
-
-
-
-

Surface Evolver Approximation 
1.62327887438 
1.97559321003 
2.50213220778 
2.93994972004 
3.28073781333 
3.59789581746 
3.92166941092 
4.22971391094 
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while Table 5 is reserved for circular cuts. For k = 3 and for both straight line and circular 

cuts, the perimeter of the cuts we obtained are greater than the perimeter obtained in [52], 

although the positioning and arrangement of the straight line cuts are the same as for our 

solution. For k = 4, our results coincide with the previous ones [55], for both the best 

solution obtained from Surface Evolver and the analytical calculation. 
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Chapter 6 

Packing 

6.1 Introduction 

In this chapter, we are interested in packing the maximum number of axis-aligned squares 

in a simple polygon. Fowler et al. proved the problem to be NP-complete for polygons 

with holes [121]. The reduction is based on the construction of intersection graphs. Given 

X = {x\,X2, • • • ,xn} objects to pack, assign a vertex Vi for each object. An edge (vi,Vj) 

exists if the corresponding objects overlap. Considering a finite number of positions for the 

objects, the problem reduces to a maximum independent set problem on a general graph, 

which is known to be NP-complete. Hochbaum and Maass designed a PTAS for the version 

of the problem where the input polygons are orthogonal grid polygons and where the squares 

are (k x k) squares [155]. Their algorithm is based on the shifting strategy for covering and 

packing problems. The strategy allows to bound the error of the simple divide-and-conquer 

approach by applying it repetitively and then choosing the best solution. Let / be the shifting 

parameter, their algorithm works as follows: the input polygon is divided into vertical strips 

of width k and groups of I consecutive strips are considered. Repeating the shifting / times 

results in the starting partition. For each vertical partition, the same strategy is applied 

horizontally and a local enumeration algorithm is applied to obtain optimal solutions for 

the resulting (Ik x Ik) squares. The running time of this algorithm is 0(k2l2nl ) where n is 

the number of grid squares inside the boundary of the given polygon and its approximation 
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ratio is (1 + j ) 2 . Baur and Fekete address a similar problem which consists of packing 

k (L x L) squares into an input polygon—possibly with holes—such tha t L is as big as 

possible. The authors prove that , unless P = N P , there is no polynomial time algorithm 

that finds a solution within more than | | of the optimum for orthogonal polygons and they 

give a polynomial algorithm that solves their problem with a |-approximation ratio. They 

also conjecture that the problem we are interested in is polynomial for simple orthogonal 

polygons [31]. 

Here is a formulation of the problem at hand: 

Problem 36. Given a simple polygon P and an (L x L) square S, maximize the number of 

axis-aligned copies of S that can be packed in P. 

The chapter is organized as follows. Section 6.2 contains several general definitions needed 

for the rest of the chapter. In Section 6.3, we present three polynomial time algorithms 

for packing the maximum number of unit squares in three classes of orthogonal polygons: 

the staircase polygons, the pyramids (or double staircase polygons) and Manhattan skyline 

polygons. In Section 6.4, we study a special case of the problem for general orthogonal 

polygons. We conclude in Section 6.5 by posing the problem in the latter section from a 

graph theory perspective. 

6.2 Definitions 

Let the polygon in which the maximum number of squares is packed be called the container 

polygon. In the following, we embed container polygons on unit square grids. Two (k x k) 

squares are said to have the same alignment in a packing if the coordinates of their respective 

corners are ik apart on the grid and they are said to be have the same horizontal (vertical) 

alignment if their respective a:(j/)-coordinates are jk on the grid apart where i and j are 

integers. Figure 48 illustrates the different alignments of unit squares on a square grid. 

An area of the container where no square is packed is called a p-hole (packing hole). An 

internal p-hole is one that is not adjacent to the boundary of the container. Figure 49 shows 

two examples of p-holes shaded in blue. 
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Figure 48: Different alignments of unit squares: (a) and (b) two squares with same alignment, 
(c) two squares with same vertical alignment only, (d) two squares with same horizontal 
alignment only (e) two squares with different alignments. 

