
NOTE TO USERS

This reproduction is the best copy available.

UMI'

DECOMPOSING AND PACKING POLYGONS

DANIA EL-KHECHEN

A THESIS

IN

THE DEPARTMENT

OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (COMPUTER SCIENCE)

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

APRIL 2009

© DANIA EL-KHECHEN, 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63446-2
Our file Notre reference
ISBN: 978-0-494-63446-2

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduce, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

Abstract

Decomposing and packing polygons

Dania El-Khechen, Ph.D.

Concordia University, 2009

In this thesis, we study three different problems in the field of computational geometry: the

partitioning of a simple polygon into two congruent components, the partitioning of squares

and rectangles into equal area components while minimizing the perimeter of the cuts, and

the packing of the maximum number of squares in an orthogonal polygon.

To solve the first problem, we present three polynomial time algorithms which given

a simple polygon P partitions it, if possible, into two congruent and possibly nonsimple

components Pi and Pi: an 0(n2 logn) time algorithm for properly congruent components

and an 0(n3) time algorithm for mirror congruent components.

In our analysis of the second problem, we experimentally find new bounds on the optimal

partitions of squares and rectangles into equal area components. The visualization of the

best determined solutions allows us to conjecture some characteristics of a class of optimal

solutions.

Finally, for the third problem, we present three linear time algorithms for packing the

maximum number of unit squares in three subclasses of orthogonal polygons: the staircase

polygons, the pyramids and Manhattan skyline polygons. We also study a special case of

the problem where the given orthogonal polygon has vertices with integer coordinates and

the squares to pack are (2 x 2) squares. We model the latter problem with a binary integer

program and we develop a system that produces and visualizes optimal solutions. The

observation of such solutions aided us in proving some characteristics of a class of optimal

solutions.

iii

Acknowledgements

This work would not have been possible without my supervisors Thomas Fevens and John

Iacono. I thank them for their constant encouragement, motivation and advices. I also

thank them for giving me the great opportunity to travel and attend many conferences and

workshops

I thank all my co-authors. It has been a pleasure to work with every one of them.

In particular, I thank Godfried Toussaint for giving me the opportunity to at tend his

wonderful annual workshop on Computational Geometry in Barbados: an occasion to work

on challenging problems, meet great researchers and enjoy the beach during Montreal's

cold winter. I thank all the Mcgill lunch group with whom I enjoyed lunch from time to

time. I thank all the researchers with whom I worked on the interdisciplinary project with

the faculty of fine arts, professors: Cheryl Dudek, Thomas Fevens, Sudhir Mudur, Lydia

Sharman and Fred Szabo. I also thank Ramgopal Rajagopalan and Eric Hortop with whom

it was a lot of fun to drink coffee and discuss symmetry groups.

I thank Giinter Rote for his unpublished manuscript which inspired the material in

Chapter 4. I thank Ken Brakke for his software Surface Evolver that we used in Chapter 5.

I also thank Tobias Achterberg for his solver SCIP that aided us for Chapter 6 results.

I thank the graduate program advisor Halina Monkiewicz and the office assistant Hirut

Adugna for always answering my numerous questions with a smile. I thank the teaching

assistants coordinator Pauline Dubois who gave me the priceless opportunity to teach.

I thank Vasek Chvatal for lending me so many (excellent) books and movies, making me

discover many (good) restaurants in Montreal, introducing me to so many amazing people

and transmitting a great enthusiasm for Mathematics and a great joy of life. I also thank

him for his entertaining classes and his (crystal clear) way of transmitting information.

I thank all my friends for their constant support. Fatme el-Moukaddem for discussing

our research problems, reading my nagging over MSN and for or never-ending-after-defence

plans, Simon Kouyoumdjian for helping me recover most of the material in Chapter 5 after

my hard disk crashed and for sharing many precious moments, and Alessandro Zanarini, with

iv

his incredible sweetness, for many useful Mathematical discussions. I thank my long distance

friends: Nisrine Jaafar for not only helping me get through the first year in Montreal but for

turning it into a wonderful one, Malak Jalloul for her unlimited phone calls plan to Canada,

Abir Baz and Rouba Choueiry for continuously yeling "yalla, khalssina!", Alaa Abi-Haidar

for our great exchanges, Narjess Fathalla, Mayssan Maarouf, Ali Mourad, Houssam Nassif

and Rima Sleiman for many many reasons. I thank my Montreal friends: Khaled AbdelHay

for our long studying sessions, Ruddy Avalos for his super parties, Tamara Diaz (with her

unique laugh) and Duhamel Xolot for the great overnight discussions we had, Francois

Grandchamp for his Quebecois lessons, John Alexander Lopez for the many things he taught

me, Mahitab Seddik and Rania Khattab for always listening. I also thank Chloe Guillaume,

Layla Hussain, Bassem Hussami, Marie-Andre L'esperance, Daria Madjidian and George

Peristerakis for their continuous attention. I thank my two dear and constantly-traveling

friends Lama Kabbanji and Hicham Safieddine for being there even when they are not.

Finally, without my friend JJ, the thesis journey would have been less fun and much harder.

I thank all my dance and literature teachers who made my life richer. In particular, I

thank my first and current bellydancing teachers Sheila Ribeiro and Any Massicotte for

being an inspiration. I also thank my sweet "bellysisters" Wendy Corner and Ruth Gover.

I thank my family. The Atwi family: my uncles Wajih, Said, Bassam, Bassel and

Houssam (who accompanied me here the first month) and my aunt Samia (who supported

me in my first years in Montreal). I thank all my cousins! In particular, I thank Douaa,

Mayssa, Mohamad, Mostafa and Ahmad for being the siblings I never had. Their mother

Safaa Serhan is a precious gift to all of us. I thank also my caring uncle Ali El-Khechen.

Je remercie Nikolaj van Omme pour tout ce qu'il m'a appris sur la programation

mathemathiques et pour les discussions enrichissantes. Je le remercie d'etre si patient et

attentione. Je le remercie d'avoir une passion contagieuse pour toutes les choses de la vie.

Je le remercie aussi de m'avoir presente son pere Albert Carton, un homme extraordinaire.

Merci mon chanteur prefere.

I dedicate this thesis to Hind Atwi. A brilliant woman. A great militant. A silent

inspiration. C'est grace a elle si je suis devenue qui je suis. Merci Mama.

v

Contents

List of Figures ix

List of Tables xiii

1 Introduction 1

2 Background information and notat ion 7

2.1 Polygon definitions 7

2.2 Graph definitions 14

2.3 Complexity classes and algorithmic techniques 15

3 State of the art 19

3.1 Partitioning 20

3.1.1 General polygons 21

Triangles 21

Convex components 21

Spiral components 23

Star-shaped components 24

Monotone components 24

Quadrilaterals 25

Other components 26

3.1.2 Orthogonal polygons 29

Rectangles and squares 29

Other components 31

3.1.3 3D partition 32

3.2 Covering 33

3.2.1 General polygons 34

Convex components 34

Star-shaped components 35

Rectangles and squares 35

v i

Other components 36

3.2.2 Orthogonal polygons 36

Rectangles and squares 36

Star-shaped components 38

Orthogonally convex components 39

3.2.3 3D covering 39

3.3 Packing 40

3.3.1 Packing at fixed locations 40

3.3.2 Strip packing 42

3.3.3 Packing identical objects 43

3.3.4 Packing different objects 45

4 Congruence 47

4.1 Introduction 47

4.2 Preliminaries 48

4.3 Eriksson's algorithm 53

4.4 Preprocessing 57

4.5 Proper congruence 58

4.6 Mirror congruence 63

4.6.1 Disjoint split-polyline 64

An 0(n3) algorithm 67

4.6.2 Partial overlap 68

An 0(ns) algorithm 75

4.6.3 Combined algorithm for the two mirror congruent cases 79

4.7 Ideas toward a better algorithm 80

4.7.1 Producing simple congruent components 80

4.7.2 An 0(n2 logn) algorithm for the disjoint split-polyline mirror congru­

ence case 82

4.8 Conclusion 85

5 Partit ioning squares into equal area components wi th min imum ink 91

5.1 Introduction 91

5.2 Experiments description 93

5.3 Results 96

5.4 Analytical backing 98

5.5 Conclusion 99

vn

6 Packing 102

6.1 Introduction 102

6.2 Definitions 103

6.3 Polynomial time algorithms for special cases 107

6.3.1 A lemma and an observation 107

6.3.2 An 0(n) algorithm for packing unit squares in staircase polygons . . 108

6.3.3 An 0(n) algorithm for packing unit squares in pyramids (or double

staircase polygons) 112

6.3.4 An 0(n) algorithm for packing unit squares in Manhat tan skyline

polygons 116

6.4 Toward a polynomial time algorithm for packing (2 x 2) squares in orthogonal

grid polygons 118

6.4.1 Definitions 118

6.4.2 A binary integer program (BIP) 118

6.4.3 An interesting observation and an interesting lemma 124

6.5 Conclusion 128

Bibliography 131

vni

List of Figures

1 (a) A simple polygon, (b) a polygon with a hole 7

2 Two convex polygons 8

3 Regular 3-gon (equilateral triangle), 4-gon (square), 5-gon (pentagon), 6-gon

(hexagon), 12-gon (dodecagon) 8

4 Two star-shaped polygons 9

5 A spiral polygon 9

6 A monotone polygon 10

7 An orthogonal polygon 11

8 A horizontally convex orthogonal polygon 11

9 An orthogonally convex polygon 12

10 (a) An r-star-shaped polygon with an example kernel point, (b) an s-star-

shaped polygon with an example kernel point 13

11 The smallest enclosing circle and largest inscribed circle of a regular polygon. 13

12 A graph G with a(G) = 5 14

13 A graph G with u{G) = 3 15

14 A decomposition with X^ and X$ patterns 22

15 A perfect 3-partitioning of a square 28

16 (a) A polygon, (b) its decomposition into two congruent components 29

17 An example of a partition into rectangles with vertex and anchored cuts. . . 30

18 (a) A simple polygon, (b) its partition into two components, (c) its cover with

two components 33

19 The prolongation of the dents in an orthogonal polygon and its division into

regions 38

20 Properly congruent polygons: (a) two translationally congruent polygons with

translation vector v, (b) two rotationally congruent polygons with rotation

point p 49

21 Mirror congruent polygons: (a) two mirror congruent polygons with reflection

axis g, (b) two mirror congruent polygons with reflection axis g' and vector v. 50

22 Two translationally congruent polygons P (left) and Q (right) where polylines

P[a .. b] and P[c .. d] are congruent 51

IX

23 Two translationally congruent polygons P (left) and Q (right) where polylines

P[a .. b] and P[c .. d] are flip-congruent 52

24 Two translationally congruent polygons P (left) and Q (right) where polylines

P[a .. b] and P[c .. d) are mirror congruent 52

25 A bad example for Eriksson's algorithm 56

26 A simple polygon partitioned into two simple rotationally congruent components. 59

27 A simple polygon partitioned into two simple translationally congruent com­

ponents 60

28 A simple polygon partitioned into nonsimple translationally congruent com­

ponents 60

29 A simple polygon partitioned into nonsimple translationally congruent com­

ponents 61

30 Polygons partitioned into two simple mirror-congruent components with a

nonoverlapping split-polyline 66

31 Polygons partitioned into two simple mirror-congruent components with an

overlapping split-polyline 72

32 A simple polygon partitioned into nonsimple mirror congruent components. 73

33 Subcase la (left) where {a,c, d, / } are vertices and {b, e} are not. Subcase 16

(right) where {a, b, e,d} are vertices and {c , / } are not 76

34 Subcase 2a (left) where {a, b, e, d} are vertices and {c, / } are not. Subcase 26

(right) where {a, c, d, / } are vertices and {b, e} are not 77

35 If a nonsymmetric polygon P is partitionable into two congruent components

in two different ways then it consists of four copies of a monomorphic tile. . . 81

36 Properties of a simple polygon partitionable into two translationally congruent

components into two different ways 81

37 (a) A polygon P is partitionable into two congruent components in several

different ways, (b) a polygon that is not partitionable into two congruent

components 84

38 Three polygons (a), (b) and (c) covered each by two translationally congruent

components 86

39 A polygon covered by two translationally congruent components where the

endpoints of the covering polylines are colocated pairwise 87

40 Three polygons (a), (b) and (c) each covered by two rotationally congruent

components 88

41 Two polygons each covered by two mirror congruent components 89

42 Two polygons each covered by two mirror congruent components where the

endpoints of the covering polylines are colocated pairwise 90

x

43 Optimal orthogonal straight line cut partitions of the square into 2,3,4, 5 and

6 components 94

44 The determined best partitions of the unit square 96

45 The determined best partitions of the (1 x 2) rectangle 97

46 5-partition of the unit square 98

47 5-partition of the unit square while allowing b to move 99

48 Different alignments of unit squares: (a) and (b) two squares with same

alignment, (c) two squares with same vertical alignment only, (d) two squares

with same horizontal alignment only (e) two squares with different alignments. 104

49 (a) A p-hole (shaded in blue) on the boundary, (b) an internal p-hole (shaded

in blue) 105

50 (a) An optimal solution for packing an orthogonal polygon with 2 x 2 squares,

(b) gravity applied to the squares in the solution 106

51 An example of a staircase polygon and a stair polyline P[a .. b) 106

52 An example of a pyramid 106

53 An example of a Manhattan skyline polygon 107

54 (a) A Manhattan skyline polygon, (b) flooring the y-coordinates of its U- and

L- edges 108

55 Flooring the y-coordinates of [/-edges (a) and L-edges (b) does not affect the

number of squares in an optimal solution 109

56 (a) A staircase polygon where the maximum number of unit squares is zero,

(b) the red square can be displaced to occupy the corner 110

57 The closest grid cell to the corner not covered with a square is either: (a)

covered with no squares, (b) partially covered with one square, (c) partially

or totally covered by two or more squares I l l

58 (a) An optimal solution for a pyramid, (b) the grid numbering starting at e\

and the left and right walls for row 2 112

59 (a) A p-hole where squares adjacent to it have the same vertical alignment, (b)

a p-hole where squares adjacent to it do not have the same vertical alignment

and the upper adjacent square is not blocked, (c) a p-hole where squares

adjacent to it do not have the same vertical alignment and the upper adjacent

square is blocked 113

60 (a) A p-hole where squares adjacent to it do not have the same vertical

alignment and the upper adjacent square is blocked by the green square, (b)

the squares below the green square have either the same alignment or (c)

different alignments 114

61 Applying the algorithm to an example Manhattan skyline polygon 117

XI

62 The four different possible alignments of (2 x 2) squares on the square grid:

(a) even-even, (b) odd-odd, (c) odd-even, (d) even-odd 119

63 The adjacency of different alignments 119

64 An example of an input polygon: the points corresponding to variables are

marked in yellow 120

65 A screenshot of an optimal solution for a given polygon 122

66 Another screenshot of an optimal solution for a given polygon 122

67 A third screenshot of an optimal solution for a given polygon 123

68 The two different ways in which a (1 x 1) p-hole occurs 124

69 Examples of odd p-holes 125

70 Examples of even p-holes 126

71 (1 x 2) p-holes that are impossible after the application of gravity 126

72 Cases for a (1 x 2) p-hole 127

73 Subcases for a (1 x 2) p-hole 128

74 The different cases that can occur while displacing p-holes (1) 129

75 The different cases that can occur while displacing p-holes (2) 130

76 (a) An orthogonal polygon and its corresponding intersection graph, (b) the

only optimal solution for the given polygon, (c) the equivalent independent

set (vertices in blue) of the graph 130

xii

List of Tables

1 Sub-Cases for the sextuple: V stands for "is a vertex", Not V for "is not a

vertex" and E for "either" 75

2 Area partitioning results 93

3 Area partitioning results where "P-M", "P-S", "A-R" abbreviate PERI-MAX,

PERI-SUM and ASPECT-RATIO respectively and * indicates a partition

with straight line or circular cuts 94

4 Straight line partitions 100

5 Circular cut partitions 100

xm

Chapter 1

Introduction

Consider the following questions:

• Cowhide cutt ing. Cowhide is used in car industry to make car seat cushions, car

flooring and other car parts. A ready-to-cut hide can have local damage. How can the

undamaged parts of the hide be cut to minimize the wastage [262] ?

• Flexible circuit layout. Suppose you are a VLSI layout designer. You want to place

p functionally identical circuits on a rectangular chip of area A. Thin rectangles are

not desirable since they lead to long wire length. How do you design your board [180]?

• Collision detect ion. You have a set of objects that are represented with geometric

models. Collision detection aims at detecting a geometric contact between these

objects. How are collisions detected efficiently?

• Terrain covering. Suppose you have a set of robots that need to explore a terrain.

Each part of the terrain should be visited by one robot. The relative capabilities of

the robots are determined based on the area of the terrain they can cover. How do

you divide your terrain among the robots [153]?

• Art gallery guarding. You are the owner of an art gallery with valuable paintings.

You would like to place guards (cameras) so that each point in your gallery is visible to

1

some guard (camera) and you have budget constraints. How do you find the minimum

number of guards (cameras) needed [83]?

Consider also the following (less serious) questions:

• Ice cream search. Suppose you are walking around Montreal and you feel an urgent

need for an ice cream. There are many ice cream parlours around the city but you

would like to go to the nearest one. How do you know which one is the nearest?

• Animals and fence. Imagine you have p animals and you have a piece of land that

you would like to divide equally among the animals without wasting too much fence

material. How can you achieve such a partition?

• Cake cutt ing. Imagine you have a cake (of arbitrary shape) and two kids. No matter

how you try, the kids are convinced that unless you give them the exactly-same-shape

pieces, the division will not be fair. How do you partition the cake in two similar

shapes? Can you always do it?

• Board filling. You have a kid to distract. You give her a board and a (very) large

number of identical square pieces and you ask her to fill the board with the maximum

number of squares. How fast can the kid do it? Are you asking her a too difficult

question?

The nine questions above are the sort of problems posed to (or by) a computational

geometer. What is computational geometry? Computational geometry is a discipline of the

field of algorithms (design and analysis) and data structures which involves studying problems

of a geometric nature by analysing their computational complexity and developing algorithms

and data structures to solve them. The foundations of what is called "Computational

Geometry" nowadays were laid in the late 1970s by M.I. Shamos in his Ph.D. thesis [261,263].

Let us look again at the nine questions posed and formulate them in computational

geometric terms:

• Cowhide cutt ing. The cowhide can be approximated as a two-dimensional planar

figure with straight line edges, call it polygon P. The damage can be considered to

2

be "islands" inside the polygon boundary which we call a set of H holes. The cutting

equipment are objects of some shapes of which only the boundary is of interest to us,

call them a set SCE of k polygons S — {CE\,CE2, •..,CEf.}. The problem is: what

is the maximum number of CE{ that can be packed in P — H where 1 < i < k and i

can be duplicated?

• Flexible circuit layout. The circuit board can be represented as a rectangle R

that needs to be decomposed into a set of p rectangles S = {r\, r%,..., rp} such that

R = \\ r and that the maximum rectangle perimeter is minimized or the sum of the
r£Sr

perimeters is minimized [180].

• Collision detection. Polygons where all interior angles between edges are less than

180° are called convex. Given two polygons P and Q for which we want to detect

collision, how can it be detect efficiently given that the intersection of two convex

polygons is faster to compute than the intersection of arbitrary ones?

• Terrain covering. The terrain can be modelled by its two-dimensional projection,

a polygon P [153]. Let Area(P) denote the area of P. The proportions of the area

that each robot should be assigned are represented by a set of values c;, i = 1,2,... ,p
p

with 0 < Ci < 1 and / J c * = 1. The problem is: given P and p, partition it into p
i=i

nonoverlapping regions P\,...,PP such that Area(Pi) — CiArea(P) [153].

• Art gallery guarding. Consider the floor plan of the art gallery to be a polygon P.

The problem can be formulated as follows: decompose P into the minimum number of

star-shaped components. The number of guards is equal to the minimum number of

components assuming that the guards can see 360° [83].

• Ice Cream Search. Consider the city of Montreal to be modelled as a polygon P

with a set of q points M = {m\,m2, • • • ,mq} inside P representing the ice cream

parlour locations. Partition P into q regions such that the region of ice cream parlour

m, consists of all points that are closer to this parlour than they are to any other in

the city (all points pj in P such that d{pj,m,i) < d(pj,rrik) for allmfc e M, k^i).

3

• Animals and fence. Consider the piece of land to be a polygon P. The problem

is: partition P into p equal area components such tha t the perimeter of the cuts is

minimized.

• Cake cutt ing. Two polygons are congruent if they are equivalent up to an isometry.

Consider the cake to be a polygon P. The problem is: can P be partitioned into two

congruent components?

• Board filling. The board can be modelled with a polygon P. The problem is: what

is the complexity of computing the maximum number of identical squares that can be

packed (without overlap) into P?

The problems posed above belong to two areas of computational geometry: geometric

object decomposition and geometric object packing. Geometric object decomposition involves

decomposing a general geometric object into simpler components. The decomposition can

be the goal of the algorithm but is often an intermediate or a preprocessing step. Fast

existing algorithms are applied to the simpler components and the partial solutions are then

combined to obtain a general one. The collision detection problem is an example where

intersection is detected between convex components before reporting a collision. Also, Hert

and Lumelsky assume a decomposition of the polygon into convex components prior to

solving the terrain-covering problem [153]. There are two major kinds of decomposition:

partition and covering. Covering allows components to overlap while partition requires

them to be disjoint. Informally, packing can be defined as placing a given set (or subset)

of objects in some containers. The goal is either to pack everything (all the given objects)

in the best container or pack the best subset possible of objects. The cowhide cutting and

the board filling problems are both of the latter sort. Both the decomposition and the

packing problems have been extensively studied in the literature and yet many variants of

the problems remain open. The existence of a huge literature on these types of problems

can be informally explained by the fact that are many ways in which we can decompose

(pack) an object and there many types of objects to decompose (pack into). The study of

decomposition and packing problems is the subject of this thesis. Our focus is on problems in

4

the plane; our objects to decompose, our components, our objects to pack and our containers

are all two-dimensional polygons.

In this thesis, we make the following contributions:

1. We design three polynomial time algorithms for partitioning a simple polygon P

with n vertices into two congruent and possibly nonsimple components P\ and P2:

an 0(n2 log n) time algorithm for properly congruent components (equivalent up to

translation and rotation) and an 0(n?) time algorithm for mirror congruent components

(equivalent up to reflection and glide reflection). The previous algorithms, which solve

the problem, output simple components Pi and P2. However, the reported running time

is erroneous and is not even polynomial for the case of mirror congruent components;

our proposed algorithm is the first to provide a polynomial time algorithm for this

latter case.

2. We experimentally find new bounds on the optimal solutions for partitioning squares

and rectangles into k equal area components while minimizing the perimeter of the

cuts. Allowing straight line and sections of circular arcs cuts, we present the best

determined solutions for partitioning the unit square and the 1 x 2 rectangle into

k components where 3 < k < 10 and 3 < k < 6 respectively. We conjecture some

characteristics of a class of optimal solutions. Most of the previous results use only

straight line cuts and the bounds for circular cuts are only known for k = 3 and for

fc = 4.

3. We present three linear time algorithms for packing the maximum number of unit

squares in three subclasses of orthogonal polygons: the staircase polygons, the pyramids

and Manhattan skyline polygons. We also study a special case of the problem where

the given orthogonal polygon has vertices with integer coordinates and the squares to

pack are (2 x 2) squares. We model the latter problem with a binary integer program

and we develop a system that produces and visualizes optimal solutions. We prove

some characteristics of a class of optimal solutions. Our results support the long

standing conjecture that the problem of packing the maximum number of squares in a

5

general orthogonal polygon is polynomial.

In the next chapter, we define the terms and the notation that are needed for the

rest of this thesis. The terms and the notation that are chapter-specific are defined In

the corresponding chapter.In Chapter 3, we review the work done in the area of polygon

decomposition and polygon packing. At the beginning of every chapter, we review in detail

the previous work related to that chapter. In Chapter 4, we present two polynomial time

algorithms for partitioning a polygon, if possible, into two properly and mirror congruent

components. In Chapter 5, we present experimental work and conjectures on partitioning

squares and rectangles into equal area components while minimizing the perimeter of the

cuts. In Chapter 6, we present three polynomial time algorithms for packing the maximum

number of unit squares in three subclasses of orthogonal polygons and we prove some

characteristics of the optimal solution for packing (2 x 2) squares in general grid orthogonal

polygons. Each chapter is concluded with a summary of the contributions and future work.

6

Chapter 2

Background information and

notation

2.1 Polygon definitions

A polygon P is defined as a closed plane figure bounded by straight line segments. In this

thesis, the boundary of a polygon P will be referred to by SP. A polygon P is said to be

simply connected or simple if it is not self-intersecting and it has no holes. Figure 1 shows

two polygons: (a) shows a simple polygon and (b) shows a polygon with holes.

(a) (b)

Figure 1: (a) A simple polygon, (b) a polygon with a hole.

7

A polygonal chain or a polyline that is a subset of 6P is specified by a startpoint a and

an endpoint b (not necessarily vertices). A polyline is always considered to be directed

clockwise around the boundary of a simple polygon P. We denote it by P[a .. b].

Two points are visible if the line segment joining them lies entirely inside P. P is said to

be convex if every pair of points in P are visible from each other. Note that in a nonconvex

polygon, there exists at least two pairs of points in P that are not visible from each other,

see points p and q in Figure 1 (a). A vertex of a polygon is said to be convex if its internal

angle is less than 180° and is said to be reflex otherwise. A convex polygon is one that has

only convex vertices (see Figure 2). In what follows, n will be used to refer to the number of

vertices of a polygon and N to the number of reflex vertices of a polygon (N < n) unless we

specify otherwise. P is regular if it is equiangular and all its sides are of equal length, see

Figure 3 for examples.

Figure 2: Two convex polygons.

Figure 3: Regular 3-gon (equilateral triangle), 4-gon (square), 5-gon (pentagon), 6-gon
(hexagon), 12-gon (dodecagon).

P is star-shaped if there exists at least one point x £ P from which the entire polygon is

visible. Figure 4 shows two star-shaped polygons. P is spiral if it has exactly one concave

subchain (a chain with only reflex vertices). Figure 5 shows an example of a spiral polygon.

A polygonal chain C is said to be monotone with respect to a line I if the projections of

the vertices of C on I occur in the same order as in C. P is l-monotone if there exists a

Figure 4: Two star-shaped polygons.

Figure 5: A spiral polygon.

9

line / such that SP can be partitioned into two monotone polygonal chains with respect to I.

Figure 6 shows an example of a y-monotone polygon and the projection of polygonal chains

P[a .. b] and P[b .. a] on two lines parallel to the y-axis.

a

b

Figure 6: A monotone polygon.

P is orthogonal if all its edges are either horizontal or vertical. Figure 7 shows an example

of an arbitrary orthogonal polygon. An orthogonal polygon P is said to be horizontally

(vertically) convex if any horizontal (vertical) segment joining two of its vertices lies inside the

polygon. A segment is called a chord in an orthogonal polygon P if it is interior to P and if it

joins a pair of points p\{x\, y\) and P2{x2,2/2) hi P such that either x\ = X2 or y\ = 2/2- In an

orthogonal polygon P, internal angles are either 90° or 270° and a dent is defined as an edge

in which both endpoints have internal angles of 270°. The orientation of a dent is defined in

terms of compass direction. If the polygon is aligned such that the north corresponds with

positive y-axis and the dent is parallel to the x-axis then it is called a north dent and is

referred to by iV-dent. Figure 8 shows a horizontally convex polygon with a west dent.

There are several classes of orthogonal polygons defined in the literature according to

the orientation of the dents. A class k orthogonal polygon contains dents of k different

orientations. The class 0 is the class of orthogonally convex polygons of which an example is

shown in Figure 9. A vertically or horizontally convex polygon is of class 2a. Class 26 refers

10

Figure 7: An orthogonal polygon.

\

Dent S>-

Figure 8: A horizontally convex orthogonal polygon.

11

to polygons that have two dent orientations orthogonal to each other. Class 4 refers to gen­

eral orthogonal polygons.

Figure 9: An orthogonally convex polygon.

For orthogonal polygons, other notions of visibility are defined. Two points of a polygon

P are said to be r-visible if there exists a rectangle (inside P) that contains the two points.

Two points of a polygon P are said to s-visible if there exists an orthogonally convex polygon

(inside P) that contains both points. Hence, it is natural to define r(s)-star-shaped polygons:

an r(s)-star-shaped polygon is an orthogonal polygon P such that there exists at least one

point for which all other points in P are r(s)-visible. Two examples of an r-star-shaped

polygon and an s-star-shaped polygon are shown in Figure 10. Two points p\ and p2

indirectly see each other in an orthogonal polygon P if there exists a third P3 in P such that

P3 is s-visible to both p\ and pi.

The kernel of a polygon P is defined as the set of all points from which each point in P

is visible. The diameter of a polygon is the diameter of the smallest enclosing circle and the

width of a polygon is the diameter of largest inscribed circle. The aspect ratio of a polygon

is defined as the ratio of its diameter to its width. Figure 11 shows a hexagon with its

inscribed circle and circumscribed circle.

A diagonal of a polygon is a line segment that joins two vertices and that is interior-

disjoint from 5P.

12

m k

(a) (b)

Figure 10: (a) An r-star-shaped polygon with an example kernel point, (b) an s-star-shaped
polygon with an example kernel point.

Figure 11: The smallest enclosing circle and largest inscribed circle of a regular polygon.

13

2.2 Graph definitions

Many problems in polygon decomposition and packing can be reduced to their dual in graph

theory and hence are solved using a graph theoretic approach. Some graph theory definitions

are needed in this context. A graph G is an ordered pair denoted by G = (V, E) where V is

a set of vertices and J? is a set of edges. An edge is a 2-element subset of V. We say an

edge is incident to the two vertices that define it and that are called the endpoints of the

edge. The endpoints are said to be adjacent vertices in the graph. The degree of a vertex in

a graph is the number of edges incident to that vertex, denoted by deg(v) for a vertex v.

The maximum degree of a graph G is the maximum degree of its vertices and is denoted by

A(G).

A graph H = {V, E') is a subgraph of a graph G = {V, E) if V C V and E' C E. The

subgraph of G whose vertices are V and whose edges are the edges of G that have both

endpoints in V is called an induced subgraph of G. A walk in a graph G is a finite non-null

sequence of alternating vertices and edges which starts and ends at a vertex. If the edges

and the vertices of a walk are distinct except for its first and last vertex which are the same,

it is called a cycle.

An independent set of a graph G is a subset of its vertices such that no two vertices in

the set are adjacent in G. A maximum independent set of a graph G is a largest such set in

G and its size is denoted by a{G). The graph in Figure 12 has a{G) = 5.

Figure 12: A graph G with a(G) = 5.

14

A clique of a graph is a subset of vertices such that each pair in the subset is connected

by an edge. A maximum clique of a graph G is a largest such set in G and is denoted by

u(G). The graph in Figure 13 has u{G) = 3.

Figure 13: A graph G with u[G) = 3.

A minimum clique cover of a graph G is a minimum set of subsets of vertices {V\, V2,..., V/J

such that for every 1 < i < k, Vi is a clique and such that for every edge (u,v) £ E there is

some Vi that contains both u and v. A chord is an edge joining two vertices that are not

adjacent in a cycle. A chordal graph is a graph possessing no chordless cycle. The chromatic

number of a graph is the smallest number of colours needed to color the vertices of a graph

such that no two adjacent vertices share the same color; it is denoted by 7(G). A perfect

graph G is such that for every induced subgraph of G, the size of the largest clique equals

the chromatic number (UJ(G) = 7(G)).

Given a set S = s\,S2, •. • ,sn of geometric objects in Md, the intersection graph of S,

Gs — (V,E) is defined as follows: each vertex Vi €E V corresponds to the objects Oj and

e*j e E if Oi n Oj ^ 0.

2.3 Complexity classes and algorithmic techniques

Problems are said to belong to complexity classes according to a measure of their "hardness".

There are four main complexity classes that we refer to in this document: P , N P , N P -

complete and NP-hard. Before defining the complexity classes, let us look at the notion of

15

reduction. Problem Y is said to be polynomially reducible to problem X if X is no more

than a polynomial factor harder than Y. In other words, if X can be solved in polynomial

time, then Y can be solved in polynomial time. An algorithm is said to be efficient if it

has a polynomial running time, i.e. given an input of size n, the worst case running time

is 0(nk) for some constant k. The class P consists of all problems for which there exists

an efficient algorithm. The class N P consists of all problems for which answers can be

checked by a polynomial time algorithm, i.e. if we were given a "certificate" of a solution

then we could verify the correctness of the certificate in polynomial time in the size of the

input to the problem. The class NP-complete consists of all problems that are in N P such

that all other N P problems are reducible to them (or no other N P problem is more than a

polynomial factor harder). Informally, a problem is NP-complete if answers can be verified

efficiently, and an efficient algorithm to solve this problem can be used to solve all other

N P problems efficiently. The class NP-hard is informally the complexity class of problems

that are harder than NP-complete problems: all N P problems are reducible to them.

A problem is a decision problem if the solution to the problem is a yes or no answer

and it is an optimization problem if it requires a function to be optimized (minimized or

maximized) as part of the solution. An example of a decision problem would be: is polygon

P partitionable into convex components such that the perimeter of the cuts is less than kl

An optimization version of the same question: partition P into convex components such that

the perimeter of the cuts is minimized. Following Motwani [235], we define an optimization

problem IT as being characterized by three components:

• Instances D: a set of input instances.

• Solutions S(I): the set of all feasible solutions for an instance / G D and Sp — \J S(I)

for all I e D.

• Value / : a function which assigns a value to each solution, / : SD ~> K.

A maximization problem II is: given I £ D, find a solution crj^ £ S(I) such that

V a £ S (/) , / (a ') > / (< T)

16

A minimization problem is defined similarly. Throughout the document we refer to

/ (^ p t) by OPT.

A large number of the known optimization problems are NP-hard. Complexity theory

states that it is impossible to find efficient algorithms for such problems unless the class P

is the same as the class N P (i.e. P = NP). Relaxing the requirement to obtain an optimal

solution for all instances of a problem results in an approximation algorithm which returns

a near-optimal solution. Approximation algorithms are said to have an approximation

guarantee (or performance guarantee) RA if for any input of size n, the cost A(I) of the

solution produced by algorithm A on instance / is within RA of the cost OPT(I) of an

optimal solution of the same instance I. An approximation is said to be a fc-approximation

if its approximation guarantee is k. Approximation algorithm are classified according to

their approximation guarantee:

• Absolute (or additive) approximation guarantee. A polynomial time approx­

imation algorithm A for an optimization problem IT is said to have an absolute

approximation guarantee of k if for every instance I of II we have \A(I) — OPT\ < k.

• Relative (or multiplicative) approximation guarantee. The relative approx­

imation guarantee is defined as the RA(I) — max (0PT(I) ' A(I)) (depending on

whether the optimization problem is a minimization or a maximization problem). If

for every e > 0 there is a polynomial approximation algorithm for II with a relative

approximation guarantee of 1 + e then problem II is said to have a Polynomial Time Ap­

proximation Scheme (PTAS). The running time of an algorithm of the approximation

scheme is expressed in terms of the size of the input and in terms of e. If the running

time is polynomial in both the input size and 1/e the problem is said to have an Fully

Polynomial Approximation Scheme (FPTAS). An algorithm such that RA is constant,

is a constant guarantee approximation algorithm. An approximation guarantee k is

said to be asymptotic if there exists an no > 0 such that an algorithm A achieves

a k-approximation for all instances of the problem having OPT > no. Similarly,

a problem has APTAS (asymptotic PTAS) and AFPTAS (asymptotic FPTAS) if

17

for each e > 0 there exists no > 0 and a polynomial time algorithm such that the

approximation guarantee is 1 + e for all instances having OPT > no.

Linear programming is a branch of applied mathematics concerned with linear program­

ming problems. If c\,c2,...,q are real numbers and x\,x2,...,xi are real variables a linear

function is defined by

I

f(xi,X2,...,Xl) = C\X\ + C2X2 + . . . + C\Xi = y ^ CjXj

. If / is a linear function and if b is a real number, then the equation f(x\,x2, •. •, xi) = b is

called a linear equation and the inequalities f(x\,x2,... ,x{) < b and f(x\,x2, • • • ,xi) > b

are called linear inequalities. Linear equations and linear inequalities are both referred to

as linear constraints. A linear programming problem is the problem of maximizing (or

minimizing) a linear function subject to a finite number of linear constraints [84]. When the

variables are required to be integers, the problem is called an integer programming problem.

The special cases of integer programming problems where the variables are binary are called

binary integer programming problems. The following linear program is said to be in the

standard form:

l

max y ,cjxj

/
^2cijXj<bi (i = l,2,...m) (1)
j=i

Xj>0 (j = l,2,...,l) (2)

Dynamic programming is an algorithmic technique to solve optimization problems by

caching subproblems solutions rather than recomputing them in order to improve the running

time of a given algorithm.

18

Chapter 3

State of the art

An instance of a decomposition problem consists of

• A object O and

• A set OP — {op\,op2,..., opj} of object properties,

A solution to the decomposition problem consists of

• A collection C = {o\, 02,03,..., Oi) that obey the given properties such that P = \\ o.
o&C

We call the elements of the collection C the components of the decomposition.

As such, the collection C is called a covering of object O and it is called a partition if

the shapes in C are interior disjoint. In this thesis, we are mainly interested in the object

O and the elements of C being polygons. Hence, a decomposition of a polygon P is called

a partition if the components {P\,P2,..., Pi} are not allowed to share a common interior

point otherwise it is called a cover. An important property in the set of OP is to specify

whether additional vertices are allowed or disallowed. These are called Steiner points.

An instance of a packing problem consists of

• A set of objects S = {s\,...},

• A set of containers B — {b\,...}, and

• A set of transformations T — {t\,...}.

19

A solution to the packing problem consists of

• The packed set of objects S* C S, S* = {si, S2, • • •}

• A sequence of transformations which show how the packed objects are positioned:

T* =< ti,t2,... > such that each U e T.

• A container the objects are packed in: b* e B

• The assertion that transformed objects Ufa) are disjoint subsets of b*. This is what

makes it a packing.

Both types of problems (decomposition or packing) have decision as well as optimization

versions. In what follows, we review the partitioning, covering and packing literature. In the

sections about decomposition, we first review the various decomposition of general polygons

and then those of orthogonal polygons. Computational geometry has given particular

attention to orthogonal polygons since they are encountered frequently in practice. For each

type of polygon, we organize the sections around the shape of the components.

3.1 Partitioning

Although there are other types of planar objects that have been decomposed (e.g. spline-

gons [99], a splinegon being a polygon where edges have been replaced by well-behaved curves),

we focus in this section on partitioning general polygons (arbitrary nonself-intersecting poly­

gons with or without holes). We encounter a variety of objective functions for the optimization

versions of decomposition problems but the two main ones are: minimizing the perimeter of

the cuts (also called minimum ink partition) and minimizing the number of components

created.

20

3 .1 .1 G e n e r a l p o l y g o n s

Triangles

A decomposition of a polygon into triangles by a maximal set of nonintersecting diagonals is

called a triangulation: it is known that every simple polygon admits a triangulation. Due

to the huge amount of work done on polygon triangulation, triangulation has evolved to

become a field of its own. Again, we follow Keil's survey on polygon decomposition [172]

and omit this particular decomposition from this chapter. For comprehensive surveys on

triangulation and related problems, we refer the reader to [43,44]. We mention that the

triangulation of simple polygons can be computed in linear time [76] and that the problems

of decomposition into triangles, trapezoids and convex, star-shaped, monotone and spiral

polygons are linearly equivalent [120].

Convex components

• Min imum number of components for a polygon wi th holes. The NP-hardness

of the convex partition of polygons with holes is proved in [197] for both of the cases

where Steiner points are allowed and disallowed. Lingas and Soltan [200] define F to be

a given family of directions in the plane. They show that the problem of partitioning a

planar polygon P with holes into a minimum number of convex polygons by cuts in the

directions of F is NP-hard if | F | > 3 and that it admits a polynomial-time algorithm if

| F | < 2. Martini and Soltan study a special case of the problem combinatorially [218].

• N o minimum-guarantee partit ion of polygons without holes. Several algo­

rithms polynomial in n and A'' that do no allow Steiner points are devised [116,258].

No optimization is done. Tanase and Veltkamp propose to partition simple polygons

into unions of convex regions using straight skeletons, as a preprocessing step for shape

matching in image processing [273]. A more recent work partitions a convex polygons

into n convex parts each being based on a single side of P and containing a specified

share of P [17].

21

• Min imum number of components for polygons wi th neither holes nor Steiner

points . Several constant factor approximation algorithms to approximate the num­

ber of components are developed disallowing Steiner points [74,154]. Green gives

two algorithms for the optimal decomposition of polygons into convex parts under

the minimum number of components criterion [141]. The running time of the first

algorithm is 0(n log n) and the solution produced is at most four times the optimal

partition. The second algorithm is an exact algorithm that gives an optimal par­

tition and runs in 0(N2n2) time. Independently, Keil solves the same problem in

0(iV2n log n) time [169]. More recently, Keil and Snoeyink show that a partition of a

simple polygon into a minimum number of convex regions without Steiner points can

be computed in 0(n + N2 m'm(N2,n)) [174] .

• Min imum number of components for polygons without holes wi th Steiner

points . Chazelle and Dobkin give an 0(n + N3) t ime algorithm to decompose a

polygon into the union of a minimal number of convex polygons while allowing Steiner

points [77]. Since any decomposition must consider removing all the reflex vertices of P,

the algorithm is based on the introduction of X^ patterns that remove k reflex vertices

without the introduction of new ones and while minimizing the number of components.

Figure 14 shows a decomposition with X2 and X3 patterns. The equivalent problem is

NP-hard for polygon with holes.

Figure 14: A decomposition with X2 and X3 patterns.

• Min imum ink for a polygon with holes without Steiner points . In his doctoral

thesis [168], Keil shows the NP-completeness for polygons with holes.

• Min imum ink for a polygon with neither holes nor Steiner points. Keil

22

develops an 0(N2n2 log n) time exact algorithm based on dynamic programming [169].

• M i n i m u m ink for a polygon wi th holes and Steiner points . Lingas et al. prove

NP-hardness and they devise, for polygons with holes, an O(nlogn) time algorithm

that produces a convex partition of size 0((b + m) logN) where b is the perimeter of

the polygon and the holes and m is the minimum perimeter of its convex partition. No

optimal algorithms for the problem are known when Steiner points are allowed [199].

• Min imum ink for a polygon without holes wi th Steiner points . Levcopoulos

and Lingas give an approximation algorithm for the convex partitioning with the

minimum ink requirement. Their algorithm allows Steiner points and yields a solution

of size 0(blogN) where b is the perimeter of the polygon [191] .

Spiral components

• Min imum number of components for polygons with holes without Steiner

points . Keil proves that the problem is NP-complete [168].

• N o minimum-guarantee partit ion of polygons wi th neither holes nor Steiner

points . Feng and Palvidis develop a polynomial time algorithm for partitioning a

polygon without holes into spiral components without any minimum guarantee for the

number of components [116].

• Min imum number of components for polygons wi th neither holes nor Steiner

points . In his doctoral thesis, Keil solves this problem by developing a dynamic pro­

gramming 0 (n 3 l o g n) time algorithm based on his dynamic programming formulation

of the convex partition [168].

• M i n i m u m ink for polygons with neither holes nor Steiner points . Similarly,

Keil solves the minimum ink problem using an 0(n4 log n) time algorithm [169].

23

Star-shaped components

• Min imum number of components for polygons wi th holes without Steiner

points . Keil proves the NP-completeness of the problem [168].

• N o minimum-guarantee partit ion for polygons w i th neither holes nor Steiner

points . Toussaint and Avis provide an O(nlogn) time algorithm to partition into at

most |"§~| star-shaped components [18]. As cited in Keil's survey [172], Aggarwal and

Chazelle [6] improve this result. Their algorithm partitions a polygon into at most

|~^] components in 0(n) time.

• Min imum number of components for polygon with neither holes nor Steiner

points . Keil presents an 0(n5N2 log n) time dynamic programming algorithm [169].

• Min imum number of components for polygon without holes wi th Steiner

points . Shapira and Rappoport solve a restricted version of the problem where the

kernel of each component contains a vertex of the polygon, a partition that does not

always exist. They, therefore, allow Steiner points [264].

• Min imum ink for polygons wi th neither holes nor Steiner points. Keil

provides an 0(n4logn) time algorithm [169].

Monotone components

• Min imum number of components for polygon wi th holes without Steiner

points . Keil proves the NP-completeness of the problem [168].

• N o minimum-guarantee partit ion for polygons wi thout holes. As a by­

product of their triangulation algorithm, Garey et al. provide an O(nlogn) time

algorithm for partitioning a polygon in monotone components [128].

• Min imum number of components and minimum ink for polygons wi th nei­

ther holes nor Steiner points . Keil uses the same approach to solve both problems

with an 0(Nn4) time algorithm [168].

24

• Min imum number of uniformly monotone components for polygons with­

out holes. If all the components in a partition are monotone with respect to the

same line then they are said to be uniformly monotone. Liu and Ntafos provide two

algorithms for this partition problem, one that disallows Steiner points and runs in

0(nN3 + N2nlogn + N5) time and one that allows them and run in 0(N3nlogn + N5)

time [208].

Quadrilaterals

Quadrilateralization (or quadrangulation) is the term given to partitioning a polygon into

quadrilaterals (quadrangles). Quadrilateralization has received considerable attention in the

literature. Several applications for this problem are mentioned in Toussaint's survey [277].

A special case of quadrilateralization is partitioning into trapezoids often referred to as

trapezoidation. Trapezoidation is in many cases a by-product of an intermediate step in

triangulation algorithms.

• Quadrilateralization for polygons with holes. Lubiw shows that the prob­

lem of deciding whether a polygon with holes admits a quadrilateralization is N P -

complete [214].

• Convex quadrilateralization for polygons wi th or without holes. Using

Steiner points, Everett et al. shows that polygons without (with h) holes can al­

ways be quadrilateralized into "̂3~ ' (3 ~) convex quadrilaterals [113].

• M i n i m u m convex quadrilateralization for convex polygons. Muller-Hannemann

and Weihe present a linear time algorithm for partitioning convex polygons into the

minimum number of strictly convex quadrilaterals. Steiner points are not allowed on

the boundary of the polygon [238].

• Min imum ink quadrilateralization for polygons without holes. Conn and

O'Rourke devise an 0 (n 3 l o g n) time algorithm [87].

• Fat convex quadrilaterals. Van Kreveld gives an 0(n log2 n) time algorithm to

25

partition a fat simple polygon P with n vertices into 0(n) fat convex quadrilaterals.

Van Kreveld defines the fatness of a polygon P by the wideness of every quadrilateral

formed by every four points in P [278].

• N o minimum-guarantee trapezoidation. As a by-product of a triangulation

algorithm, Chazelle gives a linear time algorithm for trapezoidation with no minimum

guarantee on the number of components [76]. Seidel presents an algorithm with

0(nlog* n) expected running time [260].

• Min imum number of trapezoids. Asano et al. present an 0(n2) time algorithm

for partitioning a polygon without holes into the minimum number of trapezoids. Also

they present an 0(n log n) constant factor approximation algorithm in the case where

the polygon has holes [13].

Other components

• Min imum ink T-gon partit ion. Levcopoulos et al. give an algorithm that given an

input polygon P and an integer T, partitions a polygon into T-gons while minimizing

the perimeter of the cuts. The cuts are restricted to diagonals and thus, no Steiner

points are allowed. The algorithm runs in 0(n3T2) time [193].

• Min imum number of a-fat components for polygons wi thout holes. Damian-

Iordache and Pemmaraju call a polygon fat if it has a small aspect ratio and is called

a-fat if this ratio does not exceed a certain a. An a-small polygon is a polygon whose

diameter does not exceed a. Damian-Iordache and Pemmaraju present polynomial time

algorithms to partition simple polygons into a minimum number of a-fat and a-small

components while disallowing Steiner points. The algorithms are based on a dynamic

programming framework and special algorithms are given for convex polygons [93,94].