104 

file:///-i~r-ir~/r-/
file://-/r-/r~/~r~i


I I I I 

™-J-
i K ^ f ' s S W S 

I I 

I 1 

I 1 

I 1 

I 1 

I I 

I 1 

I I 

(a) 

i i i i 

i — i 

i i 

i — i 

i — i — i — i 

i — i 

i i 

i — i 

L 

I I 

I 1 

I I 

I 1 

en 

i i 

- - 1 — i 

i i 

i — i 

i i 

Figure 49: (a) A p-hole (shaded in blue) on the boundary, (b) an internal p-hole (shaded in 
blue). 

We orient our orthogonal polygons such that their edges are parallel to the axes. As 

a part of our techniques to prove some characteristics of an optimal solution, we apply 

gravity to the squares in the packing. Applying gravity consists of displacing a square, when 

possible, into a lower adjacent p-hole. Figure 50 (a) and (b) show respectively an optimal 

solution for a given polygon and the application of gravity to the squares in the solution. 

The p-holes are shaded in red. 

A Manhattan skyline polygon is an orthogonal polygon monotone with respect to one 

of its edges, call it base. A pyramid polygon (or double staircase polygon) is a Manhattan 

skyline with no dents. A staircase polygon is a pyramid monotone with respect to both 

the x and y axes, i.e. it has two bases. The monotone polyline linking the two bases in a 

staircase polygon is called a stair polyline. Figures 54, 52 and 51 show respectively examples 

of a Manhattan skyline polygon, a pyramid and a staircase polygon. Let [/-edge denote a 

dent of a Manhattan skyline polygon P and let L-edge denote a horizontal edge with one 

reflex endpoint. Each horizontal edge e is defined by its y-coordinate ye and its length le. 
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•HI 

^?§?§i§: 

(a) (b) 

Figure 50: (a) An optimal solution for packing an orthogonal polygon with 2 x 2 squares, 
(b) gravity applied to the squares in the solution. 

•o 

Figure 51: An example of a staircase polygon and a stair polyline P[a .. b]. 

Figure 52: An example of a pyramid. 
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Figure 53: An example of a Manhattan skyline polygon. 

6.3 Polynomial t ime algorithms for special cases 

6.3.1 A lemma and an observation 

Observation 37 and Lemma 38 are important to our polynomial time algorithms. 

Observation 37. An (I x w) rectangle can be optimally packed with unit squares in 0(1) 

time. The optimal number of squares is ([l\ x \w\). 

Lemma 38. Flooring the y-coordinate of U-edges and L-edges does not affect the optimality 

of a solution (for the problem of packing the maximum number of squares in staircase, 

pyramid and Manhattan skyline polygons). 

Proof. Flooring the y-coordinate ye of an [/-edge or L-edge e consists of replacing it with 

[j/ej as shown in Figure 54 (b) for a Manhattan skyline polygon. It implies deleting from 

the given polygon P rectangles of the form (le x (ye — [yeJ))- If the given polygon P has 

only U- and L-edges with integer coordinates then flooring them does not bring any changes 

to the polygon nor to the optimal solution and we are done. Otherwise, assume that that 

every solution has at least k > 1 squares intersecting the to-be-deleted rectangles. Consider 

the solution with the minimum number k of such squares. Figure 55 shows two examples 

of squares intersecting the to-be-deleted rectangles: (a) shows one near an [/-edge and (c) 

shows one near an L-edge. Consider, without loss of generality, the case of an [/-edge. The 
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Figure 54: (a) A Manhattan skyline polygon, (b) flooring the y-coordinates of its U- and L-
edges. 

other case is similar. The distance d from the square to edge to horizontal base of the 

polygon P is fractional and hence there is a p-hole below the square. Therefore, the square 

can be slid down, a contradiction to the fact that k was the minimum of number of such 

squares. • 

6.3.2 An 0(n) algorithm for packing unit squares in staircase polygons 

In this section, we present a polynomial time algorithm for the following problem: 

Problem 39. Given a staircase polygon P, find the maximum number of unit squares that 

can be packed in it. 

We orient the polygon P such that its lower leftmost corner is the intersection of its two 

bases and we assume that this corner is a vertex of a square grid. We number the rows of 

the grid starting from the horizontal edge incident to this corner. We define the right wall 

of a row to be the edge of the stair polyline with the smallest z-coordinate that is partially 

or fully contained in the row. We first prove that there always exists an optimal solution 

with a square in the lower left corner of a staircase polygon (unless the maximum is zero). 

Then we prove that there always exists an optimal solution where all the packed squares are 
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Figure 55: Flooring the y-coordinates of {/-edges (a) and L-edges (b) does not affect the 
number of squares in an optimal solution. 
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Figure 56: (a) A staircase polygon where the maximum number of unit squares is zero, (b) 
the red square can be displaced to occupy the corner. 

on the grid and therefore that a greedy algorithm is possible. 

Lemma 40. Every optimal solution has an equivalent optimal solution with a square in the 

lower left corner unless the optimal number of squares is zero (see Figure 56 (a)). 

Proof. Consider the grid square at this corner and consider any feasible solution. If, in this 

solution, this grid square is empty then the solution is not optimal. Therefore, as shown 

in Figure 56, the lower leftmost grid square is intersected by a packed (red) square. Since 

the grid square can be intersected by no other packed square, the red square can be slid to 

touch the corner. • 

L e m m a 41 . There always exists an optimal solution such that all packed squares are aligned 

on the grid. 

Proof. Assume that every optimal solution has at least fc > 1 squares not aligned on the 

grid. Consider the solution with the minimum number fc of nonaligned squares. Let z be 

the grid cell that is: (1) closest to the corner (in manhattan distance) and (2) not covered 

with one square, z, which is shown in blue in Figure 57, is either: covered with no squares; 

partially covered with one square; or partially or totally covered by two or more squares. 

The first case contradicts optimality, since z can be covered with an additional square. The 

second case contradicts the fact that all optimal solutions have at least fc squares not aligned 
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Figure 57: The closest grid cell to the corner not covered with a square is either: (a) covered 
with no squares, (b) partially covered with one square, (c) partially or totally covered by 
two or more squares. 

on the grid since it is possible to align the square partially covering z to fully cover z giving 

a solution of the same size with k-1 squares not aligned on the grid. The third case gives an 

obvious contradiction. It is geometrically impossible because z has the side of the polygon or 

grid-aligned squares to the left and below (otherwise it is not the closest to the corner). • 

Theorem 42. An optimal solution is obtained in 0(n) time by greedily filling a staircase 

polygon P starting from the lower leftmost corner. All squares in this solution are aligned 

on the grid. 

Proof. Let xr<i be the x-coordinate of the right wall of row i. Let xv be the x-coordinate of the 

vertical base of the polygon P and yh the y-coordinate of the horizontal base of the polygon P. 

The algorithm is as follows: set max — 0. Choose the L-edge e with the smallest y-coordinate 

ye. If j is the row in which this L-edge is contained then max <— max+ [xrj — xv\ x [ye — yh\ 

(by Observation 37). Let yh = ye and iterate. Finally, add the maximum number of squares 

obtained in the last remaining rectangle to max. Report max as the maximum number of 

squares that can be packed in P. 

The running time of this algorithm depends on the number of horizontal edges on the 

boundary of P. This number is bounded by n. Therefore the algorithm, which does constant 

work each horizontal edge, runs in 0(n) time. 
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Figure 58: (a) An optimal solution for a pyramid, (b) the grid numbering starting at e\ and 
the left and right walls for row 2. 

Assume that the solution obtained by the algorithm is not optimal, i.e. there exists an 

optimal solution with one or more squares. By Lemma 41, this solution has an equivalent 

one where all packed squares are on the grid. Therefore, there exists a row in the latter 

solution with at least one more square, which is not possible since the algorithm packs the 

maximum number of squares in a row. 

• 

6.3.3 A n 0(n) algorithm for packing unit squares in pyramids (or double 

staircase polygons) 

In this section, we present a polynomial time algorithm for the following problem: 

Problem 43. Given a pyramid P, find the maximum number of unit squares that can be 

packed in it. 

We orient P such that it is monotone with respect to the horizontal axis and we lay the 

horizontal edge of the polygon P with the minimum y-coordinate on a square grid. Call this 

edge e\. We number the rows of the grid by their level starting from this edge as shown in 

Figure 58 (b). Let a and b be the endpoints of the line segment with the largest y-coordinate 
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Figure 59: (a) A p-hole where squares adjacent to it have the same vertical alignment, (b) a 
p-hole where squares adjacent to it do not have the same vertical alignment and the upper 
adjacent square is not blocked, (c) a p-hole where squares adjacent to it do not have the 
same vertical alignment and the upper adjacent square is blocked. 

in P and let c and d be the endpoints of e\. Define the left chain of the polygon P to be 

the polyline P[d .. a] and the right chain of P to be the polyline P[b .. c] (see Figure 58). 