• Most circular partit ion of regular n-gons: convex and nonconvex compo­

nents. Damian and O'Rourke define the circularity of a polygon in terms of the

closeness of its aspect ratio to 1 and they discuss partitioning regular n-gons into

26

convex circular components [92]. For the equilateral triangle, it is shown that the most

optimal partition can only be achieved with an infinite number of components. For

n > 5, the optimal partition is the one piece partition. The question remains open for

the square. The idea is pursued for nonconvex circular partitioning in an unpublished

manuscript [91].

• M i n i m u m ink N E W S partit ion. Motivated by geographic information retrieval,

van Kreveld and Reinbacher presented polynomial time algorithms for partitioning a

polygon into four parts that can be considered as the North, East, West and South

(NEWS). There are several criteria to satisfy for such a partition (nonoverlapping simply

connected adjacent regions, equal-area partition, boundary with simple shape) [279].

• M i n i m u m ink and nonoptimal area partitioning. Given a polygon P and a

number p, an area partition of P is a set of components { P i , . . . , Pp} of P each of

a specified area, such that union of the interior of the parts equals the interior of

P. If, in addition, each polygon Pi (1 < i < p) has a particular point site Si in it

the partition is called an anchored area partition on S\,.. ,,Sn. Given a set of areas

A—a\,... ,ap, Bast and Hert propose a 0(pn) algorithm to partition a simple polygon

into p components with the given areas [30]. The algorithm first partitions P into q

convex components and then "sweeps" over the components to merge or divide them

when necessary. The running time is actually 0(pq + n) , where q is the number of

convex components but q is bounded by n since Steiner points are disallowed. The

minimum ink partitioning for this problem is shown to be NP-hard. Anchored area

partitioning is solved with a polynomial time divide-and-conquer sweep-line algorithm

for any simply or nonsimply connected polygon [153].

• Equal area partit ion of convex bodies . Guardia and Hurtado study the equipar-

tition (equal area) of convex bodies using chords. The authors show that there is no

solution for the set of nonsymmetrically convex n-gons for m > n chords and that

when the problem has a solution the straight lines determined by the chords are area

bisectors of the polygon: i.e. each cuts the polygon into two equal areas [143].

27

• M i n i m u m ink two equal partit ion. Even partitioning a polygon into two (possibly

disconnected) equal area components under the minimum ink criterion for the cuts is

shown to be NP-complete. Two algorithms are presented: a PTAS that partitions a

polygon into approximately equal parts and an exact algorithm for partitioning convex

polygons with 0(n2) running time [181].

• Perfect partitioning. A partitioning of a polygon P is said to be perfect if the

components have the same perimeter as well as the same area. A partitioning into k

perfect components is denoted by fc-partitioning (see Figure 15 for a 3-partitioning

of a square). Akiyama et al. study perfect partitioning of convex sets in the plane

and show that for any k, any convex set admits a perfect fc-partitioning. The authors

also explore radial partitioning in which all cut lines are required to meet into a single

point. They prove that every convex set admits a radial perfect 3-partitioning [9,10].

Figure 15: A perfect 3-partitioning of a square.

• Two congruent components partit ion. Eriksson considers the partition of a

polygon into two congruent components (see Figure 16 for such an example of such

partition). The running time for his algorithm is claimed to be 0(n3) but he neglects

the need for a data structure to check possible boundary intersections. The author

also claims without proof that the algorithm generalizes to polygons with holes [111].

In a draft criticizing the paper, Rote gives a counterexample to this claim [252], This

problem is the subject of Chapter 4.

• Pseudo-convex partit ion. A novel partition is proposed by Aichholzer et al. [8]: the

pseudo-convex partition is one where both convex polygons and pseudo-triangles are

allowed. A pseudo-triangle is a planar polygon that has exactly three convex vertices,

all other vertices are concave. They establish an existence proof of a pseudo-convex

28

(a) »)

Figure 16: (a) A polygon, (b) its decomposition into two congruent components.

decomposition for every simple polygon. Gerdjikov and Wolf present an algorithm that

determines a minimum pseudo-convex decomposition of a simple polygon in 0(n3)

time [129].

3.1.2 Orthogonal polygons

Rectangles and squares

The use of Steiner points is inherent in partitioning orthogonal polygons into rectangles.

• Minimum number of rectangles for polygons with holes. The first algorithms
5 3

for partitioning polygons with holes run in 0{n^) [117,207,243] and in 0(n5 logn) [159,

205,206]. The results were extended to point holes in [270]. Gudmundsson et al. show

an fi(nlogn) lower bound on the time complexity of the problem (for optimal or

approximative partition) [144].

• Minimum number of rectangles for polygons without holes. The first two

algorithms were constant factor approximation algorithms with 0(n2) [138] and

O(nlogn) [241] respective running times as cited in Ken's survey [172]. Liou et al.

present an 0(n log logn) time algorithm to find the optimal partition into rectangles

for polygons without holes by taking a graph theoretic approach. They also present

a linear time algorithm for convex and horizontally (vertically) convex orthogonal

polygons [203]. More recently, Bajuelos et al. show tight lower and upper bounds on

the number of rectangles in a partition [21].

• Minimum number of fat rectangles. O'Rourke et al. study the partition of

orthogonal polygons into fat rectangles. The goal is to maximize the shortest side 7 of

29

the rectangles in a partition and among all partitions with the same 7, the authors

seek the one with the fewest number of rectangles [244,246]. O'Rourke and Tewari

study the structure of a partition for several types of cuts: vertex cuts that have

at least one end at a vertex, anchored cuts that have endpoints on the boundary

of the polygon and unrestricted cuts that are floating inside the boundary of the

polygon [246]. Figure 17 shows a partition of an orthogonal polygon into rectangles

with vertex and anchored cuts. O'Rourke et al. focus on vertex cuts and gives an

0(n5) time dynamic programming algorithm. The authors prove that their algorithm

generalizes for anchored cuts and give more specialized algorithms for monotone,

pyramids and staircase polygons with better running times [244].

Anchored '

/ i
Vertex '

Figure 17: An example of a partition into rectangles with vertex and anchored cuts.

• M i n i m u m ink partition into rectangles for polygons wi th holes. Lingas et

al. prove the problem to be NP-complete [199]. Approximation algorithms with

constant factor approximations were presented by Lingas [198] and Levcopoulos [187]

as cited in Keil's survey [172]. Levcopoulos presents an O(nlogn) time constant factor

approximation improving on previous results [186].

• Min imum ink partit ion into rectangles for polygons wi thout holes. Lingas et

al. give an 0(n4) to partition a rectilinear polygon into rectangles under the minimum

ink criterion. Knowing that the optimal cuts lie on the grid induced by the polygon

boundary, the search for optimal solution is restricted to the 0(n2) candidate points

determined by the grid intersections for which there are 0(n2) matching points to

complete the rectangles [199].

• Min imum ink partit ion of rectangles into rectangles. If the partitioned shape

30

is a rectangle with point holes, several constant factor approximation algorithms were

presented [135,136,136]. Gonzalez et al. devise an approximation algorithm that

allows only guillotine cuts, i.e cuts that are obtained by starting recursively cutting

the rectangle into two rectangles by a line orthogonal to one of the axes [134].

• Min imum ink partit ion of rectangles, squares and circles into equal area

components . Bose et al. study the optimal —in terms of the perimeter of the cuts—

partition of squares, rectangles, circles and prisms into k equal area components. They

show that the diameter cuts the circle into two equal areas optimally. The optimal

solution to cut a circle into k equal area components such that the chords forming the

cuts do not intersect and the solution to the same problem such that the cuts intersect

into one Steiner point are also presented [51,52,54]. The minimum ink partition of

rectangles and squares is reviewed in detail in Chapter 5.

• Area partit ioning of rectangles under different opt imizat ion criteria. Given

a rectangle with area a and a set of n positive real numbers A — {a\,CL2, • •. ,an}

with ^2a.£Aai — a> t n e problem consists of partitioning R into n rectangles r, with

area a* (i = 1 ,2 , . . . , n) while minimizing an objective function. The decision version

of the problem is known to be NP-complete [32]. Three main objective functions

are discussed in the literature: minimizing the sum of the perimeters of rectangles

rj , minimizing the aspect ratio of the rectangles r» and minimizing the maximum

perimeter of the rectangles r,. For the latter objective function, Kong et al. solve the

problem in polynomial time when all the areas aj are equal [179,180]. Constant factor

approximation algorithms for the general problems and all three objective functions

can be found in [33,240].

Other components

• Min imum number of L-shaped components and other optimization criteria.

Lopez and Mehta present two algorithms for partitioning rectilinear polygons into

L-shapes and rectangles by using horizontal cuts only. Both algorithms run in 0(n +

31

hlogh) time where h is the number of iV-dents (the authors call them if-pairs) [211].

• Minimum number of star-shaped components for monotone simple poly­

gons. Allowing Steiner points, Liu and Ntafos present a linear time algorithm for

partitioning monotone orthogonal simple polygons into star-shaped components as

well as an 0{n log n) constant factor approximation algorithm for general orthogonal

polygons [209].

• Minimum number of < k and fixed number of vertices components. As cited

in Keil's survey [172], Gunther gives a polynomial time algorithm for partitioning an

orthogonal polygon into orthogonal polygons with k or fewer vertices [146] and Gyori

presents a partition into components with fixed number of vertices [147] .

• Minimum number of quadrilaterals. Toussaint and Sack show that a star-shaped

orthogonal polygon can always be decomposed into convex quadrilaterals [256] and

Kleitman et al. generalize the result for arbitrary simple orthogonal polygons [167].

Later, Sack and Toussaint give an O(nlogn) time algorithm [255,257] and Lubiw

proves fi(nlogn) as a lower bound for the complexity of the problem [214].

• Minimum ink quadrilateralization. Two independent works show that the mini­

mum ink quadrilateralization can be computed in 0(nA) time [173,214], Toussaint and

Sack show that star-shaped or monotone polygons can be quadrilateralized in linear

time [256].

3.1.3 3D partition

This thesis does not address partitioning of 3D objects. Therefore, our citing of the work on

partitioning polyhedra is not comprehensive and is just cited to give a flavour of the work

done in the field. It is important to note that whereas every polygon can be triangulated,

this is not the case in three-dimensions as shown in a result from 1911 cited in [44]. Work on

triangulation/tetrahedralization (when it is possible), convex partition and rectangle partition

of polyhedra can be found in the literature [20,27,37,42,44,73,75,78,81,98,126,152,196,254].

32

3.2 Covering

Covering problems are known to be bound by partition since the minimal cardinality of

a cover is at least equal to the cardinality of a partition. In other terms, any partition is

a valid cover while a cover may or may not be a valid partition. In covering, Steiner and

Steiner-free decomposition are also considered. Figure 18 shows a partition and a cover of

the same polygon.

Figure 18: (a) A simple polygon, (b) its partition into two components, (c) its cover with
two components.

33

3.2 .1 G e n e r a l p o l y g o n s

Convex components

• Min imum number of components for polygons wi th holes. For polygons with

holes, O'Rourke and Supowit show that the problem is NP-hard by with or without

Steiner points [245].

• Min imum number of components for polygons without holes. Culberson and

Reckhow prove that, for polygons without holes, covering the interior or boundary of

an arbitrary polygon with convex polygon is NP-hard, that covering the vertices of an

arbitrary polygon with convex polygons is NP-complete and that covering the interior

or the boundary of a polygon with rectangles is NP-complete [90].

• Recognizing the polygons without holes that can b e divided into a fixed

number of convex polygons. Shermer explores the properties of three classes of

closely related polygons. U2 is a polygon that can be expressed as the union of two

convex polygons. P3 is a polygon such that for any three points in the polygon, at

least two of them are visible to each other. A KR polygon is one such that all its

reflex vertices belongs to its kernel. A KR polygon where N ^ 3 is P3. A KR polygon

with A'' even is U2- Shermer's linear time algorithm classifies an input polygon P by

outputting: KR (if KR but not P3), P3 (if P 3 but not U2),U2 or NO (if P belongs to

none of the classes) [266]. Keil mentions in his survey [172] Belleville's work that solves

the problem of recognizing polygons that can be covered by three convex polygons in

linear time [35,36].

• Min imum number of O-convex components for polygons without holes. Let

O denotes a set of line orientations. A connected point set is called O-convex if its

intersection with any line with orientation in the set O is connected. Two points in a

polygon P are said to be O-visible if there is an O-convex path between them that

does not intersect 5P. A polygon P is O-convex if and only if every pair of points

is O-visible. Bremner and Shermer characterize a class of polygons that admits a

34

polynomial time algorithm for finding an O-convex cover [59].

• Covering a convex polygon wi th translates of convex polygons . Given a set

of n convex polygons, determining whether they can be translated to cover a fixed

convex polygon is proven to be NP-hard by Wang et al. [280].

Star-shaped components

• Min imum number of components for polygons w i th holes. O'Rourke and

Supowit show that the problem is NP-hard for polygons with holes with or without

Steiner points [245].

• Min imum number of components for polygons without holes. For polygons

without holes, it is mentioned in Keil's survey [172] that Aggarwal proves NP-hardness

of the problem in his Ph.D. thesis [5]. Approximation algorithms with an O(logn)-

approximation factor are devised for restricted versions of the problem [7,132].

• Covering with two star-shaped polygons. Belleville, as cited in Keil's survey [172],

solves the problem of recognizing polygons that can be covered by two star-shaped

polygons in 0{nA) time [34].

Rectangles and squares

• Min imum number of components for polygons wi th or without holes. It is

not known whether the optimal covering can be computed in exponential time. Several

experimental and theoretical results have been developed for this problem [150,185,188—

190,192]. Gudmundsson and Levcopoulos present an O(logn) factor, 0{n log n + OPT)

time approximation for covering obtuse-angle-only polygons (possibly with holes) with

rectangles provided that the vertices of the input polygon are given as polynornially

bounded integer coordinates. In a more recent work, the same authors give the first

constant factor 0{n2+OPT) time approximation algorithm for covering with rectangles

with bounded aspect ratio. They also present several constant factor approximations

algorithms for covering with squares and fat rectangles [189].

35

Other components

• Min imum number of spiral components for polygons wi th holes. For poly­

gons with holes, O'Rourke and Supowit show that the problem is NP-hard with or

without Steiner points [245].

• Covering a fat convex quadrilaterals wi th fat triangles. Van Kreveld develops

a method to cover a fat convex quadrilateral with O(l) fat triangles [278].

3 .2 .2 O r t h o g o n a l p o l y g o n s

Rectangles and squares

Covering with rectangles and squares refers to axis-aligned ones.

• Min imum number of rectangles for polygons w i t h holes. As mentioned in

Keil's survey [172] on polygon decomposition, covering an orthogonal polygon with

holes with the minimum number of rectangles is NP-complete [219] even in the special

case where only the boundary or only the reflex vertices need to be covered [86].

Berman and DasGupta prove that no polynomial time approximation schemes exists

unless P = N P and present a few constant factor approximation algorithms for some

variations of the problem such as covering the boundary and the vertices of a given

polygon [39,40]. Franzblau presents an 0(logOPT)-approximation [122]. Bern and

Eppstein [45] present a constant factor approximation algorithm for a polygon with

holes when the polygon is in general position (no two boundary segments are collinear).

The question whether the general problem admits a constant factor approximation

remains open [45]. Heinrich-Litan and Liibbecke conjecture that it does and support

their conjecture by experimental work (integer programming) [151]. Kumar and

Ramesh present an 0(v
/ logn)-approximation algorithm for covering polygon with

holes [182].

• Min imum number of rectangles for polygons wi thout holes. Culberson and

Reckhow prove that the general problem is NP-complete [90]. However, several

36

polynomial time algorithms exist for special cases: orthogonally convex polygons [66,

204], horizontally convex polygons [123], 2-staircase polygons [58], polygons that do

not contain a rectangle that touches the boundary only at two opposite corners of the

rectangle [215]. Two constant factor approximation algorithms are devised by Cheng

et al. [80] and Franzblau [122].

• Optimal nonpiercing covering. Keil presents an algorithm for optimal nonpiercing

covering for orthogonal polygons without holes. Nonpiercing covering consists of

covering with rectangles where every rectangle R^ and Rj in the cover are such that

R\ — i?2 or i?2 — Ri is connected [171].

• M i n i m u m number of squares for polygons with holes. Aupperle et al. prove

that the problem is NP-complete [16].

• Min imum number of squares for polygons without holes. The problem is

solved with a graph theoretic approach. A graph is associated with a given grid

orthogonal polygon P (one with integer coordinates). P is seen as composed of unit

squares called the blocks. A square is a square subset of the blocks of the orthogonal

polygon. A square cover is a collection of squares whose unions is equal to the polygon.

Each block in the polygon is made to correspond to a vertex in the graph and two

vertices are adjacent in the graph if and only if the corresponding blocks belong to

a square of P. Albertson and O'Keefe show that this graph is perfect for a polygon

without holes [11] . Aupperle et al. show that the resulting graph is chordal and reduce

the problem to that of finding a minimum clique cover in a chordal graph [16]. As

chordal graphs are perfect, the problem is solvable in polynomial time and the running

time of the algorithm is 0(B2\f~B) where B is the number of blocks in the polygon. It

is mentioned in Keil's survey [172] that Aupperle, in his thesis, adapted this algorithm

further to obtain 0(B\/~B) running time [15]. Moitra proposed a parallel algorithm

linear in B for solving the same problem using also a graph theoretic approach [232].

Bar-Yehuda and Ben-Chanoch's algorithm runs in 0(n + OPT) time [26].

37

T r
i i

i i

Figure 19: The prolongation of the dents in an orthogonal polygon and its division into
regions.

Star-shaped components

• Min imum number of s-star-shaped components for polygons without holes.

Following a graph theoretic approach, Motwani et al. solve the problem of minimally

covering orthogonal polygons with s-star-shaped polygons. The polygon is divided into

regions defined by the prolongation of the dents supports until they hit the boundary

as shown in Figure 19. A star graph H = (V, E) is defined from this partition. Each

region is associated with a graph vertex in H and two vertices are adjacent in H if

the two corresponding regions indirectly see each other. It is proven that a minimum

clique cover of H corresponds exactly to a minimum cover of P by s-star polygons.

The star graph is proven to be a weakly triangulated graph that are again perfect and

hence the problem is solved in polynomial time (0(n8) time) [236].

• Min imum number of r-star-shaped components for polygons without holes.

Keil follows a geometric approach to solve the problem of optimally covering horizontally

convex polygons into r-star-shaped components in 0(n2) time [170]. This result is

improved to 0(n) time by Gewali et al. [130] and more recently to linear time with

only O(k) additional space where k is the size of the optimal solution by Lingas et

al. [201]. Keil and Worman, following a graph theoretic approach, settle the open

problem for general simple orthogonal polygons by showing that it can be solved in

polynomial time (0 (n 1 7) where 0 () hides polylogarithmic factors) [281,282]. More

38

recently, Lingas et al. present a simple linear time 3-approximation for the same

problem [202].

• M i n i m u m number of components for other star-shapedness definitions. Op­

timal number of components algorithms for different star-shapedness definitions can

be found in [62,102,216,257] and in [131] as cited by Keil in his survey [172].

Orthogonally convex components

• M i n i m u m number of orthogonally convex components . Keil provides an opti­

mal covering in quadratic time of horizontally convex polygons by orthogonally convex

components using a geometric approach [170] . Reckhow and Culberson prove a lower

bound of Q(n2) for any algorithm that needs to report an explicit representation of

the output for an orthogonal polygon. They then provide a linear time counting-based

algorithm for finding the minimum number of orthogonally convex polygons to cover

a horizontally convex orthogonally polygon. Following a geometric approach, the

authors also develop an 0(n2) time algorithm to optimally cover class 26 polygons with

orthogonally convex components. A complex polynomial time algorithm is presented

to handle orthogonal polygons with four dent orientations with the condition that at

most a constant number of dent lines intersect any given dent line [250]. For class

2 and 3 polygons, Motwani et al. reduce the problem to a minimum clique cover in

the polygon's visibility graph which results in a polynomial time algorithm for this

case [237].

3 .2 .3 3D c o v e r i n g

Not much work has been done on covering polyhedra. Mookherje and Prabhajaran provide

an algorithm (without an analysis of its complexity) for approximately covering a convex

polyhedron with the minimum number of spheres, a work with an application in the radiation

treatment of a tumour [233]. Wang and Yang present an algorithm for the following problem:

given two simple polyhedra P° and P1 and a convex polyhedron P2, determine whether or

39

not P° can be covered by P1 \J P2. The running time is polynomial in the size of the three

polyhedra [280].

3.3 Packing

In surveying the literature on packing problems, we introduce a taxonomy of these problems:

• Packing at fixed locations. Only a finite number of discrete locations for each

object to be packed (in the set S = {s\,...}, each Sj C G) are considered. Such

problems are equivalent to maximum independent set in a graph.

• Strip packing. The container is a rectangular strip of a given width and the goal is

to pack all the given objects into the strip so as to minimize its height.

• Packing identical objects . The objects to pack are identical and the possible

locations are not finite.

• Packing different objects . The objects in S are different.

For the optimization versions of packing problems, there are two main variants for the

objective function:

• Pack everything. If the container is unique, this is a decision problem. If it is not,

then you want to pack everything into the best container.

• Pack the "best" subset for varying definitions of best.

In the following subsections of this chapter, n will not denote the number of vertices of a

polygon.

3.3 .1 P a c k i n g at fixed l o c a t i o n s

• Packing in graphs. The problem of maximum independent set for general graphs

with n vertices is hard to approximate even to within a factor of n 1 _ e [149].

40

• Packing objects with fixed locations. A reduction from independent set on

intersection graphs is shown to prove that the problem of finding the largest independent

set of objects is NP-hard [121,158].

• Squares in grid orthogonal polygons. Hochbaum and Maass give a PTAS for

the NP-complete problem of packing a maximum number of (k x k) squares in an

orthogonal grid polygon [155]. Variations of this problem are studied in Chapter 6.

• Uni t disks. Given a set of possible locations for unit disks, Hunt et al. present a

polynomial time approximation scheme for solving maximum independent set for an

intersection graph where th objects are unit disks [157],

• Fat objects . Erlebach et al. focus on the case where the objects to pack have varying

sizes but are fat. They give a PTAS for both maximum weighted independent set and

minimum weight vertex cover [112]. Chan describes an improved PTAS [68].

• Line segments and convex objects . Agarwal and Mustafa present two approx­

imation algorithms for the independent set problem on line segments and convex

objects [2].

• Rectangles (map labelling). Agarwal et al. describe an algorithm with an

O(n logn) running time and 0(logn)-approximation factor for finding the maximum

subset in a set of n arbitrary axis-parallel rectangles in the plane. When all rect­

angles are all unit height, they present a 2-approximation in O(nlogn) time and a

(1 + e)-approximation in time 0 (n l o g n + n 2 / e _ 1) time [4]. Khanna et al. [177], being

interested in database applications of the maximum subset packing problem, state

independently similar results to Agarwal et al. [4]. Berman et al. [41] and Chan [69]

improve the previous on both arbitrary and unit height rectangles.

• Weighted rectangles. Given a set of fixed weighted rectangles, a (2+e)-approximation

algorithm is presented to find the maximum-weight packing [162].

• D-box graphs. A d-dimensional box (d-box) is a subset of M.d tha t is a Cartesian

41

product of d intervals in R. Chlebfk and Chlebikova prove that no PTAS exists for

maximum independent set for d-bax. graphs for any fixed d > 3 unless P = N P [82].

3.3.2 Strip packing

• Rectangle strip packing with no rotations. Given a set of different rectangles

of width at most 1 and given a strip of unit width, place the rectangles in the strip

so as to minimize the height of the strip. Baker et al. show that the bottom-left

approximation algorithm has asymptotic performance guarantee of 3 [23]. Tarjan et al.

study different level-oriented algorithms and show their performance guarantees to

be 2 and 1.7 and 1.5 [85]. Other works present asymptotic performance guarantees

of 2.5 [268], 3 [133] and | [22]. The best current absolute performance guarantee is

2 [259,271]. Fernandez and Zissimopoulos present a (1 + e)-approximation for the

restricted version of the problem where the height and width of rectangles are bounded

by an absolute constant [96]. Kenyon and Remila present an AFPTAS for the same

problem with no restriction on the size of the rectangles [175].