Define the left wall of a row to be the edge of the left chain with the greatest x coordinate 

and that is partially or fully contained in the row. Define the right wall of a row to be the 

edge of the right chain with the smallest x coordinate and that is partially or fully contained 

in the row. Figure 58 (b) shows the left and right walls of row 2. 

Lemma 44. There always exists an optimal solution such that all packed squares are 

vertically aligned on the grid. 

Proof. Assume that gravity has been applied to every optimal solution and that every 

optimal solution has at least k > 1 squares not vertically aligned on the grid. Consider the 

solution with the minimum number A; of nonaligned squares. Let z be the p-hole that is 

closest to ei by vertical distance. The adjacent squares to z either have the same horizontal 

alignment as shown in Figure 59 (a) or have different alignments. In the latter case, the 

upper square adjacent to the p-hole can be either blocked or not (by another square) as 

shown in Figure 59 (b) and (c) respectively. In the first two cases, the upper adjacent square 

can be slid into z which contradicts the fact that gravity was applied. In the third case, 

the distance d of the blocking square (see the green square in Figure 60) to the edge e\ is 

either fractional or integer as shown in Figure 60 (a) and (d) respectively. In the case d is 
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Figure 60: (a) A p-hole where squares adjacent to it do not have the same vertical alignment 
and the upper adjacent square is blocked by the green square, (b) the squares below the 
green square have either the same alignment or (c) different alignments. 
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fractional, there will be a p-hole "below" the blocking square since e\ is laid on the integer 

grid. This contradicts the fact that z was the closest to e\. In the case d is an integer, the 

blocking square has an integer number of squares "below" it (for the solution to be optimal). 

However, in this case, the lower square adjacent to the hole has distance w to e\ where w is 

fractional. Hence, there is a j>-hole below this square lower than z, a contradiction (ef being 

fractional implies also the nonoptimality of the solution). • 

It is important to note that Theorem 45 implies Theorem 42. 

Theorem 45. An optimal solution is obtained in 0(n) time by greedily filling a pyramid P 

starting from e\. All squares in this solution are vertically aligned on the grid. 

Proof. Let x/;;, xrj be the x-coordinates of the left and the right walls of row i, respectively. 

Let y/, the y-coordinate of the horizontal base of the polygon P. The algorithm is as follows: 

set max = 0. Choose the L-edge e with the smallest y-coordinate ye. If j is the row in which 

this L-edge is contained then max <— max + [xrj — xij\ x [ye — yh\ (by Observation 37). 

Let yh = ye and iterate. Finally, add the maximum number of squares obtained in the last 

remaining rectangle to max. Report max as the maximum number of squares that can be 

packed in P. 

The running time of this algorithm depends on the number of horizontal edges on the 

boundary of P. This number is bounded by n. Therefore the algorithm, which does constant 

work for each horizontal edge, runs in 0(n) time. 

Assume that the solution obtained by the algorithm is not optimal, i.e. there exists an 

optimal solution with one or more squares. By Lemma 44, this solution has an equivalent 

one where all packed squares are vertically aligned on the grid. Therefore, there exists a row 

in the latter solution with at least one more square, which is not possible since the algorithm 

packs the maximum number of squares in a row. 

• 
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6.3.4 An 0(n) algorithm for packing unit squares in Manhattan skyline 

polygons 

In this section, we present a polynomial time algorithm for the following problem. 

Problem 46. Given a Manhattan skyline polygon P, find the maximum number of unit 

squares that can be packed in it. 

We orient P such that it is monotone with respect to the horizontal axis and we lay the 

horizontal edge of P with the minimum y-coordinate, say e\, on a square grid. 

It is important to note that Theorem 47 implies Theorem 45 and Theorem 42. 

Theorem 47 . An optimal solution is obtained in 0(n) time by greedily filling a Manhattan 

skyline polygon P starting from e\ (see Figure 61). All squares in this solution are vertically 

aligned on the grid. 

Proof. The algorithm is as follows: choose the [/-edge or the L-edge e with the smallest 

y-coordinate ye. The grid row in which e is contained has a left wall and a right wall. 

Consider the rectangle Re defined by the intersection of the line y = ye with these two 

walls and the bottom edge of the polygon. Fill Re optimally with unit squares in constant 

time. Remove Re from the polygon and repeat until there are no more U- or L- edges. The 

removal of the rectangle might result in several subpolygons for the recursive steps. Recurse 

on all of them. At the end, we will be left with (vertical) rectangles which can be filled in 

constant time. Figure 54 shows the algorithm being run on an example Manhattan skyline 

polygon. 

The running time of this algorithm depends on the number of horizontal edges on the 

boundary of P. This number is bounded by n. Therefore the algorithm, which does constant 

work for each horizontal edge, runs in 0(n) time. 

Lemma 38 showed that flooring the U- and L- edges does not affect the optimality of a 

solution. The proof that vertically aligning squares on the grid gives an optimal solution is 

similar to the one of Theorem 45. • 
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Figure 61: Applying the algorithm to an example Manhattan skyline polygon. 
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6.4 Toward a polynomial t ime algorithm for packing (2 x 2) 

squares in orthogonal grid polygons 

6.4.1 Definitions 

An orthogonal grid polygon is an orthogonal polygon whose vertices have integer coordinates. 

In this section, we consider packing (2 x 2) squares in such polygons. The packed squares 

are considered to be on the grid (the proof that there is always an optimal solution with the 

squares on the grid is similar to the proofs in the previous section). Therefore, the alignment 

of a packed square is defined by the parity of its corners' coordinates. Every square can 

have one of four alignments on the grid: an even-even alignment, an odd-odd alignment, an 

odd-even alignment and even-odd alignment as shown respectively in Figure 62 (a), (b), (c) 

and (d). Let ymax be the y-coordinate of the vertex of P with the maximum y-coordinate 

and let xmin be the z-coordinate of the vertex of P with the minimum x-coordinate. We 

embed P on a grid where the (0,0) point is the (xmin,ymax) point. 

The p-holes exist due to the adjacency of the different alignments; Figure 63 shows the 

adjacency of alignments. We assume that all p-holes are of the form (1 x X) (horizontal) or 

(X x 1) (vertical) where X is an integer. T-like and L-like p-holes (see Figure 69 (a)) are 

divided into their horizontal and vertical parts. A p-hole is said to be odd or even depending 

on the parity of X. 

6.4.2 A binary integer program (BIP) 

In order to characterize optimal solutions, we present a system that takes, through a graphical 

interface, an orthogonal grid polygon as input and outputs an optimal solution with the 

maximum number of (2 x 2) squares that can be packed in the polygon. The system models 

the problem with an binary integer program (BIP) that is then solved with SCIP (Solving 

Constraint Integer Program), a non-commercial mixed integer programming solver [1]. An 

optimal solution is constructed by setting a binary variable to 1 for each corresponding 

(2 x 2) square in the solution. 

Here is a description of the BIP model of the problem. We have one family of variables. 
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Figure 62: The four different possible alignments of (2 x 2) squares on the square grid: (a) 
even-even, (b) odd-odd, (c) odd-even, (d) even-odd. 
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Figure 63: The adjacency of different alignments. 
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(0,01 
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Figure 64: An example of an input polygon: the points corresponding to variables are 
marked in yellow. 

Let O be the set of coordinates for all the upper left corners of (2 x 2) squares contained 

in P (not necessarily in the solution). For each such (2 x 2) square, define a variable Xy 

representing its upper left corner where (i,j) 6 O. 

%ij — \ 
1 if the corresponding square is in the solution. 

0 otherwise 

Here is the model 

max 
'3 

/ „ xij 

(ij)eo 

+ X(i+i)j + xw+i) + X(i+i)(,-+i) < 1 v (*,;')» (* + 1, J'). («, J + 1). (* + 1. J + 1) e O (3) 

where (3) ensures that there are no overlapping squares in the solution. 

Let the polygon in Figure 64 be an example input polygon embedded on the grid shown. 