• Rectangle strip packing with 90° rotations. Miyazawa and Wakabayashi present

two algorithms allowing orthogonal rotations: one has an asymptotic performance

guarantee of 1.613 [230] and the other a performance guarantee of | [108]. Jansen and

van Stee present an AFPTAS for this problem [161].

• 3D rectangle strip packing. Several approximation algorithms are developed for

the three dimensional version of the problem [25,160,194,195,229,231].

• Variants. Variations of the strip packing are also considered such as online strip

packing (with and without rotations) [19,89], as well as strip packing with precedence

constraints or release times [14].

• Packing circles in a strip. The maximal density of circles in a strip of width w is

determined for certain values of w [127].

42

3.3.3 Packing identical objects

• Heuristics. Many computer aided optimization algorithms lead to experimental

results that do not contain meaningful algorithmic results. As examples we cite:

finding the densest packing of equal disks in an equilateral triangle [212], finding the

densest packing of equal disks in a square [63,64,217,272] and identifying patterns of

packing equal circles in a square and in various shapes [139,210,213].

• Finite problems. Packing of small numbers of different simple shapes in larger

simple shapes is addressed; the packing centre of Friedman is a clearinghouse for many

results [124], and many nontrivial results remain without a proof. Proofs are found for

specific cases [119,221,222], but others are simply the best known packings for very

specific cases. For example, in [223] the packing of 16, 17 and 18 congruent circles in

an equilateral triangle is presented with the following claim: "The results have been

found by the use of simulated annealing and a quasi-Newton optimization technique,

supplemented with some human intelligence." For a recent survey and new results on

packing small numbers of unit squares in squares, see [125].

• Packing squares in squares. Earliest to ask the question of packing squares with

unit squares are Erdos and Graham [109]. They prove that allowing rotations keeps

the amount of area uncovered down to at most proportional to air which is for large

a is better than linear waste produced by just stacking the squares row by row, where

a is the side of the square.

• Packing two identical disks in a polygon. The medial axis of a polygon P is

defined as the locus of all centres of circles inside P that touch SP in two or more

points. Bose et al. give two algorithms for packing two disks in a convex n-gon.

Their first algorithm, which maximizes the radius of two equal disks, runs in 0(n)

time. The second algorithm runs in 0(n2) time and maximizes the sum of radii of

two disks. It is shown in both cases that the centres of the two optimal disks lie on

the medial axis of the polygon [53]. The former problem was first discussed in the

43

context of finding a folding to hide the largest possible disk in a simple polygon and

was solved in 0(n2) time. Kim et al. [178] presented an improved O(nlogn) algorithm

for convex polygons. They also present a variation of the problem where the folding

line is set to pass through vertices of the polygon and they solve it in 0(n2 log2 n) time.

Bespamyatnikh [46] improves the running time of this latter version to 0(n log2 n) time.

For simple polygons, he gives an 0 (n l o g 2 n) algorithm for the original problem. Bose

et al. improve on this latter result by presenting a randomized algorithm that runs in

0(n log n). Finally, Chan improves the result to a linear expected time algorithm [70].

• Packing disks in an orthogonal polygon. The algorithm packs a maximum

number of unit disks in a rectangular region with obstacles, represented as holes. The

approximation factor is | [38].

• Packing squares in a polygon. Baur and Fekete [31] present an approximation

algorithm for the following NP-hard problem: Given a polygonal region P—possibly

with holes—with n vertices, pack k many (L x L) squares into P such that L is as big

as possible. The authors prove that the problem has no PTAS unless P = N P and

give a | -approximation algorithm. The problem posed here belongs to a larger set of

problems called dispersion problems or obnoxious facility location.

• Packing rectangles in a rectangle. The pallet loading problem consists of packing

a large containing rectangle with identical axis-parallel copies of a small rectangle.

The problem is not known even to be in N P . Dowsland claims the problem to be

NP-hard [100] and Exeler claims it to be in N P [114]. Both claims are erroneous [97].

Neliben presents several heuristics to solve the problem [242] and Tarnowsky proves

that a special case of it can be solved in polynomial time under some unnatural

assumptions as to the nature of an optimal solution [275]. This problem has received

much attention in the literature; Ram surveys many solutions and their industrial

applications [248].

• Heuristics for packing identical boxes into a polyhedron. Heuristics and

44

experimental results can be found for the problem of packing identical (4 x 2 x 1)

boxes in a "car trunk" without rotations [104] and with rotations [103].

• Packing in infinite space. For more information on the packing density of objects

in simple geometric shapes or infinite space see, for example, Toth's survey [276].

3 .3 .4 P a c k i n g different o b j e c t s

• Packing similar triangles into a triangle. A sufficient condition to pack any

sequence of triangles similar to a triangle T is discussed in several papers. Let a(T)

denote the largest number such that any finite sequence of triangles similar to T with

total area not greater than a(T) • area(T) can be packed into T. Richardson proves

that a(T) > ^ [251]. Soifer conjectures that a(T) — \ for any triangle [269]. Finally,

Januszewski proves the existence of a triangle with a(T) > \ [163].

• Packing squares in squares. It is proven that the problem of deciding whether

a set of squares of different sizes can be packed into a larger square is strongly

NP-complete [184].

• Packing harmonic squares in a small rectangle. Given a set of squares of side

lengths \,\,\,-- • find the smallest rectangle in which these squares can be packed.

Several results that improve on the upper bound of the size of such a rectangle are

presented [24,67,164,220,247] with some generalizations to cubes [220].

• Convex hull packing. Given two convex polygons in the plane with respective

complexities m and n and that are free to translate and rotate, a minimum convex

packing of the two polygons is the smallest convex region that they can be packed in.

The problem is first solved in linear time without allowing rotations [183]. Tang et al.

present an 0(n + m)nm algorithm [274]. The problem is solved experimentally using

simulated annealing for packing more than two polygons [283].

• Containment . Packing a variety of different polygons into some minimal shape is also

known as the containment problem. Milenkovic et. al. has studied many variants of this

45

problem (some of which include strip packing) [95,224-228]. The variants examined

do not have many of the simplistic assumptions that many other papers have, they

directly tackle both approximate and exact solutions for packing real polygons (even

nonconvex ones) into minimal shapes from various classes (e.g. rectangles). The cases

of allowing rotations or translations only are addressed. However, their worst-case run

times are all exponential.

• Packing two polygons into a minimal rectangle. Alt and Hurtado, inspired by

the work of Milenkovic et al. solve the minimum area-rectangle packing problem in

polynomial time, but only when there are two polygonal objects to pack [12].

46

Chapter 4

Congruence

4.1 Introduction

In this chapter, we are interested in partitioning a simple polygon into two congruent

components. Symmetry detection algorithms solve problems of the same flavour by detecting

all kinds of isometries in a polygon, a set of points or a set of line segments and some

classes of polyhedra [101]. Two open problems with unknown complexity were posed by

Eades in [101]: the minimum symmetric decomposition (MSD) problem and the minimal

symmetric partition (MSP) problem. Given a set D in M.d (d G {2,3}), the goal is to find a

set of symmetric (nondisjoint for MSD and disjoint for MSP) subsets {D\, D2, •.., Dk) of D

such that the union of the Di is D and k is minimum. The following problem is a decision

version of a variation of MSP where k — 2:

Problem 1. Given a polygon P with n vertices, compute a partition of P into two (properly

or mirror) congruent polygons P\ and P%, or indicate such a partition does not exist.

Eriksson claims to solve the aforementioned problem in 0(n3) time [111]. Rote observes

that a careful analysis of Eriksson's algorithm yields a 0 (n 3 l o g n) running time for proper

congruence and he shows that the combinatorial complexity of an explicit representation of

the solution in the case of mirror congruence cannot be bounded as a function of n [252].

Rote also gives a counterexample where the algorithm fails for a polygon with holes. In

47

this chapter, we present two algorithms to solve the problem for a simple input polygon

P: an 0(n2 logn) algorithm for properly congruent and possibly nonsimple P\ and P2 and

an 0(ns) algorithm for mirror congruent and possibly nonsimple polygons Pi and Pi- In

other words, our second algorithm is able to produce solutions unbounded by n in a time

polynomial in n using an implicit representation of the output. Since we allow nonsimple

polygons as outputs, we use a different definition of partition than the one found in the

literature to solve Problem 1.

The chapter is organized as follows. In Section 4.2, we define terms and notation needed

for the rest of the chapter. In Section 4.3, we translate into pseudo-code the previous

algorithm that solves Problem 1 and we present in detail Rote's critiques of the solution. In

the remaining sections, we present our solution of Problem 1 along with some conjectures.

4.2 Preliminaries

Our notions of congruence follow those in [111]. Two polygons are said to be congruent if

one can be transformed into the other by an isometry, i.e. a transformation that preserves

distances. Two polygons are properly congruent if they are equivalent up to translations and

rotations (see Figure 20) and are mirror congruent if they are equivalent up to reflection

or glide reflection (see Figure 21). Note that a glide reflection is a reflection followed by a

translation parallel to the reflection axis. A reflection along an axis g followed by a rotation

or a translation is a reflection around an axis g'. Congruence transforms involving either a

translation or rotation T — (p, 0) may be viewed as a rotation about an arbitrary point p,

including points at infinity where 9 is the angle of rotation. Let T~l = (p, —6). Congruence

transforms involving glide reflection are denoted by T = (g, v) where g is the axis of reflection

and v is the vector of translation if any. Let T~l — (g, — v).

Let Z_a be the interior angle of a point a on a polygon P. Let ab be the line segment
p

with endpoints a and b.

A polyline can be viewed as an alternating sequence of lengths and angles, which always

begins and ends with a length. The angles of a polyline are the ones measured in the interior

48

V

(a)

(b)

Figure 20: Properly congruent polygons: (a) two translationally congruent polygons with
translation vector v, (b) two rotationally congruent polygons with rotation point p.

49

Figure 21: Mirror congruent polygons: (a) two mirror congruent polygons with reflection
axis g, (b) two mirror congruent polygons with reflection axis g' and vector v.

of the polygon. Let P[a .. b] be a polyline on the boundary of a polygon P and c be a point

on that polyline. P[a .. b] can be written as the concatenation of two polylines and an angle:

P[a .. b] = P[a .. c] + /_c + P[c .. b] (where + is the concatenation operator). A polygon P

with vertices (pi,P2, • • • ,Pn) can be viewed as the concatenation of a polyline, an angle, a

length and another angle: P[pi .. pn] + /_pn + \PnPi I + ZPi- A polygon can therefore, be
p p

written as the concatenation of several polylines (to which an angle is appended).

Two polylines are congruent if they are represented by the same sequence (see Figure 22).

Two polylines are flip-congruent if they are represented by the same sequence after replacing

all of the angles a.{ in one by 27r — a, and reversing the order of the sequence (see Figure 23).

In other words, two flip-congruent polylines are properly congruent in the pure geometric

sense. Two polylines are mirror congruent if they are represented by the same sequence after

reversing the order of the sequence (see Figure 24).We use = to denote proper congruence,
FLIP MIRROR

= to denote flip-congruence and = to denote mirror-congruence. Observe that

Figure 22: Two translationally congruent polygons P (left) and Q (right) where polylines
P[a .. b] and P[c .. d] are congruent.

A simple polygon P is said to be partitionable into Pi and Pi if there exists two points

b and e on 5P and a polyline sp connecting them such that P\ = P[e .. b] + x + sp + y

51

file:///PnPi

Figure 23: Two translationally congruent polygons P (left) and Q (right) where polylines
P[a .. b] and P[c .. d] are flip-congruent.

Figure 24: Two translationally congruent polygons P (left) and Q (right) where polylines
P[a .. b] and P[c .. d] are mirror congruent.

52

and P2 = P[b .. e] + w + sp + z where x, y, w and z are some angles. A partitioning of P,

if it exists, is a solution to Problem 1 under this definition of partition and is denoted by

S = (Pi,P2). Components Pi and P^ are such that there exists a transformation Ts where

Ts(Pi) = Pj- We say P\ and P2 are congruent if Ts involves rotation and translation such

that Ts(Pi) = P2 and mirror congruent otherwise. Using the definition of a polygon as an

alternating sequence of lengths and angles (which starts with a length and ends with an

angle), components Pi and P2 are congruent if and only if their corresponding sequences

are cyclic permutations of one another. The polyline sp is called the split-polyline and is

denoted by Split(S). We are interested in a split polyline that has minimum complexity.

When P is symmetric, we call the partition trivial and the problem reduces to symmetry

detection which has been solved in linear time in [101].

Note if Ts is a reflection it can be determined by one pair of points (pi,Ts(pi))- If Ts

is glide reflection, it can be determined by two pairs of points (pi,Ts(pi)) and (Pj,Ts{pj))

(i ^ j). We say that two subsets s\ C Pi and S2 Q P2 of congruent polygons Pi and P2 are

transformationally congruent with respect to congruence transformation Ts if Ts(s\) — S2-

Let vd(a, b) be the vertical distance between the two points a and b. Let cwp(a) and ccwp(a)

denote respectively the line segments incident to point a clockwise and counterclockwise

around 6P (P is a simple polygon). A line determined by two points a and b is denoted by

(ab). We normalize P to have unit perimeter.

4.3 Eriksson's algorithm

We present Eriksson's algorithm for partitioning a polygon into two congruent compo­

nents. We have rewritten his algorithm in pseudocode and separate it into two procedures:

Algorithm 1 that checks for proper congruence and Algorithm 2 that checks for mirror

congruence.

Let us analyse the running time. S' is the set of all vertices and the midpoints of all

segments in 8P. For every pair of points in S' (0(n2)), both procedures travel around 5P

(0(n)) and check for the intersection of split-polyline with 5P (O(logn) assuming 0(n)

53

A l g o r i t h m 1 E r iksson ' s a lgor i thm for pa r t i t i on ing a po lygon in to two p rope r congruen t

componen t s .

Require: A polygon P with vertices S = {pi,P2, • • • >Pn)
Ensure: Partitions P into proper congruent P\ and Pi or indicate tha t such a partition does not

exist
5 ' <— 5 U the set of the midpoints of all segments in 5P
Pathi *- 0
Path2 *- 0
for all pairs (pi,Pj) of points in S' do

Q<-Pi
r <- Pi
while PiPi+i = PiPi+i do {The two paths are constructed clockwise around 5P}

Pathi <— Pathi + PiPi+i
Pathi <— Pathi + PjpJ+T
Pi <- Pi+i
Pi <- Pj+i

end while
if Pathi and Pathi have reached r and q respectively t h e n

Report that P can be partitionable into P\ <— Pathi and F2 <— Pathi with the line segment
fg

else {Pathi adds boundary segments and Pathi add duplicates of the line segments until it
intersects the boundary again}

repeat
Pathi <— Pathi +PjPj+\
Pathi <— Pathi + PiPi+\

Pi *~ Pi+i
until Pathi intersects the boundary again
Check if the produced cut is valid and report a partition of P into Pi <— Pathi and
Pi *— Pathi, if so

end if

Pi*-q
Pi <- r

while piPi-i = pjPj-i do {The two paths are constructed counterclockwise around 5P}
Pathi <— Pathi + PiPi-i
Pathi <— Pathi + PjPj-i
Pi <- Pi-i
Pi *~Pj-i

end while
if Pathi and Pathi have reached r and q respectively then

Report that P can be partitionable into Pi *— Pathi and P2 *— Pathi with the line segment
rq

else {Pathi adds boundary segments and Pathi add duplicates of the line segments until it
intersects the boundary again}

repeat
Pathi <— Pathi +PjPi-i
Pathi <— Pathi + PjPj-i

Pi «- Pi-i
until Pathi intersects the boundary again
Check if the produced cut is valid and report a partition of P into Pi <— Pathi and
Pi <— Pathi, if so

end if
end for
Report that P is not partitionable otherwise.

54

A l g o r i t h m 2 Er iksson ' s a lgor i thm for pa r t i t i on ing a polygon in to two mi r ro r congruen t

componen ts .

Require: A polygon P with vertices S = (pi,P2, • • • ,Pn)
Ensure: Partit ions P into mirror congruent Pi and P2 or indicate that such a partition does not

exist
S' <— S U the set of midpoints of all segments in 6P
Pathi <- 0
Path2 <- 0
intersect = false
for all pairs (j>i,Pj) of points in S' do

whi le PiPi+i = PjPj-i and Pathi r)Path,2 = 0 do {The two paths are constructed in opposite
direction around 5P, say Pathi clockwise and Path2 counterclockwise}

Pathi <— Pathi + PiPi+i
Patli2 <— Path.2 + PjPj-i
Pi <- Pi+i
Pj * - P j - i

end while
if PtPi+i / PjPj-i t h e n

TempPathi <— Pathi
TempPath2 <— Path,2
repeat

Pathi <— Pathi +PjPj-i
Path2 <— Path2 +PjPj-i

Pj *~ Pj+i
until Pathi intersects the boundary again
if Pathi intersects the boundary again and the produced partition is valid t h e n

Report a partition of P where Pi <— Pathi a n d P2 <— Path2
else

Pathi <- TempPathi + P\pi+i .. Pj]
Path2 <— TempPath2
repeat

Pathi <— Pathi + P\pi+\ • • Pj]
Path2 <- Path2 + P\pi+i • • Pj]

until Pathi intersects the boundary of P
Check if the produced partition is valid and report Pi <— Pathi and P2 <— Path2, if so

end if
end if
Repeat the same construction of Pathi and Pat/12 exchanging their direction: the former goes
counterclockwise and the latter clockwise around SP

33: end for
34: Report that P is not partitionable otherwise.

55

Pj = a

(a) (b) (c)

Figure 25: A bad example for Eriksson's algorithm.

preprocessing and space [145]), a total of 0 (n 3 logn) running time as opposed to the 0(n3)

claimed by Eriksson [252].

In Algorithm 2, every pair of points in S' is considered to trace the congruence of the

boundary and to find a potential split polyline to partition P into Pi and P^. Consider

Figure 25. Suppose that pi = a and pj = b. (a, b) is a candidate pair that generates a

congruent partition of P. Points pi and pj "travel" around 5P clockwise and counterclockwise

respectively until they construct the split polyline and they reach b and a again (when

Pi = d, pj = c and when pi = c, pj = e as shown in Figure 25). As we shall see later in this

document, for this case, the split polyline is periodic with period P[a .. b] + x + Ts(P[a .. b])

(where x is some angle) and its complexity depends on the vertical distance between two

points in 8P. Therefore, pi and pj might need more than linear time to "travel" around

8P and construct the split polyline. This is where Eriksson's analysis of lines 27 to 30 in

algorithm 2 fails.

56

4.4 Preprocessing

Let the length of a polyline P[a .. b] (denoted dp(a, b)) be the sum of the lengths of all the

line segments that form this polyline. Given a point a e 5(P), we need to locate another

b G S(P) such that dp(a, b) = x. Let dp'1 (a, x) be the point b such that dp(a, b) — x. That is,

it is the point on SP obtained by walking x units (in the given order of vertices) around 5P

from a. Note that dp1 (a, 0.5) — bis equivalent to dj,1 (b, 0.5) = a. We need two preprocessing

steps for our algorithms: one to detect the congruence of polylines and the other to, given a

point a € S(P), locate another b £ S(P) such that dp{a,b) = x.

Congruence of polylines is detected by string matching. Our string representation of

polygons and polylines yields Corollary 3.

Theorem 2 ([115]). Given a string R of length n, an (n x n) table H of integers in the

range 1.. .n2 can be computed in time 0(n2) such that Hitj — Hk,i iff'Rij — Rk,i where Rij

is the substring of R from the ith to the jth character.

Corollary 3. Given a simple polygon P, with 0(n2) preprocessing and space, queries of the
? ?

MIRROR FLIP

form P[a .. b] = P[c .. d] and P[a .. b] = P[c .. d] can be answered in constant time.

Theorem 4. Given a polygon P = (pi , . . . ,pn), with 0(n) preprocessing and space, the

functions dp(a,b) and dj, (a,x) can be computed in constant time if the points a and b are

vertices of the given polygon, and in O(logn) time if they are not, using standard point

location techniques [239].

Proof. Let Dp[l .. n] be a vector of distances and let .Dp[l] = 0. For every vertex pi of P,

we store its distance around 5P from pw Dp[i] = Dp[i — 1] + \pi ~ lpi\. Given two vertices

a and b of the polygon P with respective indices k and I, dp(a,b) = D[l] — D[k] if k < I

and dp(a,b) = 1 — (D[lj — D[k] otherwise. If a and b are not vertices then we locate in

O(logn) time the segments they belong to on the boundary using standard point location

techniques [239] and we calculate dp(a, b) similarly. Let Dp1 be a hash table of the distances

in Dp. Given a point a and a distance x, consider that a is a vertex (if it is not locate it in

O(logn) time using standard techniques) and let b the point which is at distance x from a.

57

We look Dp[a] + x up in the hash table. If 6 is a vertex, we find it in Dp in constant time.

Otherwise, locate b in O(logn) time by binary searching in Dp. Both the distance vector

and the hash table take linear time to construct and linear space to store. •

4.5 Proper congruence

In this section, we assume that if a solution exists then the transformation involves a rotation

or a translation and is defined by Tg = (p, 0). Let b and e denote the endpoints of the

split-polyline Split(S), if it exists.

Lemma 5. Assume that P can be nontrivially partitioned into two properly congruent

polygons then there is a solution S — (P i , ^) such that either Pi[b .. e] is disjoint from the

polyline Ts (Pi[6 • • e]) or P\[b .. e] must be a single line segment.

Proof. Let S = (Pi,P2) where Pi and Pi are chosen to minimize the length of Split(S).

Assume that Pi[b .. e] overlaps (fully or partially) with T(Pi[6 .. e]), i.e. T(Pi[6 .. e])

overlaps with P^\e • • b]. Let x be a point on P\\b .. e] and y be a point on Ts (Pi[b .. e]) such

that y — Ts(x) and x =£ y. Cut the corners at x and y identically and the transformation

is still preserved. A contradiction to the fact that the split-polyline was the shortest

possible. •

The section is organized as follows. We first show the necessary conditions for the

existence of a solution in Lemma 6, namely that a solution S = (Pi,P2) can be specified

by a sextuple of points on 5P satisfying some properties. In Lemma 7, we show how to

verify if a given sextuple specifies a solution to Problem 1 or not. In Lemma 8, we show how,

given two points of a solution sextuple, we can find the rest of the points in the sextuple.

Finally, in Theorem 9, given that (by Lemma 6) at least four points of a solution sextuple

are vertices, we present an 0(n2 log n) algorithm that solves Problem 1 for the case discussed

in this section.

For Lemmas 6, 7 and 8, assume that P can be nontrivially partitioned into two congruent

components Px and P2 where S = (Pi.Pa) and let c = Ts(b), d = Ts{e), a = ^(b),

58

Figure 26: A simple polygon partitioned into two simple rotationally congruent components.

and / = Tg x(e). Figures 26 and 28 show two polygons respectively partitioned into two

rotationally and translationally congruent simple components Pi and P2. Figure 28 shows a

polygon partitioned into two translationally congruent nonsimple components Pi and P2;

Figure 29 shows the details of the partition.

Lemma 6. The following facts hold (see Figures 26, 21 and 28): (a,b,c,d,e, f) appear

clockwise order on 5P; P[f .. a] 3* P2[e .. 6]; P[c .. d] = Pi[b .. e}; P[a .. b] S P[b .. c];
FLIP

P\d .. e] =* P[e .. /] ; P[f .. a] = P[c..d];Za+/_c=Zb+Zb;Zf+Zd=Ze+Ze
Pi P2 Pi P2 Pi P2 Pi P2

and at least two of the points in {a, b, c} and two of the points in {d, e, / } are vertices of P.

Proof. Since, by definition, P\[b .. e] is a subset of the boundary of Pi then its flip-congruent

polyline Pi\e .. b] is a subset of the boundary of P2. By Lemma 5, Ts(P\[b .. e]) and

59

Figure 27: A simple polygon partitioned into two simple translationally congruent compo­
nents.

a

o

b

111

tt±

111"

-tts-
i i i

o
e

c

o

HI

111

6

Figure 28: A simple polygon partitioned into nonsimple translationally congruent compo­
nents.