The set O = {(0,0), (0,1), (1,0), (1,1), (2,0), (2,1), (2,2), (2,3), (2,4), (2,5)} and hence the 

set of corresponding variables is {x00, x 0 i , x i 0 , ^ n , 2:20,^21, £22, £23, ̂ 24, £25}-
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The binary integer program produced by the system for the example polygon is the 

following: 

Maximize 

obj: x0_0+x0_l+xl_0+xl_l+x2_0+x2_l+x2_2+x2_3+x2_4+x2_5 

Subject To 

cl:xO_0+xl_0+xO_l+xl_l<= 1 

c2:x0_l+xl_l<= 1 

c3:xl_0+x2_0+xl_l+x2_l<= 1 

c4:xl_l+x2_l+x2_2<= 1 

c5:x2_0+x2_l<= 1 

c6:x2_l+x2_2<= 1 

c7:x2_2+x2_3<= 1 

c8:x2_3+x2_4<= 1 

c9:x2_4+x2_5<= 1 

cl0:x2_5<= 1 

binary 

x0_0 xO_l xl_0 xl_l x2_0 x2_l x2_2 x2_3 x2_4 x2_5 

End 

The solution produced by the solver is shown in Figure 65. Other examples of solutions 

produced by the system are shown in Figures 67 and 66. 
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Figure 65: A screenshot of an optimal solution for a given polygon. 

Figure 66: Another screenshot of an optimal solution for a given polygon. 
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Figure 67: A third screenshot of an optimal solution for a given polygon. 
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6.4.3 An interesting observation and an interesting lemma 

Observing the optimal solutions obtained using the system described in Section 6.4.2 led us 

to the following observation and lemma. 

Obse rva t i on 48 . . A ( l x l ) p-hole occurs due to the adjacency of the four possible different 

alignments of squares as shown in Figure 68. 

Lemma 49. There always exists an optimal solution such that all the p-holes that are not 

adjacent to S(P) are (1 x 1) grid squares. 

Proof. Assume that every optimal solution has a number of internal p-holes and that gravity 

has been applied to the squares in these solutions. Consider the solution with the minimum 

area of internal p-holes. If the squares in this solution have one grid alignment then there are 

no internal p-holes and we are done. Consider that the squares have several grid alignments, 

see Figure 63 for an example. If the solution does not have internal p-hole, we are done. 

Otherwise, let z be the lowest horizontal p-hole that is not a (1 x 1) square; z is shaded in 

red in all the following figures. By our definition of p-holes, z is a (1 x X) p-hole where X is 

either odd or even. If z is odd then it is always possible to displace (X — l ) / 2 squares from 

the upper row adjacent to z in the direction of z, see Figure 69 for examples of odd p-holes 

(on the left) and the corresponding displacements (on the right). This contradicts the fact 

that we applied gravity to the solution. Hence, z is an even p-hole. 

If z is even and X > 2 then it is then always possible to displace at least (X — 2)/2 

squares from the upper row adjacent to z in the direction of z, see Figure 70 (a) and (b) for 

i 1 I T 
i i _ i i _ 
r i _ i 

i i i 
1 I - . - 4. -

i i i i 
— i—i 1 — - + -

Figure 68: The two different ways in which a (1 x 1) p-hole occurs. 
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Figure 69: Examples of odd p-holes. 

examples of p-holes and their corresponding displacements . If X = 2 and the squares from 

the upper row adjacent to the horizontal side of z have the same horizontal alignment as 

the squares from the lower row then displacing one square in the direction of z is always 

possible which contradicts the gravity assumption. 

If X = 2 and the squares adjacent to the horizontal side of z have different horizontal 

alignments, such as in Figure 70 (c), then we need to show that there is still a displacement 

that decreases the area of internal p-holes. We chose z to be the lowest horizontal p-hole, 

hence situations similar to those in Figure 71 that allow lower p-holes (shown in red) are 

not possible (the solution shown in Figure 71 (a) is not even optimal unless the lower p-hole 

is replaced by the boundary). 

Color the squares in z's column in green and assume that there are no vertical p-holes 

{{X x 1) p-holes) in the solution without loss of generality. If the column of green squares 

continues to the boundary with same horizontal alignment (see Figure 72 (a)), we can 

displace the entire column up and decrease the area of internal p-holes, a contradiction to 
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Figure 70: Examples of even p-holes. 
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Figure 71: (1 x 2) p-holes that are impossible after the application of gravity. 
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Figure 72: Cases for a (1 x 2) p-hole. 

the fact that the solution has the minimum area of internal p-holes. Hence, the column of 

green squares hits a row of squares with a different horizontal alignment. Two cases are 

possible as shown in Figure 72 (b) and (c). 

In both cases, the distance d (in grid squares) shown in Figure 73 (left figures of both (i) 

and (ii)) is odd. Therefore, the red squares shown on the right are both empty (but there is 

no (1 x 2) because this defeats the fact that we applied gravity). If we displace all the green 

squares up to fill z, we will obtain in both cases a larger p-hole (z will merge with either 

two or one ( l x l ) p-holes). We have to show that this new p-hole can be displaced to the 

boundary. Let us look at even p-holes (odd p-holes have similar logic). 

In Figure 74 and 75, the dotted line delimits a "sub-area" of the packing and the bold 

line denotes the boundary. The green squares are assumed to be movable to fill the p-hole 

above them. Note that the size of the chosen rows of squares (3) is just an example. The 

argument relies on the fact that at any point during the displacement of a p-hole to the 

boundary, only few cases can occur: a row of squares can be followed either by a row with 

same alignment (see Figure 74 (a)), or a row with a different alignment. In latter case, the 

row can have more, less or the same number of squares. In the case it has more or less 

squares (and due to the application of gravity), it can have only one more (or one less) 

square (see Figure 74 (b) and (c)). In all three cases (see Figure 74 (b) and (c) and (d), the 
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Figure 73: Subcases for a (1 x 2) p-hole. 

red squares are empty or the row is adjacent to the boundary as shown in Figure 75. As we 

can see in Figure 74, being able to displace the green squares allows for the displacement of 

the blue squares up without modifying the total area of p-holes in this "sub-area" and thus, 

the p-hole can move further toward the boundary. The same logic applies for case (c) in 

Figure 75. The only cases where a p-hole can decrease in size while being displaced (the 

total area staying the same) are cases (a), (b) and (d) in Figure 75. However, in these three 

cases, the p-hole is already on the boundary and we are done. 

• 

6.5 Conclusion 

In this chapter, we presented three polynomial time algorithms for packing the maximum 

number of unit squares in three subclasses of orthogonal polygons: the staircase polygons, 

the pyramids and Manhattan skyline polygons. We also studied the structure of an optimal 

solution for packing (2 x 2) squares in grid orthogonal polygons. In particular, Lemma 49 

shows that p-holes have a certain structure in an optimal solution. This promising structure 

seems to support the long standing conjecture on this problem [31]: the existence of a 

polynomial time algorithm to solve it. 
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Figure 74: The different cases that can occur while displacing p-holes (1). 
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Figure 75: The different cases that can occur while displacing p-holes (2). 

(a) (b) (c) 

Figure 76: (a) An orthogonal polygon and its corresponding intersection graph, (b) the only 
optimal solution for the given polygon, (c) the equivalent independent set (vertices in blue) 
of the graph. 
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Since the problem we explored in Section 6.4 is discrete in nature, it is possible to study 

it from a graph theory perspective by transforming it into a maximum independent set 

problem on intersection graphs. Figure 76 shows the graph corresponding to an example 

polygon, the only optimal solution for the given polygon and the maximum independent 

corresponding to that solution. The family of graphs corresponding to packing in grid 

orthogonal polygons has several characteristics (e.g. A(G) — 8, to(G) — 4). Therefore, the 

problem that is of interest to us can be posed differently: is maximum independent set on 

such graphs polynomially solvable? 

Another interesting open problem is triangle packing. Very little is known about this 

problem. Variations such as packing triangles in a strip, wedge or polygon are all open. 

It would also be interesting to explore packing with rotations. Except from packing the 

strip with rectangles with 90° rotations [108,161,230] and the heuristics to pack identical 

boxes in a "car trunk" [103], most of the work assume axis-parallel objects. Allowing 

rotations is interesting in many applications (like in the case of the trunk) and might give 

better solutions as shown by Erdos and Graham for the maximum packing of squares with 

unit squares [109]. 
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