60

(a)

Figure 29: A simple polygon partitioned into nonsimple translationally congruent compo­
nents.

61

Ts(P2[e .. b]) are subsets of SP. Therefore, points a, b, c, d, e, / belong to SP and their

order is implied by Ts- Given that a — T^xif)) and / = Tg1(e), we can immediately conclude

that the image of P[f .. a] by transformation T$ is P\[b .. e\. Similar arguments apply

to prove that P[c . . d] ^ Pi[b . . e], P[a .. b] = P[b .. c] and P[d .. e] = P[e .. /] . Since

polylines P[f .. a] and P[c .. d] are respectively congruent to Pi[b .. e] and P2[e .. b],
FLIP

then P[f .. a] = P[c .. d\. Also, by preservation of angles, both angles Z a and Z c are
Pi P 2

congruent to Zb. Since b € 5P\ and b £ 8P2, then /_a= /_b and /_c= /_b. It follows that
P Pi Pi Pi Pi

Za + Z.c— Zb+ Zb. Similarly, it can be shown that Zf+Zd=Ze+Ze. It follows
Pi P 2 Pi P2 Pi P 2 P i P 2

that at least two of the points in {a, b, c} and two of the points in {d, e, / } are vertices of

P. •

Lemma 7. Given the preprocessing in Corollary 3 and the positions of six points (a, b, c, d, e, f)

on SP, it can be checked that the points specify a solution S — (P\,P2) to Problem 1 in

constant time.

Proof. P\ and P2 are properly congruent if their respective boundaries are properly congruent.

Component Pi is composed (in order) of the following alternation of polylines and angles:

P[a .. b], Z b, Pi[6 .. e], Z e, P[e .. /] , Zf, P[f • • a] and Za. Component P2 is composed
P i P i P p

(in order) of the following alternation of polylines and angles: P[b .. c], Zc, P[c .. d], Zd,
p p

P[d .. e], Z e, P2[e .. b] and Z b. Hence, if P[a .. b] S P[b .. c], Px[6 .. e] ^ P[c .. d],
P2 P2

P[e .. f] = P[d .. e], P[f .. a] S P2[e .. b], \aj\ = \be\ = \c~d\, Zb = Za + Zc and
p p p

Ze — Zd + Zf', the sextuple represents a congruent partition of P since the boundaries
P p p

of Pi and P2 consist of respectively congruent polylines and copying the reversed string

representation of P[f .. a] onto be is possible. Otherwise, the sextuple does not represent a

solution to Problem 1. This verification can be done in constant time by Corollary 3. •

Lemma 8. The points {a, b, c, d, e, / } are as defined in Lemma 6. Given the position of two

points of {a, b, c} or {d, e, / } and the preprocessing in Theorem 4, the positions of all six

points (a,b,c,d,e,f) can be computed in O(logn) time.

Proof. Suppose without loss of generality that the given pair is (a, b). The arguments are

similar if (b, c), (a,c), (d,e), (d, f) or (e , /) is given. Since Pi[6 .. e] is the split-polyline, it

62

cuts the perimeter into two equal components thus, e = dp (b, 0.5). By the congruence of

P[a .. b] and P[b .. c] and since a, b and c are consecutive on 5P, we obtain the following

equality dpl(b, dp(a, b)) — c (in constant time if c is a vertex and in O(logn) time otherwise).

From the properties of the transformation Ts, we can conclude that the circles Q>abc and

Qdef are concentric with center p. Calculating p, d = Ts(e) and / = TgX{e) are all

constant-time operations. •

Theorem 9. Given a simple polygon P and given that Ts, if it exists, is either a rotation

or a translation, a solution S = (P\,P2) to Problem 1 can be found in 0(n2 logn) time if

and only if P can be partitioned into two congruent polygons.

Proof. For every pair of vertices of P, we verify if it is (a, 6), (b, c), (a,c), (d,e), (d,f) or

(/, e) by computing the four remaining points as shown in Lemma 8. We then verify that

the obtained sextuple specifies a solution to the problem as stated in Lemma 7 and if it

does then copying P\f .. a] onto be such that /_a = /_b (and /_c = /_b) yields a valid
P P2 P Pi

partition. The "if" part is trivial. The "only if" part stems from the previous lemmas;

if the polygon is partitionable then by Lemma 6, (a, b, c, d, e, /) exist and appear in that

order on 6P. Note that the algorithm allows for degeneracies (a, b and c may be colocated

for example). The split-polyline is by construction congruent to P[f .. a] and P[c .. d\.

The string matching checks for congruence of P[a .. b] and P[b .. c] and for congruence of

P[d .. e] and P[e .. /] . Therefore, Pi and P2 having the same polylines forming them, are

congruent. The split-polyline might however intersect 5P. This will result in two congruent

sub-polygons Pi and P2 that might be nonsimple. Since we check every pair of vertices in P

and we locate the four remaining points in O(logn) time for each pair, the algorithm runs

in 0(n2 log n) time. •

4.6 Mirror congruence

In this section, we assume that if a solution exists then the transformation involves a glide

reflection and is defined by Ts — (g, v). Let b and e denote the endpoints of the split polyline

Split(S), if it exists.

63

L e m m a 10. Assume that P can be nontrivially partitioned into two mirror congruent

polygons then there is solution S = (P i , / ^) such that either P\[b .. e] is disjoint from the

polyline Ts (Pi [6 • • e]), Ts (Pi[6 •. e]) partially overlaps with Pi[6 .. e], or Pi[b .. e] and

p2[e .. b] are line segments.

Proof. Suppose that Ts {P\[b .. e}) = P^e .. b]. We know that by definition Pj[6 ..
FLIP

e] = Pi\e .. b\. Therefore, the polyline Pi[b .. e] and its flip congruent Pj[e .. b] are

mirror congruent which cannot happen unless P\[b .. e] and P%[e . . b] are line segments. •

In Section 4.6.1, we present an algorithm for the case where Split(S) is disjoint from

Ts (Split(S)) (see Figure 30) and in Section 4.6.2, we present an algorithm for the case where

they partially overlap (see Figure 31).

4 . 6 . 1 D i s j o i n t s p l i t - p o l y l i n e

In this section, we assume that if a solution exists then the split-polyline Split(S) is disjoint

from its mirror image by the transformation Ts- We first show the necessary conditions for

the existence of a solution in Lemma 11, namely that a solution S = (Pi, P2) can be specified

by a sextuple of points on 5P satisfying some properties. In Lemma 12, we show how to

verify whether a given sextuple specifies a solution to Problem 1 or not. In Lemma 13, we

show how, given two points of a solution sextuple, we can find the rest of the points in the

sextuple in O(logn) time except when both the endpoints of Split(S) are not vertices of P .

Given that (by Lemma 11) at least four points of a solution sextuple are vertices, we present

an 0(n3) time algorithm in Lemma 14 and Theorem 15 to solve the problem for the case

discussed in this section.

For Lemmas 11, 12, 13, 14 and 25, assume that P can be nontrivially partitioned into

two mirror congruent polygons Pi and P2 where S — (P\,P2) and Split(S) is disjoint from

Ts (Split(S)) and let d = Ts(b), c = Ts(e), f = T j a (6) , and a = Tg x(e).

L e m m a 1 1 . The following facts hold (see Figure 30): {a,b,c,d,e, f) appear in clockwise
MIRROR MIRROR MIRROR

order on 5P; P[f ..a] ^ P2[e .. b]; P[c .. d] = P\[b .. e}; P[a .. b] =* P[d .. e};
MIRROR FLIP

P[b..c] ^ P[e.. f};P[f ..a] = P[c..d}; Za + Zc= Ze+Ze; </f + Zd= Zb+Zb;
P P Pi P2 P P Pi Pi

64

at least two of the points in {a, c, e} and two of the points in {b, d, / } are vertices of P;

dpl(a,0.5) =d; dp1 (b,0.5) = e; and d^l{c,0.5) = / .

Proof. Given that P\[b .. e] is a subset of 5P\ then its flip-congruent polyline Pi\e .. b\

is a subset of 5P2- We also know that Ts(P\[b .. e]) and Ts(P2[e • • b]) are subsets of 8P.

Therefore, the order of {a, b, c, d, e, / } around 5P is implied by Ts. Since a = Tg1(e) and

/ = T^"1(6), then the image of P[f .. o] by transformation Ts is Pz[e .. b]. Similarly, we
MIRROR MIRROR MIRROR

show that P[c .. d] = Pi [6 .. e], P[a .. b] ^ P[d .. e] and P[b .. c] ^ P[e .. /] .

Since polylines P[f .. a] and P[c .. d] are, respectively, mirror congruent to i-^e • • b]

and P\[b .. e] and since the mirror images of two flip-congruent polylines are themselves
FLIP _ 1

flip-congruent, then P[f .. a] = P[c .. d]. Given that a — Ts (e) and c = Ts(e), then
Z a — Z. e and /_c—/_e. It follows that /_a + /_c — Z e + /_e. Similarly, we show that
P P2 P P\ p P Pi p2

Zf + Zd— ^b+Zb. It follows that at least two of the points in {a, c, e} and two of
P P Pi Pi

the points {b, d, / } are vertices of P. Assume the preprocessing described in Theorem 4.

Observe that the sequence of lengths in polyline P[a .. d] is composed of the sequence of

lengths in polylines P[a .. b], P[b .. c] and P[c .. d], and also the sequence of lengths in

polyline P[d .. a] is composed of the sequence of lengths in polylines P[d .. e], P[e .. /]

and P[f .. a}. Hence, by the respective congruence of these polylines, given the position of

a, the position of d can be determined n O(logn) time by computing dp (a, 0.5) = d. The

sequence of lengths in polyline P[b .. e] is composed of the sequence of lengths in polylines

P\b .. c], P[c .. d] and P[d .. e], and also the sequence of lengths in polyline P[e .. b] is

composed of the sequence of lengths in polylines P[e .. /] , P[f .. a] and P[a .. b]. Hence,

by the respective congruence of these polylines, given the position of e, the position of b can

be determined in O(logn) time by computing dp1 (e, 0.5) = b. The sequence of lengths in

polyline P[c • • /] is composed of the sequence of lengths in polylines P[c .. d], P[d .. e] and

P[e .. /] , and also the sequence of lengths in polyline P[f .. c] is composed of the sequence

of lengths in polylines P[f .. a], P[a .. b] and P[b .. c]. Hence, by the respective congruence

of these polylines, given the position of c, the position of / can be determined in O(logn)

time by computing dp^{c, 0.5) = / . •

65

Figure 30: Polygons partitioned into two simple mirror-congruent components with a
nonoverlapping split-polyline.

Lemma 12. Given the preprocessing in Lemma 3 and the positions of six points (a, b, c, d, e, f)

on 5P, it can be checked that the points specify a solution S = (P\, Pi) for the disjoint split

polyline case of Problem 1 in constant time.

Proof. P\ and Pi are mirror congruent if their respective boundaries are mirror congruent.

ComponentPi is composed (in order) of the following alternation of polylines and angles:

P\a .. b], Z b, P\[b .. e], Z e, P\e .. /] , Z / , P[f • • a] and Z a . Component Pi is composed
Pi Pi p P

(in order) of the following alternation of polylines and angles: P[d .. e], Z e, Pi[e .. b], /_b,
Pi Pi

MIRROR MIRROR

P\b..c], Z c, P[c .. d] and Z d. Hence, if P[a .. b] ^ P[d .. e], P[b .. c] S P[e .. /] ,
FLIP

P[f ..a] = Pled], \af\ = \be\ = \cd\, Ab = Zd + Zf and Ze = Za + Z.c, the sextuple
p p p p p p

specifies a solution of the problem since the boundaries of Pi and Pi consist of respectively

congruent polylines and copying the reversed string representation of P[f .. a) onto be

is possible. Otherwise, the sextuple does not represent a congruent partition of P. This

verification can be done in constant time by Corollary 3. •

Lemma 13. The points {a,b,c,d,e,f} are as defined in Lemma 11. Given the position of

two points of {a, c, e] or {b, d, / } and the preprocessing in Theorem 4, the positions of all

six points {a,b,c,d,e, / } can be computed in O(logn) time except in the case where both b

and e are not vertices of P.

66

Proof. If (a,e) are vertices of P, then the positions of d and b are given in O(logn) time

by Lemma 11. The pairs (a, e) and (b, d) form two pairs of points and their respective

mirror images by Ts and hence, they are sufficient to compute the glide reflection Ts- Since

c - Ts(e) and / = T J 1 ^) , c and / can then be found in constant time. Similarly, if (c, e)

are vertices of P, b and / can be found in O(logn) time by Lemma 11. The pairs (b,f)

and (c, e) are also two pairs of points and their mirror images and a and d can be found in

constant time. If both a and e are not vertices and if both c and e are not vertices of P,

then (a,c) are vertices and then d and / can be found in O(logn) time. Symmetrically, if

pairs (b, d) or (b, f) are vertices, then we can find all six points. Else, similarly, (d, f) are

vertices and we can then compute a and c in O(logn) time. However, in both cases ((a, c) or

(d, f) are vertices) none of the obtained points form a pair of a point and its mirror image

by Ts- Therefore, the remaining case is when {a, c, d, / } are vertices of P and both 6 and e

are not (see Lemma 14). •

A n 0(n3) algorithm

Lemma 14. Given the positions of {a, c, d, / } , the fact that both b and e are not vertices

(equivalent to {a, c, d, / } being all vertices by Lemma 11) and the preprocessing in Corollary 3,

the positions ofb and e can be computed in 0(n) time.

Proof. Since 6, in this case, is not a vertex of P, cw(b) and ccw(b) have the same slope.

Since Ts(ccw(f)) — cw(b) and Tg (cw(d)) = ccw(b), then cwp(d) and ccwp(f) have the

same slope. Similarly for cuip(a) and ccwp(c). For every segment s in 5P such that s has

the same slope as cwp(a) and ccwp(c), compute the potential b and e (the distances of

b from the endpoints of the line segment that contains b should be equal respectively to

\cwp(a)\ and \ccwp{c)\ and e is half the perimeter away from b) and check, in constant time,

the congruence of polylines as stated in Lemma 12. •

Theorem 15. Given a simple polygon P and given that Split(S), if it exists, is disjoint

from Ts (Split(S)), a solution S =• {P\,P2) to Problem 1 can be found in 0(n3) time if and

only if P can be partitioned into two mirror congruent polygons.

67

Proof. For every pair of vertices of P, we verify it is (a, e) or (c, e) or (b, d) or (b, /) by

computing the four remaining points as shown in Lemma 13. We verify the solution as

stated in Lemma 12. If none of the previous pairs form a pair of vertices then by Lemma 13,

{a, c, d, / } are vertices and both b and e are not. For every pair of vertices of P, we consider it

is either (a, c) or (d, /) and we compute b and e as discussed in Lemma 14. If the verification

succeeds in one the cases, then copying P\f .. a] onto be such that /_a = /_e (and /_c= /_e)
P P2 P Pi

yields a valid partition. The "if" part is trivial. The "only if" part stems from the previous

Lemmas; if the polygon is partitionable then by Lemma 11, a,b,c, d, e, / exist and appear in

that order on 5P. The split-polyline is by construction congruent to P[f .. a] and P[c .. d].

The string matching checks for congruence of P[a .. b] and P[d .. e] and for congruence of

P[b .. c] and P[e .. /] . Therefore, P\ and P2, having the same polylines defining them, are

congruent. The split-polyline might however intersect SP. This will result in two congruent

sub-polygons Pi and P2 that are nonsimple. Since we check every pair of vertices in P and

we locate the four remaining points in 0(n) time for each pair, the algorithm runs in 0(nz)

time. •

4.6.2 Partial overlap

In this section, we assume that if a solution S exists then the split-polyline Split(S) is

partially overlapping with its mirror image by the transformation Ts- We first prove a

sufficient condition for the periodicity of a string (representing a polyline) needed for the

rest of the section. We then show the necessary conditions for the existence of a solution in

Lemma 17, namely that a solution S — (Pi, P2) can be specified by a sextuple of points on

5P that obey one of two sets of properties (which we call case 1 and case 2). In Lemma 18,

we show how to verify if a given sextuple specifies a solution to Problem 1 or not. In

Lemmas 19 and 20, we show how, in each one of the two cases, given two points of a solution

sextuple, we can find the rest of the sextuple points. Finally, in Theorem 21, given that (by

Lemma 17) at least four points of a solution sextuple are vertices, we present an 0(n3) time

algorithm that solves Problem 1 for the case discussed in this section.

For Lemmas 17, 18, 19 and 20, assume that P can be nontrivially partitioned into

68

two mirror congruent polygons Pi and P^ where Split(S) is partially overlapping with

Ts (Split(S)) and let Ts(e) = c, T^"1(6) = / . Assume without loss of generality that the axis

of glide reflection g is vertical.

Lemma 16. Let R be a string representing a polyline, let m(R) denote the representation

of the mirror image of this polyline by some glide reflection and let substi(R, i,j) denote

a substring of R from index i to index j . Given a string R such that R — r\m{ri)r2rz for

some strings r 1 ; r<i and r3 where |r"21 > | n | and such that the substrings m(r i)r2r 3 and

nm(ri)r2 represent a polyline and the reverse of its mirror image, then R is a periodic

string with period \r\\.

Proof. Given that the substrings m(r i) r 2 r3 and r\m{r\)r2 represents a polyline and the

reverse of its mirror image, then:

m(m{ri)r2rz) = r 1 m(r i) r 2

which implies that:

r im(r2)m(r 3) = rim(ri)r2

Removing r\, we obtain:

m(r2)m(r3) — m{r\)r2

Since \r<i\ > | r i | and by doing the appropriate replacement of strings, we get:

m(r i)subs t r (m(r 2) , | m (r i) | - l , |m(r2) | - l)m(r3) = m(r i) subs t r (r 2 ,0 , | r 2 | - | m (r 3) | - l) m (r 3)

Hence,

substr(m(r2), |m(r i) | - 1, \m(r2)\ - 1) = substr(r2 ,0, |r2 | - |m(r 3) | - 1)

Therefore r2 (and hence R) is a periodic string with period r\m(r\). Note that if \R\ is not

divisible by |r"im(ri)|, R will end with a prefix of r\ or m{r\). D

69

MIRROR

Lemma 17. The following facts hold (see Figure 31): P[e .. f) = P[b .. c}; P\[f ..
MIRROR MIRROR

e] = P2[c .. b]; there exists two points a and d on 5P such that either P[f .. a] = P[c ..
FLIP

d), P[a .. b] = P[d .. e], Z (2n - Id) + Z f = Zb + Zb and Zc + Z (2?r - Za) =
p p p Pi p2 p p p

FLIP
Ze + Ze (this is case 1, see the left polygon in Figure 31), or P[f .. a] = P[c .. d],
P i Pi

MIRROR
P[a .. b] = P[d .. e], Zd + Zf = Zb+ Zb and Zc + Za = Ze+ Ze (this is case 2, see

P P Pi P2 P P Pi Pi

the right polygon in Figure 31); if q — vd(b,e)/vd(f,b) then for case 1, q is an odd integer

and for case 2, q is even; at least two of the points in {a, c, e} and two of the points in

{b,d,f} are vertices of P; (a,b,c,d,e, f) appear in clockwise order on 5P; dp1 (a, 0.5) = d;

dpl{b,Q.b) = e and d p ^ c , 0.5) = / .
MIRROR

Proof. Given that c = Ts(e) and b — Ts(f), we conclude that P\[f .. e] = P2[c .. b],
MIRROR

P[e..f] ^ P[b..c},Zf=Zb<mdZc=Ze.
P Pi P Pi

Let v denote some angle and let x = Z f + Z(2ir — Zb), y = Zb and z — Ze. Since
P P P Pi p2

MIRROR

Pi[f ..e] ^ P2[c .. b] and P[f .. b] is a prefix of Pi[f .. e], then Ts(P[f .. b}) is a suffix

of P2[c .. b}. The polyline P i [/ .. e] starts with P[f .. b], angle y and Ts{P[f .. b\). Let

us denote the remaining suffix of P\[f • • e] by W. The reverse of polyline P[c .. b] is then

formed of the concatenation of Ts(P[f •. b}), angle x and P[f .. b], angle v and Ts(W).

Let Tg (e) be denoted by e'. Let us split the subpolyline represented by W into w\ and

w<i around e'. P[f .. e] is formed of the concatenation of P[f .. b], angle y, Ts(P[f • • b]),
angle v, w\, angle Z e and Wi and the reverse of P[c .. b] is formed of the concatenation of

Pi

Ts(P[f • • b}), angle x, P[f .. b], angle v, Ts{w\), angle z and Ts{u>2). We also know that

Pi\e .. b] is the mirror image of P\[f .. e']. Now, consider the string R from Lemma 16.

P[f .. b] has the same properties as R, hence, P\[f .. e] is a periodic polyline and is of the

form (P[f .. b] + y + Ts(P[f ..b}) + x)k+ j(P[f .. b}) + r. Similarly, the reversed string that

represents P2[c .. b] will be of the form (Ts{P{f .. b])+x + P[f .. b]+y)k+jTs{P[f .. b})+r

where j'• — 0 ,1 , k > 1, + is the concatenation operator for polylines and the arithmetic

operator for angle x and y. Note that r is a string representation of a polyline that by

Lemma 16 can be any prefix of P[f .. b] or Ts(P[f • • b}). If j — 0 then r is a prefix of

P[f .. b] (see Figure 31 (left)), else if j — 1 then r is a prefix of Ts(P[f • • b]) (see Figure 31

70

(right)). Due to the periodicity of P[b .. e], we conclude that q is an odd number in case 1

and q is an even number in case 2. The order of {a, b, c, d, e, / } around 5P is implied.

Let d! be the start point of r on P\[f .. e] and let a be the endpoint of the copy of r

on P[f .. b] then there exists a point d o n ? 2 [c b] such that d — Ts(d'). If j = 0 then
MIRROR MIRROR FLIP

P[c . . d] S* Pj [d' .. e] which implies that P[c .. d] 3* P [/ . . o], P[d .. e] = P[a . . 6],
FLIP

Z b = Z (2TT - Zd) and Z e = Z (2TT - Z a) . If j = 1 then P[c . . d] ^ PWd' . . el which
Pi P p p2 P P

FLIP FLIP
implies that P[c .. d] S P [/ .. a], P[d . . e] =* P[a .. 6], Z 6 = Z (2TT - Z d) and Z e = Z a.

Pi p p P2 P

It follows that at least two of the points in {a, c, e} and two of the points {b, d, / } are vertices

of P .

Since the sequence of lengths in polyline P[a .. d] is composed of the sequence of lengths

in polylines P[a .. b], P[b .. c] and P[c .. d], and also the sequence of lengths in polyline

P[d .. a] is composed of the sequence of lengths in polylines P[d .. e], P[e .. f] and P[f .. a],

by the respective congruence of these polylines (in both cases 1 and 2), given the position of

a, d can be found in O(logn) time by dp1 (a, 0.5) = d. Also, since the sequence of lengths in

polyline P[b .. e] is composed of the sequence of lengths in polylines P[b .. c], P[c .. d] and

P[d .. e], and also the sequence of lengths in polyline P[e .. b] is composed of the sequence of

lengths in polylines P[e .. /] , P[f .. a] and P[a .. b], by the respective congruence of these

polylines (in both cases 1 and 2), given the position of b, e can be found in O(logn) time by

dp1 (6,0.5) = e. Finally, since the sequence of lengths in polyline P[c .. f] is composed of

the sequence of lengths in polylines P[c .. d], P[d .. e] and P[e .. /] , and also the sequence

of lengths in polyline P[f .. c] is composed of the sequence of lengths in polylines P[f .. a],

P[a .. b] and P[b .. c], by the respective congruence of these polylines (in both cases 1 and

2), given the position of c, / can be found in O(logn) time by dp (c, 0.5) = / . •

Lemma 18. Given the preprocessing in Corollary 3 and the positions of six points (a, b, c, d, e, /)

on 5P, it can be checked that the points specify a solution S = (Pi ,P2) for the partially

overlapping split polyline case of Problem 1 in constant time.

Proof. P\ and P2 are mirror congruent if their respective boundaries are mirror congruent.

ComponentPi is composed (in order) of the following alternation of polylines and angles:

71

Figure 31: Polygons partitioned into two simple mirror-congruent components with an
overlapping split-polyline.

72

Figure 32: A simple polygon partitioned into nonsimple mirror congruent components.

73

P[e .. /] , Z / , P\f • • a], Za, P[a .. b], Zb, P\[b .. e] and Z e. Component P2 is composed
p P Pi P2

(in order) of the following alternation of polylines and angles: P[b . . c], Zc, P[c .. d], Zd,
p p

P[d .. e], Ze, P2V. . . b] and Z b. Let m = vd(b,e)/vd(f,b). We need to consider two
P2 P2

FLIP MIRROR MIRROR

cases. First, if P[a .. b] = P[d .. e], P[b .. c] S P[e . . /] , P[f .. a) ^ P[c .. d],
MIRROR

vd{f,b)\vd(b,e) mod vd(s) where s = P[c .. d], Z(2ir - Zd) + Zf = Zb and Z c +
p p p p p

FLIP MIRROR

Z (2TT - Z a) = Z e, we are in case 1. Else, if P [/ .. a] =* P[c .. d] and P[a .. b] = P[d ..
MIRROR FLIP

e},P[b..c] = P[e.. f},vd(f, b)\ vd(b,e) mod vd(s) where s S P[c . . d], Zd + Zf = Zb
p p p

and Zc + Za = Ze,we are in case 2. In both cases, the given sextuple specifies a solution of
p p p

the problem since copying an alternation of T$(P[f • • b]) and P[f .. b], m times followed by a
MIRROR

copy of P[f .. a] (case 1) or P[c .. d] (case 2) onto be will imply that P\ [/ .. e] = P2 [c • • b]

and hence that the boundaries of P\ and P2 consist of respectively congruent polylines.

Otherwise, the given sextuple does not represent a solution to Problem 1. This verification

can be done in constant time by Corollary 3. •

Lemma 19. The points (a,b,c,d,e,f) are as defined in Lemma 17. Given the position of

any two of {a, c, e) or {b, d, / } and the preprocessing in Theorem 4, the positions of all six

points (a,b,c,d,e, f) can be computed in O(logn) time except in the cases where either both

b and e or both c and f are not vertices (Figures 33 and 34).

Proof. By Lemma 17, at least two of {a, c, e} and at least two of {b, d, / } are vertices of P.

If (c, e) are vertices of P, then the position of the four remaining points can be found in

the following way. / and b are given in O(logn) time by Lemma 17. The pairs (b,f) and

(c, e) form two pairs of points and their respective mirror images by Ts and hence, they

are sufficient to compute the glide reflection. It remains to compute the positions of a and

d. Let d' = Tg1(d). By definition, d' is on the polyline Pi [b .. e\. In case 1, see left of

Figure 31, d can be directly computed by translating b in the direction of the glide and

the norm of the translation vector is given by (L ^ / M] + l)vd(f, b). In case 2, see right of

Figure 31, d! is the translate of b in the direction of the glide and the norm of translation

vector is given by: [vJ>f'
eA\vd(f,b). We can then compute d since its the image of d' by the

glide reflection. In both cases, we can find a by d'j3
1(f,d(c,d)) = a. If (b, f) are vertices

74

i
ii
iii
iv
V

vi

a
E
E
E
E
V
V

b
E
V

Not V
V
V

Not V

c
V
E

Not V
V

Not V
V

d
E
E
E
E
V
V

e
V
E
V

Not V
V

Not V

f
E
V
V

Not V
Not V

V

Table 1: Sub-Cases for the sextuple: V stands for "is a vertex", Not V for "is not a vertex"
and E for "either".

of P, finding the position of the four remaining points is similar. However, if neither the

pair (c, e) nor the pair (6, /) specifies a solution, then it is easy to see by Lemma 17 and a

combinatorial counting that four sub-cases remains to be considered, see table 1. Sub-cases

iii and iv are similar to the sub-cases above (since if (e, /) (or (6, c)) are vertices, we can

compute 6 and c in O(logn) time by Lemma 17 (e and /) . Sub-cases v (where both c and /

are not vertices of P) and vi (where both b and e are not vertices of P) are the remaining

ones (see Lemma 20).

•

An 0(n3) algorithm

Let la and 16 denote two subcases of case 1. Subcase la is one where {a, c, d, / } are vertices

and {6, e} are not and subcase 16 is one where {a,b,e,d} are vertices and {c, / } are not.

Similarly 2a and 26 denote two subcases of case 2. Subcase 2a is one where {a, 6, e, d} are

vertices and {c, / } are not and subcase 26 is one where {a, c, d, / } are vertices and {6, e} are

not. Figure 33 and Figure 34 show the four subcases.

Lemma 20. Given the positions of {a, c, d, / } and the preprocessing in Corollary 3, the

positions ofb and e can be computed in 0(n) time for subcases la and lb. Similarly, given

the positions of {a, b, d, e) and the preprocessing in Corollary 3, the positions of c and f can

be computed in 0(n) time in subcases 2a and 26.

Proof. In subcases la and 16, (see Figure 33), given the positions of {a, c, d, / } and the fact

75

= 3

Figure 33: Subcase la (left) where {a, c,d, / } are vertices and {b, e} are not. Subcase 16
(right) where {a, b, e, d} are vertices and {c, / } are not.

76

Figure 34: Subcase 2a (left) where {a,b,e,d} are vertices and {c, / } are not. Subcase 26
(right) where {a,c, d, / } are vertices and {b,e} are not.

77

FLIP

tha t P[a .. b] = P[d . . e] by Lemma 17, we observe that ccwp(b) and cwp(d) have the

same length and slope. In subcase la , since b is not vertex then cwp(b) and ccwp(b) have

the same slope. For every segment s G S(P) (clockwise from a) that has the same slope as

cwp(d), compute the potential b (distance \cwp(d)\ from the first encountered endpoint).

The potential e can be computed in O(logn) time by Lemma 17. In subcase 16, b is a vertex

of 6P. For every vertex p G S(P) (clockwise from a) such that ccwp(p) has the same slope

and length as cwp(d), we consider p as the potential b and we compute e in O(logn) time by

Lemma 17. In subcases 2a and 2b, (see Figure 34), given the positions of {a, b, d, e} and the
FLIP

fact that P[f .. a] = P[c .. d] by Lemma 17, we observe that ccwp(a) and cwp(c) have the

same length and slope. In subcase 2a, since c is not vertex then cwp(c) and ccwp(c) have

the same slope. For every segment s £ S(P) (counterclockwise from a) that has the same

slope as ccwp(a), we compute the potential c (distance \ccwp(a)\ from the first encountered

endpoint). The potential / can be computed in O(logn) time by Lemma 17. In subcase 26,

c is a vertex of SP. For every vertex p G 5(P) (counterclockwise from a) such that cwp(p)

has the same slope and length as ccuipip), we consider p as the potential c and we compute

/ using the function dp. In all four cases, the validity of the solution can be checked in

constant time as stated in Lemma 18. O

Theorem 21. Given a simple polygon P and given that Split(S), if it exists, is partially

overlapping with Ts (Split(S)), a solution S — {P\,P2) to Problem 1 can be found in 0 (n 3)

time if and only if P can be partitioned into two congruent polygons.

Proof. For every pair of vertices of P, we verify it is (c, e) or (b, f) or (e, /) or (6, c) by

computing the remaining four points as shown in Lemma 19. For every computed sextuple,

we verify (in constant time as stated in Lemma 18) if they specify a solution to the problem

considering both cases 1 and case 2. If none of the previous pairs form a pair of vertices, then

either {a, c, d, / } (case 1) or {a, 6, d, e} (case 2) are vertices by Lemma 19. In subcase la:

for every pair of vertices, assume it is (a, c), then d and / can be computed in O(logn) time.

Find 6 and e and do the verification as discussed in Lemma 18. In subcase 16: for every pair

(p, s) where p is a vertex of SP and s is a line segment in 5P, we verify if p is a and s is the

78

line segment such that c e s (c is positioned \ccwp(a)\ from an endpoint of s) by computing

d and / in O(logn) time, by computing b and e and doing the verification as discussed in

Lemma 18. In subcase 2a: for every pair of vertices, assume it is (a,e), then d and b can be

computed in O(logn) time. Find c and / and do the verification as discussed in Lemma 18.

In subcase 2b: for every pair (p, s) where p is a vertex of 6P and s is a line segment in 8P,

we verify if p is a and s is the line segment such that e G s (e is positioned |cctop(a)| from

an endpoint of s) by computing b and d in O(logn) time, by computing c and / and doing

the verification as discussed in Lemma 18. Let m = vd(b, e)/vd(f, b) (m should be greater

than one and vd{b,e) mod vd(f,b) — vd(f,a) for a partition to exist). If the verification

succeeds in any of the previous cases then either : 1) if m is odd and we are in case 1, setting

P![b.. e) to (Ts(P[f .. b}) + x + P[f .. b}+y)f +Ts(P[f ..b]) + x + P[f .. a] yields a valid

partition, 2) if m is even and we are in case 2, setting P\{b . . e] to (Ts(P[f .. b]) + x + P[f ..

b] + y) T + V + Ts(P[f .. a]) yields a valid partition, or 3) the current sextuple does not

specify a congruent partition. Note that x — /_ f + Z(2TT — Z b) and y = /_b (which is equal
P P P Px

to Z (27r — Ad) in case 1 and /_dm case 2). The "if" part is trivial. The "only if" part
p p P

stems from the previous Lemmas; if P is partitionable then by Lemma 17, {a, b, c, d, e, / }

exist and appear in that order on 5P. The split-polyline allows by construction for P\[f .. e]

to be congruent to P2[c .. b]. The string matching checks for congruence of P[e .. f] and

P[b .. c\. Therefore, Pi and P2 having the same polylines defining them, are congruent. The

split-polyline might however intersect 8P. This will result in two congruent sub-polygons Pi

and P2 that are nonsimple (see Figure 32). •

4 .6 .3 C o m b i n e d a l g o r i t h m for t h e t w o mirror c o n g r u e n t c a s e s

T h e o r e m 22. Given a simple polygon P, we can decide if it can be partitioned into two

mirror congruent polygons and find a solution S — (P\,P2) to Problem 1, if it exists, in

0(n 3) time.

Proof. By Lemma 10, the split-polyline Split(S) is either disjoint or partially overlapping

with its mirror image T$ (Split(S)). Hence, given a simple polygon P , we run the algorithm

for the disjoint case from Theorem 15. If it fails, we run the algorithm for the partially

79

overlapping case from Theorem 21. If either of the two cases succeeds report the partition

else report that P is not partitionable into two mirror congruent components. •

4.7 Ideas toward a better algorithm

4.7 .1 P r o d u c i n g s i m p l e c o n g r u e n t c o m p o n e n t s

Conjecture 23. Limiting the output to simple components P\ and P2 will still result in an

0(n2 log n) time algorithm.

We believe that conjecture 23 is true at least in the case of proper congruence. The

idea stems from our belief that if nonsymmetric polygon P is partitionable into two proper

congruent components in two different ways (i.e. using two different split-polylines) then P

consists of four copies of a monomorphic tile arranged around the midpoints of the two split-

polylines. A monomorphic tile is a tile that can form a monohedral tiling of the plane, in other

words, it tiles the plane with copies of itself [142]. By Lemma 6, we conclude that if a polygon

P is partitionable into two proper congruent subpolygons in two different ways (Pi , P2, P{

and P'2 pairwise congruent), there exist two sextuples (a, b, c, d, e, /) and (a', b', c', d'', e', / ')
FLIP

around 8P such that : Px\a .. b] = P2[b .. c]; Px[f .. e] = P2[e .. d}; Px[a .. /] = P2[c .. d};

P[[a! ..b'}^ P&V .. c']; P[[f .. e'} =* Pfc' .. d'} and P{[a' . . / '] = P'2\d .. d'}.

Figure 36 shows details of the properties for translationally congruent subpolygons. The

following properties hold in the translation congruence case: \ab\ = \bc\; \fe\ = \ed\; {a,b,c}

are on a line, say (ac); {d,e,f} are on a line, say (df); (ac) \\ (df); acdf is a parallelogram;

abef is a parallelogram; bcde is a parallelogram; the respective segments forming P\ [a .. f]

and P2[c .. d] form (pairwise) a series of parallelograms; \a'b'\ = \b'c'\\ \f'e'\ = \e'd'\;

{a',b',c'} are on a line, say (aV); {d',e',f} are on a line, say (d'f); {a'c') \\ (d'f); a'c'd'f

is a parallelogram; a'b'e'f is a parallelogram; b'c'd'e' is a parallelogram and the respective

segments form (pairwise) P{[a' .. / '] and P2[c' .. d'\ form a series of parallelograms.

Since our algorithm checks 0(n2) potential positions for the sextuple (a,b,c,d,e, f) and

we believe that if there is more than one candidate tuple, the input polygon P has the

properties presented above, we can preprocess P to check if it obeys these properties otherwise,

80

Figure 35: If a nonsymmetric polygon P is partitionable into two congruent components in
two different ways then it consists of four copies of a monomorphic tile.

Figure 36: Properties of a simple polygon partitionable into two translationally congruent
components into two different ways.

81

we run our algorithm on P and we test the obtained solution, if any, for nonsimplicity and

output it only if it is simple. This check is linear and is done only once which does not affect

the running time of our algorithm and hence, the conjecture.

4.7.2 A n 0{n2 log n) algorithm for the disjoint split-polyline mirror con­

gruence case

In his manuscript [252], Rote made the following observation about the axis of glide reflection.

Lemma 24 ([252]). The axis of glide reflection g goes through the center of gravity gp of P.

This observation yields a better algorithm for the disjoint split-polyline case as shown

in Lemma 25 and Theorem 26 assuming that the center of gravity of P is precomputed in

linear time.

Lemma 25 . Given the positions of {a,c}, the fact that both b and e are not vertices

(equivalent to {a, c, d, / } being all vertices by Lemma 11) and the preprocessing in Theorem 4,

the positions of {b,d,e,f} can be computed in O(logn) time.

Proof. By Theorem 4, the positions of d and / can be computed in constant time (d and

/ are both vertices in this case): dp(a,0.5) = d and dp(c,0.5) = / . Observe that since

Ts(a) — e and Ts(e) — c then the image of a~e by Ts is ec. Mirror congruence preserves

distances, therefore \ae\ — \ec\ and e belongs to the perpendicular bisector of ac. Similarly,

we show that b belongs to the perpendicular bisector of df. The axis of glide reflection g

passes through the midpoints of ae, ec, bd and bf and is hence parallel to ac and to df.

By Lemma 24, the axis of glide reflection g is determined given the positions of {a, c, d, / } .

Therefore, the transformation is determined in constant time and so are the positions of

points b and e. Checking if b and e belong to 5P takes O(logn) time. •

Theorem 26. Given a simple polygon P and given that Split(S), if it exists, is disjoint

from Ts (Split(S)), a solution S = (Pi, P2) to Problem 1 can be found in 0(n2 logn) time if

and only if P can be partitioned into two mirror congruent polygons.

82

Proof. For every pair of vertices of P , we verify if it is (a, e) or (c, e) or (6, d) or (6, /) by

computing the four remaining points as shown in Lemma 13. We verify in constant time if

the obtained sextuple specifies a solution of the problem as stated in Lemma 12. If none of

the previous pairs form a pair of vertices then by Lemma 13, {a, c, d, / } are vertices and

both 6 and e are not. For every pair of pair of vertices, we consider it is (a, c) by computing

{6, d, e, / } in O(logn) time as stated in Lemma 25 and verifying if the obtained sextuple

specifies a solution. If the verification succeeds in any of the cases, then copying P[f .. a]

onto be such that Za = Ze (and Zc — Z e) yields a valid partition. The "if" part is trivial.
P P2 P Pi

The "only if" part stems from the previous Lemmas; if the polygon is partitionable then

by Lemma 11, a,b,c,d,e, f exist and appear in that order on SP. The split-polyline is by

construction congruent to P [/ . . o] and P[c .. d]. The string matching checks for congruence

of P[a .. b] and P[d . . e] and for congruence of P[b .. c] and P[e .. /] . Therefore, Pi and Pi,

having the same polylines defining them, are congruent. The split-polyline might however

intersect 6P. This will result in two congruent sub-polygons Pi and P2 that are nonsimple.

Since we check every pair of vertices in P and we locate the four remaining points in 0(log n)

time for each pair, the algorithm runs in 0 (n 2 l o g n) time. •

In Lemma 20 we show how given the positions of any two of {a, c, e} or {6, d, / } , we can

find the positions of the remaining four points in logarithmic time except in subcases v and

vi of Table 1. In subcase v, given any two points of {a, b, d, e} the remaining two can be

computed in logarithmic time. Similarly, in subcase vi, given any two points of {a,c, d, / }

the remaining four can computed in logarithmic time. In the former case, it remains to

compute c and / while in the latter it remains to compute b and e. For subcase l a (subcase

2a), given {a, c, d, / } ({a, 0, d, e}) and given that P[d .. c] (P[a .. b}) is a translated reflection

of P[f .. a] {P[d .. e]), the axis g of glide reflection Ts can be computed. For subcase 16

(subcase 2b), given {a, 6, d, e} ({a, c, d, / }) and given that P[d .. e] (P[c .. d]) is a translated

copy of P[a .. b] along the axis g (P[f • • a]), the axis g of glide reflection Ts can be computed

as follows: g is parallel to (ae) and (bd) in subcase 16 (parallel to (fe) and (be) in subcase 26)

and by Lemma 24 goes through the center of gravity of P . However, in all previous cases,

83

(a) (b)

Figure 37: (a) A polygon P is partitionable into two congruent components in several
different ways, (b) a polygon that is not partitionable into two congruent components.

computing g is not enough to determine the glide reflection: the translation vector remains

unknown and the four computed points in each cases do not contain a pair of a point and

its glide reflection. We think that it is possible to compute the remaining two points in

each case without an additional linear factor in the running time. The idea stems from our

belief that if there are multiple b's and e's or multiple c's and / ' s then the input polygon P

consists of a polyline and a flip-congruent copy of it separated by two line segments and

this polygon has the properties of case 1 (see Figure 37 (a)). We also conjecture that if the

input polygon P has the properties of case 2 it is not partitionable (see Figure 37 (b)).

Conjecture 27. An 0(n2 log n) time algorithm is possible for the mirror congruence case.

84

4.8 Conclusion

In this chapter, we presented an O^) time algorithm that partitions a simple polygon

P into two congruent subpolygons P\ and Pi if possible or reports that such a partition

does not exist. Pi and Pi can possibly be nonsimple, i.e. self-intersecting subpolygons.

We presented several conjectures that, if true, improve the running time of the algorithm.

It would be interesting in the future to study a more general version of Problem 1. We

conjecture Problem 28 to be NP-complete for polygons with holes.

Problem 28. Given a polygon P with n vertices, compute a partition of P into k where

k > 3 (properly or mirror) congruent polygons {P\, P2,..., Pk}, or indicate such a partition

does not exist.

Another interesting problem to study would be covering a polygon with two congruent

components.

Problem 29. Given a polygon P with n vertices, compute a covering of P by two (properly

or mirror) congruent polygons P\ and Pi or indicate such a covering does not exist.

A polygon that can be covered with two congruent components seems to have a structure

similar to a polygon that is partitionable into two congruent components. Let the covering

polylines be the polylines that separate the polygon P into two components that cover it.

Figures 38 and 39 show four polygons covered by two translationally congruent compo­

nents. If a polygon is coverable by two translationally congruent components, there seems to

exist a 12-tuple of points {a,b,c,d,e, f,g, h,i,j, k,l} on 5P such that: P[a .. b] = P[b .. c];

P[a .. e} = P[b .. f\; P[d ..e}^ P[e .. /] ; P[g .. h] S P[h .. i]; P[g .. k] £* P[h .. 1} and

P[i .. k] = P[k .. I]. The covering polylines P[k .. b] and P[e .. h] are respectively congruent

to P[l .. a] and P[e .. h].

Figure 40 shows three polygons covered by two rotationally congruent components. If

a polygon is coverable by two rotationally congruent components, there seems to exist an

octuple of points {a,b,c,d,e,f,g,h} on 5P such that: P[a .. b] = P[c .. d]; P[d . . e] =

P[f .. g\. The covering polylines P[c .. d], P[d .. e], P[e .. h], P[h .. c] are such that:

P[e .. a] = P[g .. c] and P[b ..d] = P[d.. /] .

85

(a)

- J T L j n L ^

Figure 38: Three polygons (a), (b) and (c) covered each by two translationally congruent
components.

86

ad be cf

Figure 39: A polygon covered by two translationally congruent components where the
endpoints of the covering polylines are colocated pairwise.

Figures 42 and 41 illustrate four polygons each covered by two mirror congruent compo­

nents. If a polygon is coverable by two mirror congruent components, there seems to be

three cases:

• either there exists a 12-tuple of points {a,b,c,d,e, f,g,h,i,j,k,l} on 5P such that
MIRROR MIRROR MIRROR

P[a ..b) S P\k .. j \ ; P[b .. c] ~ P[j .. %]; P[a .. e] ~ P[g .. k}; P[b ..
MIRROR MIRROR MIRROR

/] = P[h .. I]; P[g .. h] = P[e..d\; P[h .. i] ^ P[c .. d] and the covering

polylines P[k .. 6] and P[e .. h] are respectively mirror congruent to P\l .. a] and

P[f--9],
MIRROR

• there exists a sextuple of points {a, b, c, d, e, / } on 5P such that P[a .. b] = P[d .. e];
MIRROR

P[b .. c] = P[e .. f] and the covering polylines P[e .. b] and P\b .. e] are

respectively mirror congruent to P[f .. a] and P[c .. d],

• or there exists a quadruple of points {a, b, c, d} on 8P such that P[d .. a]
MIRROR

P[b
MIRROR

and the covering polylines P[d .. b] and P[b .. d] are such that P[a .. d] = P[c .. b].

The structure of the covering seems to indicate that a polynomial time algorithm—similar

to the partition algorithm—is possible for covering a polygon with two congruent polygons.

Therefore, we conjecture the following:

Conjecture 30. Covering a polygon with two congruent components is polynomial.

87

Figure 40: Three polygons (a), (b) and (c) each covered by two rotationally congruent
components.

Figure 41: Two polygons each covered by two mirror congruent components.

89

(a)

Figure 42: Two polygons each covered by two mirror congruent components where the
endpoints of the covering polylines are colocated pairwise.

90

Chapter 5

Partitioning squares into equal

area components with minimum

ink

5.1 Introduction

In this chapter, we explore experimentally the partition of squares (and partially rectangles)

into k equal area components while minimizing the perimeter of the cuts that is, in other

words, an equal area minimum ink partition for some constant k > 1. As we saw in

Chapter 3, several variants of the problems have been discussed in the literature. We

summarize the previous results in two tables: Table 2 for general and convex polygon

partition and Table 3 for rectangle and square partition. In Table 3, we follow Nagamochi

and Abe [240] and Beaumont et al.'s [33] definitions for the different rectangle and square

partition problems: PERI-SUM denotes the total perimeter minimization problem where the

sum of the perimeters of the resulting rectangles or squares in the partition is minimized; CUT

denotes the minimization of the perimeter of the cut lines and is equivalent to PERI-SUM;

PERI-MAX denotes the maximum perimeter minimization problem where the maximum

perimeter of the resulting rectangles or squares is minimized; and ASPECT-RATIO denotes

91

the maximum aspect ratio minimization problem where the maximum aspect ratio of the

resulting rectangles or squares is minimized.

Most of the previous results in Tables 2 and 3 solve problems that are quiet different

than the one we explore in this chapter. Hert and Lumelsky partition arbitrary simple and

nonsimple polygons and do not consider equal areas (except for the NP-hardness proof) [30].

Guardia and Hurtado consider Steiner free partition of convex bodies [143]. Note that Steiner

free partition for rectangles and squares becomes quickly impossible (for values of A; > 3).

Akiyama et al. consider equal area and equal perimeter partition of convex polygons [9,10].

None of these works consider optimizing the perimeter. Kong et al. consider the PERI-MAX

but not CUT and PERI-SUM that are of interest to us [179,180]. Although the more

recent works of Nagamochi and Abe [240] and Beaumont et al. [33] focus on rectangle and

square partition and although they minimize the perimeter (PERI-SUM), they consider

areas that are not necessarily equal. Bose et al. partition rectangles and squares into equal

area components while minimizing the perimeter of the cuts (the CUT problem) but they

mainly consider straight line orthogonal cuts [51,54]. The authors restrict their attention to

orthogonal cuts. They prove that if k is a perfect square then orthogonal cuts are optimal.

A recursive algorithm that is exponential in the number of cuts but guaranteed to cut a

rectangle optimally into k equal areas is given. Two approximation algorithms are described

that output a near optimal partitioning of rectangles and prisms into equal area components.

A third approximation algorithm that runs in 0(1) time and that finds near optimal cuts of

a unit square is also presented. Their optimal partitioning of the square in 2 ,3 ,4 ,5 and 6

components using straight lines cuts is shown in Figure 43. The closest problems to the one

we consider are posed by Koutsoupias et al. [181] and Bose et al. [55]. Allowing straight line

and curved cuts, Koutsoupias et al. present a PTAS for partitioning a simple polygon into

equal area components while minimizing the perimeter of the cuts [181]. They also give an

O(rologn) time algorithm for convex polygons. However, the number of areas is restricted to

two and the areas are allowed to be disconnected. Bose et al. quarter the square optimally

(with some assumptions about the optimal solution), i.e. partition it into k = 4 equal area

components with minimum perimeter cuts [55]. Assuming symmetry, the optimal 4-partition

92

Polygon
Arbitrary
Arbitrary

Convex
Convex
Convex
Simple

Description
Not necessarily Equal Area
Not necessarily Equal Area

No Steiner points
Equal Area, Equal Perimeter

Two, not necessarily connected
Two, not necessarily connected

Minimum Ink
Yes
No
No
No
Yes
Yes

Algorithm
NP-hard

0(pn)
No
No

0(n log n)
PTAS

Reference
[30]
[30]

[143]
[9,10]
[181]
[181]

Table 2: Area partitioning results.

of the square using straight line cuts and sections of circular arcs are given. The conjectured

to be optimal 3-partition of the square using straight line (not necessarily orthogonal) cuts

and sections of circular arcs is presented [52]. Our work is an extension of this latter work.

Our goal is to investigate a characterization of the optimal solution for partitioning the unit

square into k equal area components while minimizing the total perimeter of the cuts, where

3 < k < 10. We use only straight line cuts (which may be orthogonal) or only circular cuts

(which may be straight lines as well). The solution for partitioning the (1 x 2) rectangle into

k equal area components is investigated as well, where 3 < k < 6. We start by describing the

set of experiments we have accomplished in Section 5.2. In Section 5.3, we list the results we

obtained and finally in Section 5.4, we strengthen the experimental result for the 5-partition

of the square by obtaining it analytically.

5.2 Experiments description

The characterizations of the determined best solutions for partitioning the unit square and

the (1 x 2) rectangle into equal area components were obtained experimentally using Surface

Evolver. Surface Evolver is an interactive program for the study of surfaces shaped by

surface tension and subject to various constraints [57]. The Surface Evolver's role in this

context is to evolve the surface toward minimal energy: minimal perimeter of the internal

cuts in our case. There are two main commands in Surface Evolver useful for our purposes:

the iteration command, g, which evolves the surface toward its minimal energy and the

vertex popping command, o, which creates new vertices, Steiner points, in the interior of

93

Polygon
Square

Rectangle
Rectangle

Square

Rectangle

Square
Square

Square
Rectangle
Rectangle

Rectangle

k Components
Squares

Rectangles
Rectangles
Rectangles

Rectangles

Rectangles
Rectangles

k = 4, arbitrary*
Rectangles
Rectangles

Rectangles

Equal Area
Yes
Yes
Yes
Yes

Yes

No
No

Yes
No
No

No

Obj. Func.
P-M
P-M
CUT
CUT

CUT

P-S
P-M

P-S
P-M
P-S

A-R

Algorithm
Oik*5)
0(fcb)
0(4fc)

1 ' 2(Vk-D a p p r O X

1 ' 2(Vk-D a p p r 0 X

NP-complete, ^-approx
NP-complete, -4=-approx

No
1.25-approx
^ - a p p r o x

bounded aspect ratio

Reference
[179]
[180]
[54]
[54]

[51]

[33]
[33]

[55]
[240]
[240]

[240]

Table 3: Area partitioning results where "P-M", "P-S", "A-R" abbreviate PERI-MAX,
PERI-SUM and ASPECT-RATIO respectively and * indicates a partition with straight line
or circular cuts.

Figure 43: Optimal orthogonal straight line cut partitions of the square into 2,3,4,5 and 6
components.

94

square or the rectangle if their creation would allow a more minimal solution.

The experiments necessitate having an idea of the initial topology of the solution. A

comprehensive set of starting cases is required where each case is given as an input datafile to

Surface Evolver. Let us consider the square partitioning first. For the number of partitions

k, where 3 < k < 10, we consider the case where all the k partitioned regions are adjacent

to the boundary of the square. For 4 < k < 10, we consider the additional case where only

k — 1 regions are adjacent to the boundary of the square and one region is in the interior.

For 6 < k < 10, we consider one more case where k — 2 regions are adjacent to the boundary

of the square and two regions are in the interior. For k — 9 and k = 10, we add the case

where three regions are in the interior and k — 3 regions are adjacent to the sides of the

square. The number of edges touching the boundary varies for each of the cases and we

determine all the possible ways to arrange the varying number of edges on the sides of the

square. We eliminate possible duplicates occurring due to rotational or mirror symmetry.

For each possible starting partition, we allow Surface Evolver to minimize the perimeter of

the cuts while permitting it to pop vertices if necessary. Note that in the case of two or more

regions in the interior, we try the two possibilities of connecting them by either a common

edge or common vertex. It is worth mentioning as well that we examined the case where we

start with triangular faces for the interior regions and the minimization process would pop

new vertices to find a minimal solution (up to k — 1 Steiner points for the instance of one

internal region for example).

The same procedure described above was followed for the (1 x 2) rectangle. However,

the number of topological starting combinations to try in the case of the rectangle was

higher because of the loss of symmetry, since all the sides of the original are no longer the

same length. For the circular cuts, the same procedure was followed while allowing Surface

Evolver to refine the internal edges. Note that the refinement process was not started from

the straight line cuts that we have determined to be the best but rather all combinations

were tried again in this case. It turned out for the cases considered in this chapter, the

circular cut solutions were simple refinements of the best straight line solutions.

95

k = 3

k = 5

1.634912

2.523943

3.934344

1.623278

2.502132

3.921669

k = 4

k = 6

k = 8

k = 1 0

1.981089

2.953714

3.607823

4.238941

1.975593

2.939949

3.597895

4.229713

Figure 44: The determined best partitions of the unit square.

5.3 Results

To summarize the results, Figure 44 shows a list of what we have determined to be the best

solutions for the three to ten equal area partitions of the unit square for both straight lines

and circular cuts. Each partition is labelled with the corresponding number of partitions k

and the sum of the perimeters of the cuts. Figure 45 exhibits the found best straight line

partitions of the (1 x 2) rectangle for the cases where 3 < k < 6.

Examining the comprehensive set of experimental results obtained, the following obser­

vations can be made regarding the optimal solution:

96

k = 3 k = 4 H] "TTrT'Fffl
2.0000 1936491 3.460053 3.913906

Figure 45: The determined best partitions of the (1 x 2) rectangle.

Observation 31 . Total circular cuts perimeter is less than total straight line cuts perimeter.

Observation 32. All Steiner points in the interior of the square (and the rectangle) are of

degree 3.

Observation 33. For circular cuts, the interior angles at a Steiner point are 120° (this has

been confirmed by using analytical representations of the best solutions for k = 3,4,5). The

interior angles of edges with vertices on the boundary of the original square are 90° (again,

this has been confirmed for k = 3,4, b).

Observation 34. All partitions have mirror symmetry: either with respect to vertical or

horizontal lines or with respect to the diagonal. In addition, several partitions have a 180°

rotational symmetry where the same partition is obtained after rotating the square by 180°.

Note that for k = 5 the partition has 90° symmetry as well.

Based on the previous set of observations, we make the following conjecture:

Conjecture 35. For a large number of components in partitions, we expect a "honeycomb"

pattern shape - a tiling of approximately regular hexagons.

We agreed on Conjecture 35 with Simon who has unpublished results on this problem [267].

This conjecture is further supported by the relatively recent proof—by Hales—of the very

long standing "Honeycomb Conjecture" (attributed to the Greek mathematician Pappus

of Alexandria). The honeycomb conjecture, now the honeycomb proof, states that for any

equal area partition of the plane, the regular hexagonal grid is the one with minimum

perimeter [148].

97

Figure 46: 5-partition of the unit square.

5.4 Analytical backing

The goal of this section is to strengthen the result obtained from Surface Evolver for the

five partition by obtaining it analytically. We consider the partition of the unit square into

five equal areas as shown in Figure 46.

The perimeter of the cuts I can be expressed as I = 2b + 2c + 2d + e + / .

The areas of the regions on the right of the line (AB) (the top-right, bottom-right and

middle one) can be expressed as follows and are known respectively to be

(I -b)
areal = (l - e - /) V 2

o
 ;

where

area2 = %- + j + \j s(s - d)(s - We2 + -) (s - \ / a 2 + b2)

d+yJe2 + l + Va^TV

areaS = i l _ ^ + I + J a / (y _ c) (s ' _ ^ / 2 + I) (s / _ ^ / (l _ a)2 + h2)

98

Figure 47: 5-partition of the unit square while allowing b to move.

where

, _ c + v//2 + i + \ / (1 -«) 2 + ^2

s —

Assuming symmetry along the line (AB) and assuming b to move horizontally, the

optimization of the perimeter function can be reduced to the optimization of a function of

the three parameters a, e and / .

If we remove the assumption for b and let it move as in Figure 47, the angle between a

and b is introduced as a new parameter. Again, we reduce the problem to the optimization

of a function of three parameters a, e and / while varying the angle explicitly. The value is

minimized when b is horizontal as was assumed above.

In both cases, the result is the same as the numerical approximation given by Surface

Evolver: 2.523943.

5.5 Conclusion

Tables 4 and 5 display a summary of the perimeter of the cuts with a comparison with

previously published results. Table 4 shows the results for nonorthogonal straight line cuts

99

Table 4: Straight line partitions.

k
3
4
5
6
7
8
9
10

Previous Result
1.63282 [52]

1.9810890 [55]
-
-
-
-
-
-

Surface Evolver Approximation
1.63491250321
1.98108902015
2.52394331793
2.95371443853
3.29267460641
3.60782394229
3.93434474798
4.23894158524

Our Analytical Result
1.634912503
1.981089020
2.523943328

-
-
-
-
-

Table 5: Circular cut partitions.

k
3
4
5
6
7
8
9
10

Previous Result
1.592 [52]

-
-
-
-
-
-
-

Surface Evolver Approximation
1.62327887438
1.97559321003
2.50213220778
2.93994972004
3.28073781333
3.59789581746
3.92166941092
4.22971391094

100

while Table 5 is reserved for circular cuts. For k = 3 and for both straight line and circular

cuts, the perimeter of the cuts we obtained are greater than the perimeter obtained in [52],

although the positioning and arrangement of the straight line cuts are the same as for our

solution. For k = 4, our results coincide with the previous ones [55], for both the best

solution obtained from Surface Evolver and the analytical calculation.

101

Chapter 6

Packing

6.1 Introduction

In this chapter, we are interested in packing the maximum number of axis-aligned squares

in a simple polygon. Fowler et al. proved the problem to be NP-complete for polygons

with holes [121]. The reduction is based on the construction of intersection graphs. Given

X = {x\,X2, • • • ,xn} objects to pack, assign a vertex Vi for each object. An edge (vi,Vj)

exists if the corresponding objects overlap. Considering a finite number of positions for the

objects, the problem reduces to a maximum independent set problem on a general graph,

which is known to be NP-complete. Hochbaum and Maass designed a PTAS for the version

of the problem where the input polygons are orthogonal grid polygons and where the squares

are (k x k) squares [155]. Their algorithm is based on the shifting strategy for covering and

packing problems. The strategy allows to bound the error of the simple divide-and-conquer

approach by applying it repetitively and then choosing the best solution. Let / be the shifting

parameter, their algorithm works as follows: the input polygon is divided into vertical strips

of width k and groups of I consecutive strips are considered. Repeating the shifting / times

results in the starting partition. For each vertical partition, the same strategy is applied

horizontally and a local enumeration algorithm is applied to obtain optimal solutions for

the resulting (Ik x Ik) squares. The running time of this algorithm is 0(k2l2nl) where n is

the number of grid squares inside the boundary of the given polygon and its approximation

102

ratio is (1 + j) 2 . Baur and Fekete address a similar problem which consists of packing

k (L x L) squares into an input polygon—possibly with holes—such tha t L is as big as

possible. The authors prove that , unless P = N P , there is no polynomial time algorithm

that finds a solution within more than | | of the optimum for orthogonal polygons and they

give a polynomial algorithm that solves their problem with a |-approximation ratio. They

also conjecture that the problem we are interested in is polynomial for simple orthogonal

polygons [31].

Here is a formulation of the problem at hand:

Problem 36. Given a simple polygon P and an (L x L) square S, maximize the number of

axis-aligned copies of S that can be packed in P.

The chapter is organized as follows. Section 6.2 contains several general definitions needed

for the rest of the chapter. In Section 6.3, we present three polynomial time algorithms

for packing the maximum number of unit squares in three classes of orthogonal polygons:

the staircase polygons, the pyramids (or double staircase polygons) and Manhattan skyline

polygons. In Section 6.4, we study a special case of the problem for general orthogonal

polygons. We conclude in Section 6.5 by posing the problem in the latter section from a

graph theory perspective.

6.2 Definitions

Let the polygon in which the maximum number of squares is packed be called the container

polygon. In the following, we embed container polygons on unit square grids. Two (k x k)

squares are said to have the same alignment in a packing if the coordinates of their respective

corners are ik apart on the grid and they are said to be have the same horizontal (vertical)

alignment if their respective a:(j/)-coordinates are jk on the grid apart where i and j are

integers. Figure 48 illustrates the different alignments of unit squares on a square grid.

An area of the container where no square is packed is called a p-hole (packing hole). An

internal p-hole is one that is not adjacent to the boundary of the container. Figure 49 shows

two examples of p-holes shaded in blue.

103

J

1

J

1

1

"1

J

~l

J

1

—

—

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L J _ L J _ L J I _ J J L J I _ J L _ I _ L J
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

\ - i ~ r - i r ~ \ r - \ i i—i—r -\ r i r -i - r "i

L J L J L J L J _J 1 1 I J l_ J U J - L J
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 — 1 — 1 -\

1 < 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 — 1 1 — 1 1 — 1 1 — 1 — 1 1 — 1 1 — 1 1 — 1 1 —
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(a) (b)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
i i i i | " 1 i - \ r - \ r ~ \ ~ r ~ i

1 1 1 1 I I 1 .. J L J l _ J _ L _ l
i i i i i i i i i i i i i i i i
i i i i i i i i i i i i i i i i
I I I I I I I i i - i r - i r - i - r n

-1 L J - L J L j J L J L J L J _ L J

I I I I I I I 1 1 1 1 1 1 1 1 1
1 — 1 1 — 1 1 — 1 1 — 1 — 1 1 — 1 1 — 1 1 — 1 1 —

I I I I I I I 1 1 1 1 1 1 1 1 1
I I I I I I I 1 1 1 1 1 1 1 1 1

(c) (d)

— i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
1 — r] — i — | - i 1 — i 1 — i 1 —

i L J i l_ i i i i i i
i i i I i i i i i

1 — i — 1 — i 1 — i 1 —

i i 1 i i i i i i
i i i i i i i i i
i i i i i i i i i
1 — i 1 — i 1 — i 1 — i 1 —

(e)

Figure 48: Different alignments of unit squares: (a) and (b) two squares with same alignment,
(c) two squares with same vertical alignment only, (d) two squares with same horizontal
alignment only (e) two squares with different alignments.

104

file:///-i~r-ir~/r-/
file://-/r-/r~/~r~i

I I I I

™-J-
i K ^ f ' s S W S

I I

I 1

I 1

I 1

I 1

I I

I 1

I I

(a)

i i i i

i — i

i i

i — i

i — i — i — i

i — i

i i

i — i

L

I I

I 1

I I

I 1

en

i i

- - 1 — i

i i

i — i

i i

Figure 49: (a) A p-hole (shaded in blue) on the boundary, (b) an internal p-hole (shaded in
blue).

We orient our orthogonal polygons such that their edges are parallel to the axes. As

a part of our techniques to prove some characteristics of an optimal solution, we apply

gravity to the squares in the packing. Applying gravity consists of displacing a square, when

possible, into a lower adjacent p-hole. Figure 50 (a) and (b) show respectively an optimal

solution for a given polygon and the application of gravity to the squares in the solution.

The p-holes are shaded in red.

A Manhattan skyline polygon is an orthogonal polygon monotone with respect to one

of its edges, call it base. A pyramid polygon (or double staircase polygon) is a Manhattan

skyline with no dents. A staircase polygon is a pyramid monotone with respect to both

the x and y axes, i.e. it has two bases. The monotone polyline linking the two bases in a

staircase polygon is called a stair polyline. Figures 54, 52 and 51 show respectively examples

of a Manhattan skyline polygon, a pyramid and a staircase polygon. Let [/-edge denote a

dent of a Manhattan skyline polygon P and let L-edge denote a horizontal edge with one

reflex endpoint. Each horizontal edge e is defined by its y-coordinate ye and its length le.

105

•HI

^?§?§i§:

(a) (b)

Figure 50: (a) An optimal solution for packing an orthogonal polygon with 2 x 2 squares,
(b) gravity applied to the squares in the solution.

•o

Figure 51: An example of a staircase polygon and a stair polyline P[a .. b].

Figure 52: An example of a pyramid.

106

Figure 53: An example of a Manhattan skyline polygon.

6.3 Polynomial t ime algorithms for special cases

6.3.1 A lemma and an observation

Observation 37 and Lemma 38 are important to our polynomial time algorithms.

Observation 37. An (I x w) rectangle can be optimally packed with unit squares in 0(1)

time. The optimal number of squares is ([l\ x \w\).

Lemma 38. Flooring the y-coordinate of U-edges and L-edges does not affect the optimality

of a solution (for the problem of packing the maximum number of squares in staircase,

pyramid and Manhattan skyline polygons).

Proof. Flooring the y-coordinate ye of an [/-edge or L-edge e consists of replacing it with

[j/ej as shown in Figure 54 (b) for a Manhattan skyline polygon. It implies deleting from

the given polygon P rectangles of the form (le x (ye — [yeJ))- If the given polygon P has

only U- and L-edges with integer coordinates then flooring them does not bring any changes

to the polygon nor to the optimal solution and we are done. Otherwise, assume that that

every solution has at least k > 1 squares intersecting the to-be-deleted rectangles. Consider

the solution with the minimum number k of such squares. Figure 55 shows two examples

of squares intersecting the to-be-deleted rectangles: (a) shows one near an [/-edge and (c)

shows one near an L-edge. Consider, without loss of generality, the case of an [/-edge. The

107

1 1 1 1 1 1 1 1 1

1 1 1
1 1

i

j .

i
~> r i

i I i

i I i
I I i

r n r i ~ ~

1
1

1
1

1

i i i i
i i i i

i
i

- r -\

_ L J

r -|

I I r

L J U

i i i i i i i I i

i I I

J

T

"1

1

i

I

I
I

1 I r i '

U 1 - L _1

I

I —

i_ -

r -

i

I I i I
I i I I

I
I

i
i

i
i

i
i

i
i

-
-

i
1

—

i
1

—

i
i

i
i

i
I

_
_

I
i_

_
i

i
i

i

i i i
L J L

(a) (b)

Figure 54: (a) A Manhattan skyline polygon, (b) flooring the y-coordinates of its U- and L-
edges.

other case is similar. The distance d from the square to edge to horizontal base of the

polygon P is fractional and hence there is a p-hole below the square. Therefore, the square

can be slid down, a contradiction to the fact that k was the minimum of number of such

squares. •

6.3.2 An 0(n) algorithm for packing unit squares in staircase polygons

In this section, we present a polynomial time algorithm for the following problem:

Problem 39. Given a staircase polygon P, find the maximum number of unit squares that

can be packed in it.

We orient the polygon P such that its lower leftmost corner is the intersection of its two

bases and we assume that this corner is a vertex of a square grid. We number the rows of

the grid starting from the horizontal edge incident to this corner. We define the right wall

of a row to be the edge of the stair polyline with the smallest z-coordinate that is partially

or fully contained in the row. We first prove that there always exists an optimal solution

with a square in the lower left corner of a staircase polygon (unless the maximum is zero).

Then we prove that there always exists an optimal solution where all the packed squares are

108

J L J l_

-i r -i r

J _ L J L

n _ r n - r •

_ _ r r r .
-| I 1

! ! 1 ^

—

i—

—

i—

i

r •

'

J
L

J

L

1
1

1
1

. J _
1

" "1
1
I

ei
• n _

i
i

i i i
i i i

L. J _ L J

" "I 1 1

- J _ 1 1

-\ r ~[

_ i I i i _ _

r -i r -i - -

- r -i - r n

J _ L J L

-i i 1 r •

J L J L .

1 r -i r "

J _ L. J L

1 - r n r

-]- r -i r -

.
-1

1

1
L

i

i
i

i
i

i
i

i

di
i

ei
• -i -

i
i

i i i
i i i

L J L J

- -i - r -\

j I I

n r I

i i i i _ _

i 1 — i 1 —

- -| i 1

(a) (b)

1
1

1
1

1
1

1
1

1
1

1
1

L

J
_

L

J
I

_
J

L

1
1

1
1

1
1

1
1

1
1

1
1

I
_

I
i

i
i

i

i i
i i

n r -\
i i
i i

_

i - -

—

i
i

I —

1

i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

J
L

J
_

L
J

L

.
i

i
i

i
i

i
i

i
i

i
i

i
1 —

i

1 -i—
I

1 —

i

- i r -[r -i
i i i i i
i i i i i

i
i

i

J
L

_l

~\
1

1

J
L

J

1 1 1 I I 1 1 1 1 1

i l I 1 | 1 l l i l l
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

-\ - r -i i 1 - r i r n
i i i i i i i i i
i i i i i i i i i

n r -i
ei : : : :

i 1- r -i I 1
i i i i i
i i i i i

(c) (d)

Figure 55: Flooring the y-coordinates of {/-edges (a) and L-edges (b) does not affect the
number of squares in an optimal solution.

109

I I I I I
I I I I I
I I I I I

r - | 1 - - i I ' ­
l l I i

. _ l l _ _ i I
i i i i
I i I i

h - l 1 - - i 1
I I I i
I l _ _ l i _ _

l _ _ l l _ _ l l _ _ l
I I I I I I
I I I I I I

1 — r " i — i 1 — i
i i i i i
L I I . - I I _ _ I
i i i i i
i i i i i
i 1 — i 1 — i

I I _ _ I _ i

- H ih~
(a) (b)

Figure 56: (a) A staircase polygon where the maximum number of unit squares is zero, (b)
the red square can be displaced to occupy the corner.

on the grid and therefore that a greedy algorithm is possible.

Lemma 40. Every optimal solution has an equivalent optimal solution with a square in the

lower left corner unless the optimal number of squares is zero (see Figure 56 (a)).

Proof. Consider the grid square at this corner and consider any feasible solution. If, in this

solution, this grid square is empty then the solution is not optimal. Therefore, as shown

in Figure 56, the lower leftmost grid square is intersected by a packed (red) square. Since

the grid square can be intersected by no other packed square, the red square can be slid to

touch the corner. •

L e m m a 41 . There always exists an optimal solution such that all packed squares are aligned

on the grid.

Proof. Assume that every optimal solution has at least fc > 1 squares not aligned on the

grid. Consider the solution with the minimum number fc of nonaligned squares. Let z be

the grid cell that is: (1) closest to the corner (in manhattan distance) and (2) not covered

with one square, z, which is shown in blue in Figure 57, is either: covered with no squares;

partially covered with one square; or partially or totally covered by two or more squares.

The first case contradicts optimality, since z can be covered with an additional square. The

second case contradicts the fact that all optimal solutions have at least fc squares not aligned

110

, _ l I I I

- I 1

_ L -

' I 1

(a)

i i

i — i —

i i

i i i

J

(b)

Figure 57: The closest grid cell to the corner not covered with a square is either: (a) covered
with no squares, (b) partially covered with one square, (c) partially or totally covered by
two or more squares.

on the grid since it is possible to align the square partially covering z to fully cover z giving

a solution of the same size with k-1 squares not aligned on the grid. The third case gives an

obvious contradiction. It is geometrically impossible because z has the side of the polygon or

grid-aligned squares to the left and below (otherwise it is not the closest to the corner). •

Theorem 42. An optimal solution is obtained in 0(n) time by greedily filling a staircase

polygon P starting from the lower leftmost corner. All squares in this solution are aligned

on the grid.

Proof. Let xr<i be the x-coordinate of the right wall of row i. Let xv be the x-coordinate of the

vertical base of the polygon P and yh the y-coordinate of the horizontal base of the polygon P.

The algorithm is as follows: set max — 0. Choose the L-edge e with the smallest y-coordinate

ye. If j is the row in which this L-edge is contained then max <— max+ [xrj — xv\ x [ye — yh\

(by Observation 37). Let yh = ye and iterate. Finally, add the maximum number of squares

obtained in the last remaining rectangle to max. Report max as the maximum number of

squares that can be packed in P.

The running time of this algorithm depends on the number of horizontal edges on the

boundary of P. This number is bounded by n. Therefore the algorithm, which does constant

work each horizontal edge, runs in 0(n) time.

I l l

1
1

1
1

i
i

i
i

1
L

J

L

J
1

1
1

1
1

1
1

1

i i
i i

i i

r :
i i
i i

-i — r •
i i
i i

" n _

_ i_ .

_ r "

_ L .

r

- r "
.

_
i

i
i

i
i

i

ei
• 1 ~

_ L .

- r -

_ i_ .

r "

- r -

i i i i i i i i i i i i
i i i i i i i i i i i i

- j i i i i i i i i i i i
I I I i i i i i i i i i
I I I i i i i i i i i i

" -\ — i 1 — 1 — i 1 — i 1 — i 1 — i 1 —
I I I i i i i i i i i i

- J 1 1 1 1 1 La 1 llry_ J 1 1

- - i — i 1 — 1 — i 1 — r y n - j 1 — i 1 —

, |, , 2 , , | , , , , , |, ,
i i i i i r— i i i i I I — i

I I I 1 H Ii
I I I A i i f\ i i i A\> i i i M
I I I d i i i i e i i , i ic

- n , ! ! ! ! ! (f : { :
I I I 1 1 1 1 1 1 1 1 1

I I I 1 1 1 1 1 1 1 1 1

(a) (b)

Figure 58: (a) An optimal solution for a pyramid, (b) the grid numbering starting at e\ and
the left and right walls for row 2.

Assume that the solution obtained by the algorithm is not optimal, i.e. there exists an

optimal solution with one or more squares. By Lemma 41, this solution has an equivalent

one where all packed squares are on the grid. Therefore, there exists a row in the latter

solution with at least one more square, which is not possible since the algorithm packs the

maximum number of squares in a row.

•

6.3.3 A n 0(n) algorithm for packing unit squares in pyramids (or double

staircase polygons)

In this section, we present a polynomial time algorithm for the following problem:

Problem 43. Given a pyramid P, find the maximum number of unit squares that can be

packed in it.

We orient P such that it is monotone with respect to the horizontal axis and we lay the

horizontal edge of the polygon P with the minimum y-coordinate on a square grid. Call this

edge e\. We number the rows of the grid by their level starting from this edge as shown in

Figure 58 (b). Let a and b be the endpoints of the line segment with the largest y-coordinate

112

I I
I I

. I I .
I I

-0-

(a)

1 1
1 1

J _ L
1 1
1 1

"i ~ r

j

i
i

j

i
"i

i 1
-

i i
_

i i
r i -

r ~i
i
i

(b)

1 1
1 1

J L .
1 1
1

"1

J

1

n ~ r
i i
i i

. J

i

i i i
_

i

i i
r -|

r "i
i
i

(c)

Figure 59: (a) A p-hole where squares adjacent to it have the same vertical alignment, (b) a
p-hole where squares adjacent to it do not have the same vertical alignment and the upper
adjacent square is not blocked, (c) a p-hole where squares adjacent to it do not have the
same vertical alignment and the upper adjacent square is blocked.

in P and let c and d be the endpoints of e\. Define the left chain of the polygon P to be

the polyline P[d .. a] and the right chain of P to be the polyline P[b .. c] (see Figure 58).

Define the left wall of a row to be the edge of the left chain with the greatest x coordinate

and that is partially or fully contained in the row. Define the right wall of a row to be the

edge of the right chain with the smallest x coordinate and that is partially or fully contained

in the row. Figure 58 (b) shows the left and right walls of row 2.

Lemma 44. There always exists an optimal solution such that all packed squares are

vertically aligned on the grid.

Proof. Assume that gravity has been applied to every optimal solution and that every

optimal solution has at least k > 1 squares not vertically aligned on the grid. Consider the

solution with the minimum number A; of nonaligned squares. Let z be the p-hole that is

closest to ei by vertical distance. The adjacent squares to z either have the same horizontal

alignment as shown in Figure 59 (a) or have different alignments. In the latter case, the

upper square adjacent to the p-hole can be either blocked or not (by another square) as

shown in Figure 59 (b) and (c) respectively. In the first two cases, the upper adjacent square

can be slid into z which contradicts the fact that gravity was applied. In the third case,

the distance d of the blocking square (see the green square in Figure 60) to the edge e\ is

either fractional or integer as shown in Figure 60 (a) and (d) respectively. In the case d is

113

f-F
I I L .

,ei

(a)

1

1

d
1

—

'

L

e l

—1

1
1

L J
1
1

1 1
1

1 1 1

(b)
£l

(C)

_ I I L

ei

(d)

1 1
J L .
1 1
1 1

"i r '
i i

1

"d"

\

t

r

. J

i

i i
L _)
1 t
1 1
r ~i
i i
L J _

i
, 1

1

\

w

'

,ei

(e)

1
— 1 —

1

/

d

\

i

'

_
i

!ei

i

i

j . _

i
— i —

i
j

i

1

\
w

1

(f)

Figure 60: (a) A p-hole where squares adjacent to it do not have the same vertical alignment
and the upper adjacent square is blocked by the green square, (b) the squares below the
green square have either the same alignment or (c) different alignments.

114

fractional, there will be a p-hole "below" the blocking square since e\ is laid on the integer

grid. This contradicts the fact that z was the closest to e\. In the case d is an integer, the

blocking square has an integer number of squares "below" it (for the solution to be optimal).

However, in this case, the lower square adjacent to the hole has distance w to e\ where w is

fractional. Hence, there is a j>-hole below this square lower than z, a contradiction (ef being

fractional implies also the nonoptimality of the solution). •

It is important to note that Theorem 45 implies Theorem 42.

Theorem 45. An optimal solution is obtained in 0(n) time by greedily filling a pyramid P

starting from e\. All squares in this solution are vertically aligned on the grid.

Proof. Let x/;;, xrj be the x-coordinates of the left and the right walls of row i, respectively.

Let y/, the y-coordinate of the horizontal base of the polygon P. The algorithm is as follows:

set max = 0. Choose the L-edge e with the smallest y-coordinate ye. If j is the row in which

this L-edge is contained then max <— max + [xrj — xij\ x [ye — yh\ (by Observation 37).

Let yh = ye and iterate. Finally, add the maximum number of squares obtained in the last

remaining rectangle to max. Report max as the maximum number of squares that can be

packed in P.

The running time of this algorithm depends on the number of horizontal edges on the

boundary of P. This number is bounded by n. Therefore the algorithm, which does constant

work for each horizontal edge, runs in 0(n) time.

Assume that the solution obtained by the algorithm is not optimal, i.e. there exists an

optimal solution with one or more squares. By Lemma 44, this solution has an equivalent

one where all packed squares are vertically aligned on the grid. Therefore, there exists a row

in the latter solution with at least one more square, which is not possible since the algorithm

packs the maximum number of squares in a row.

•

115

6.3.4 An 0(n) algorithm for packing unit squares in Manhattan skyline

polygons

In this section, we present a polynomial time algorithm for the following problem.

Problem 46. Given a Manhattan skyline polygon P, find the maximum number of unit

squares that can be packed in it.

We orient P such that it is monotone with respect to the horizontal axis and we lay the

horizontal edge of P with the minimum y-coordinate, say e\, on a square grid.

It is important to note that Theorem 47 implies Theorem 45 and Theorem 42.

Theorem 47 . An optimal solution is obtained in 0(n) time by greedily filling a Manhattan

skyline polygon P starting from e\ (see Figure 61). All squares in this solution are vertically

aligned on the grid.

Proof. The algorithm is as follows: choose the [/-edge or the L-edge e with the smallest

y-coordinate ye. The grid row in which e is contained has a left wall and a right wall.

Consider the rectangle Re defined by the intersection of the line y = ye with these two

walls and the bottom edge of the polygon. Fill Re optimally with unit squares in constant

time. Remove Re from the polygon and repeat until there are no more U- or L- edges. The

removal of the rectangle might result in several subpolygons for the recursive steps. Recurse

on all of them. At the end, we will be left with (vertical) rectangles which can be filled in

constant time. Figure 54 shows the algorithm being run on an example Manhattan skyline

polygon.

The running time of this algorithm depends on the number of horizontal edges on the

boundary of P. This number is bounded by n. Therefore the algorithm, which does constant

work for each horizontal edge, runs in 0(n) time.

Lemma 38 showed that flooring the U- and L- edges does not affect the optimality of a

solution. The proof that vertically aligning squares on the grid gives an optimal solution is

similar to the one of Theorem 45. •

116

1 1 1 1 1 1 1 1 1

1 1 1
1

~1

1

1
1

-
1

1 -
-

1
1

1
1

1

_
_

1
1

1

1 1 1 1
—

1

1
—

1

1
-

1
1

1
1

1

1 1

1
1

1
1

1
1

1
1

—

1
1

—

1
1

—

1
1

1
1

1
1

1
1

r T
I I

I i I i I i I i I

J 1 1 L J 1_ . J
1 1 1
1

1
1

1

1
1

1

1
1

1

1
1

1

1
1

1

1
1

1

i

i
i

i
i

-
i

1
-

-
i

1
—

i
i

i
i

—

i
1

—

i
1

-

i
i

i
i

i_

i i

i
i

i
i

—

i
1

—

i
1

—

i
i

i
i

I
i

_
_

i
I

i
i

i
i

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

~\ r n r n r ~i F T r n
i i i i i i i i i i i
i i i i i i i i i i i

(a) (b)

1 1 1 1 1 1 1 1 1

1 1 1
1

— 1

— 1
1
1
1
1
1 —

1
1

J

1 1 —

1

1 - -

J _ .

J

1 1

- -

—

r

i_

r H
i
L J
1
1
1 1
1
1

_ L J

1 1
_ _

L J

1 1

1 1 1 1 1 1 1 1 1

1 1 1
1

"1

J

~\
1

J

1

r

1
1 1

L. _l L .

— i r ~ i r 1 r -\
i i i i i i
1 1 1 l - J L J
i i i i i i
i i i i i i
! , ! j ! ! !

1 1 1 1 1 1

—

L J

1 1

-

_

-

_

J

1 1

(c) (d)

Figure 61: Applying the algorithm to an example Manhattan skyline polygon.

117

6.4 Toward a polynomial t ime algorithm for packing (2 x 2)

squares in orthogonal grid polygons

6.4.1 Definitions

An orthogonal grid polygon is an orthogonal polygon whose vertices have integer coordinates.

In this section, we consider packing (2 x 2) squares in such polygons. The packed squares

are considered to be on the grid (the proof that there is always an optimal solution with the

squares on the grid is similar to the proofs in the previous section). Therefore, the alignment

of a packed square is defined by the parity of its corners' coordinates. Every square can

have one of four alignments on the grid: an even-even alignment, an odd-odd alignment, an

odd-even alignment and even-odd alignment as shown respectively in Figure 62 (a), (b), (c)

and (d). Let ymax be the y-coordinate of the vertex of P with the maximum y-coordinate

and let xmin be the z-coordinate of the vertex of P with the minimum x-coordinate. We

embed P on a grid where the (0,0) point is the (xmin,ymax) point.

The p-holes exist due to the adjacency of the different alignments; Figure 63 shows the

adjacency of alignments. We assume that all p-holes are of the form (1 x X) (horizontal) or

(X x 1) (vertical) where X is an integer. T-like and L-like p-holes (see Figure 69 (a)) are

divided into their horizontal and vertical parts. A p-hole is said to be odd or even depending

on the parity of X.

6.4.2 A binary integer program (BIP)

In order to characterize optimal solutions, we present a system that takes, through a graphical

interface, an orthogonal grid polygon as input and outputs an optimal solution with the

maximum number of (2 x 2) squares that can be packed in the polygon. The system models

the problem with an binary integer program (BIP) that is then solved with SCIP (Solving

Constraint Integer Program), a non-commercial mixed integer programming solver [1]. An

optimal solution is constructed by setting a binary variable to 1 for each corresponding

(2 x 2) square in the solution.

Here is a description of the BIP model of the problem. We have one family of variables.

118

u
1 - - -

z

3 - - -

4

5 - - -

6 - - - •

1

r "

r n
i
L J
1
1

1
1

r -

i
i

—

i
1

i
i

i i

i i
i

i i

—

f
1

—

i
1

i

r n —

L -J -

0 - - - ; - -
1 - - H - -

Z i

3 - - - { - -

4 ,

6 - - - j - -

i
i

L J

1

1
L J

1
1

L J -

1

1
L J

1
t

1 1

1
1

1
L J

0 1 2 3 4 5 6 0 1 2 3 4 5 6

(a) (b)

-
o

1

1

2 - - -

3
4 - - -

J "1

6 - J

L

L .

L -

L _

L

L J

1 1

L J _
1 1

1
1

1 1
1

1

1 1
—

 r
 -
 n

i

—

i

1
i i

0 - - - j - -
1 - - - ! - -

2 - - - j - -
J "1

4 - - - ; - -

J 1

1

1
1

L J
t
1

r i
i

i
i

i
i

L J
i
1

r i -
i

i
i

i
i

L J

1
1 1

1
1

1

0 1 2 3 4 5 6 0 1 2 3 4 5 6

(c) (d)

Figure 62: The four different possible alignments of (2 x 2) squares on the square grid: (a)
even-even, (b) odd-odd, (c) odd-even, (d) even-odd.

i i i

i i i _

i i i
~ _ i— — i i _

(a)

i_ i _ i
i i ~ T ~

i i i

i i i _ . . _

i i i

i i i i i i
I 1 1 ! - - * - + -

(b)

Figure 63: The adjacency of different alignments.

119

(0,01
I I I I I I I I

Figure 64: An example of an input polygon: the points corresponding to variables are
marked in yellow.

Let O be the set of coordinates for all the upper left corners of (2 x 2) squares contained

in P (not necessarily in the solution). For each such (2 x 2) square, define a variable Xy

representing its upper left corner where (i,j) 6 O.

%ij — \
1 if the corresponding square is in the solution.

0 otherwise

Here is the model

max
'3

/ „ xij

(ij)eo

+ X(i+i)j + xw+i) + X(i+i)(,-+i) < 1 v (*,;')» (* + 1, J'). («, J + 1). (* + 1. J + 1) e O (3)

where (3) ensures that there are no overlapping squares in the solution.

Let the polygon in Figure 64 be an example input polygon embedded on the grid shown.

The set O = {(0,0), (0,1), (1,0), (1,1), (2,0), (2,1), (2,2), (2,3), (2,4), (2,5)} and hence the

set of corresponding variables is {x00, x 0 i , x i 0 , ^ n , 2:20,^21, £22, £23, ̂ 24, £25}-

120

The binary integer program produced by the system for the example polygon is the

following:

Maximize

obj: x0_0+x0_l+xl_0+xl_l+x2_0+x2_l+x2_2+x2_3+x2_4+x2_5

Subject To

cl:xO_0+xl_0+xO_l+xl_l<= 1

c2:x0_l+xl_l<= 1

c3:xl_0+x2_0+xl_l+x2_l<= 1

c4:xl_l+x2_l+x2_2<= 1

c5:x2_0+x2_l<= 1

c6:x2_l+x2_2<= 1

c7:x2_2+x2_3<= 1

c8:x2_3+x2_4<= 1

c9:x2_4+x2_5<= 1

cl0:x2_5<= 1

binary

x0_0 xO_l xl_0 xl_l x2_0 x2_l x2_2 x2_3 x2_4 x2_5

End

The solution produced by the solver is shown in Figure 65. Other examples of solutions

produced by the system are shown in Figures 67 and 66.

121

Figure 65: A screenshot of an optimal solution for a given polygon.

Figure 66: Another screenshot of an optimal solution for a given polygon.

122

Figure 67: A third screenshot of an optimal solution for a given polygon.

123

6.4.3 An interesting observation and an interesting lemma

Observing the optimal solutions obtained using the system described in Section 6.4.2 led us

to the following observation and lemma.

Obse rva t i on 48 . . A (l x l) p-hole occurs due to the adjacency of the four possible different

alignments of squares as shown in Figure 68.

Lemma 49. There always exists an optimal solution such that all the p-holes that are not

adjacent to S(P) are (1 x 1) grid squares.

Proof. Assume that every optimal solution has a number of internal p-holes and that gravity

has been applied to the squares in these solutions. Consider the solution with the minimum

area of internal p-holes. If the squares in this solution have one grid alignment then there are

no internal p-holes and we are done. Consider that the squares have several grid alignments,

see Figure 63 for an example. If the solution does not have internal p-hole, we are done.

Otherwise, let z be the lowest horizontal p-hole that is not a (1 x 1) square; z is shaded in

red in all the following figures. By our definition of p-holes, z is a (1 x X) p-hole where X is

either odd or even. If z is odd then it is always possible to displace (X — l) / 2 squares from

the upper row adjacent to z in the direction of z, see Figure 69 for examples of odd p-holes

(on the left) and the corresponding displacements (on the right). This contradicts the fact

that we applied gravity to the solution. Hence, z is an even p-hole.

If z is even and X > 2 then it is then always possible to displace at least (X — 2)/2

squares from the upper row adjacent to z in the direction of z, see Figure 70 (a) and (b) for

i 1 I T
i i _ i i _
r i _ i

i i i
1 I - . - 4. -

i i i i
— i—i 1 — - + -

Figure 68: The two different ways in which a (1 x 1) p-hole occurs.

124

1 1 —

1 1 " I 1

lliigte^ii^«|ji

(a)

(b)

(c)

1 _

-

— 1 1

' _ _ ,

Figure 69: Examples of odd p-holes.

examples of p-holes and their corresponding displacements . If X = 2 and the squares from

the upper row adjacent to the horizontal side of z have the same horizontal alignment as

the squares from the lower row then displacing one square in the direction of z is always

possible which contradicts the gravity assumption.

If X = 2 and the squares adjacent to the horizontal side of z have different horizontal

alignments, such as in Figure 70 (c), then we need to show that there is still a displacement

that decreases the area of internal p-holes. We chose z to be the lowest horizontal p-hole,

hence situations similar to those in Figure 71 that allow lower p-holes (shown in red) are

not possible (the solution shown in Figure 71 (a) is not even optimal unless the lower p-hole

is replaced by the boundary).

Color the squares in z's column in green and assume that there are no vertical p-holes

{{X x 1) p-holes) in the solution without loss of generality. If the column of green squares

continues to the boundary with same horizontal alignment (see Figure 72 (a)), we can

displace the entire column up and decrease the area of internal p-holes, a contradiction to

125

(a)

(b)

(c)

Figure 70: Examples of even p-holes.

[ZP
* - l • I - 1

•~~ ~~•

(a) (b) (c)

Figure 71: (1 x 2) p-holes that are impossible after the application of gravity.

126

EiliiliBiljli

•

(a) (b) (c)

Figure 72: Cases for a (1 x 2) p-hole.

the fact that the solution has the minimum area of internal p-holes. Hence, the column of

green squares hits a row of squares with a different horizontal alignment. Two cases are

possible as shown in Figure 72 (b) and (c).

In both cases, the distance d (in grid squares) shown in Figure 73 (left figures of both (i)

and (ii)) is odd. Therefore, the red squares shown on the right are both empty (but there is

no (1 x 2) because this defeats the fact that we applied gravity). If we displace all the green

squares up to fill z, we will obtain in both cases a larger p-hole (z will merge with either

two or one (l x l) p-holes). We have to show that this new p-hole can be displaced to the

boundary. Let us look at even p-holes (odd p-holes have similar logic).

In Figure 74 and 75, the dotted line delimits a "sub-area" of the packing and the bold

line denotes the boundary. The green squares are assumed to be movable to fill the p-hole

above them. Note that the size of the chosen rows of squares (3) is just an example. The

argument relies on the fact that at any point during the displacement of a p-hole to the

boundary, only few cases can occur: a row of squares can be followed either by a row with

same alignment (see Figure 74 (a)), or a row with a different alignment. In latter case, the

row can have more, less or the same number of squares. In the case it has more or less

squares (and due to the application of gravity), it can have only one more (or one less)

square (see Figure 74 (b) and (c)). In all three cases (see Figure 74 (b) and (c) and (d), the

127

A

M M

(i) (ii)

Figure 73: Subcases for a (1 x 2) p-hole.

red squares are empty or the row is adjacent to the boundary as shown in Figure 75. As we

can see in Figure 74, being able to displace the green squares allows for the displacement of

the blue squares up without modifying the total area of p-holes in this "sub-area" and thus,

the p-hole can move further toward the boundary. The same logic applies for case (c) in

Figure 75. The only cases where a p-hole can decrease in size while being displaced (the

total area staying the same) are cases (a), (b) and (d) in Figure 75. However, in these three

cases, the p-hole is already on the boundary and we are done.

•

6.5 Conclusion

In this chapter, we presented three polynomial time algorithms for packing the maximum

number of unit squares in three subclasses of orthogonal polygons: the staircase polygons,

the pyramids and Manhattan skyline polygons. We also studied the structure of an optimal

solution for packing (2 x 2) squares in grid orthogonal polygons. In particular, Lemma 49

shows that p-holes have a certain structure in an optimal solution. This promising structure

seems to support the long standing conjecture on this problem [31]: the existence of a

polynomial time algorithm to solve it.

128

(a)

(b)

i

(c)

i i I j

(d)

Figure 74: The different cases that can occur while displacing p-holes (1).

129

(a)

(b)

r •HJ
(c)

(d)

Figure 75: The different cases that can occur while displacing p-holes (2).

(a) (b) (c)

Figure 76: (a) An orthogonal polygon and its corresponding intersection graph, (b) the only
optimal solution for the given polygon, (c) the equivalent independent set (vertices in blue)
of the graph.

130

Since the problem we explored in Section 6.4 is discrete in nature, it is possible to study

it from a graph theory perspective by transforming it into a maximum independent set

problem on intersection graphs. Figure 76 shows the graph corresponding to an example

polygon, the only optimal solution for the given polygon and the maximum independent

corresponding to that solution. The family of graphs corresponding to packing in grid

orthogonal polygons has several characteristics (e.g. A(G) — 8, to(G) — 4). Therefore, the

problem that is of interest to us can be posed differently: is maximum independent set on

such graphs polynomially solvable?

Another interesting open problem is triangle packing. Very little is known about this

problem. Variations such as packing triangles in a strip, wedge or polygon are all open.

It would also be interesting to explore packing with rotations. Except from packing the

strip with rectangles with 90° rotations [108,161,230] and the heuristics to pack identical

boxes in a "car trunk" [103], most of the work assume axis-parallel objects. Allowing

rotations is interesting in many applications (like in the case of the trunk) and might give

better solutions as shown by Erdos and Graham for the maximum packing of squares with

unit squares [109].

131

Bibliography

[1] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Universitat

Berlin, 2007. h t t p : / / o p u s . k o b v . d e / t u b e r l i n / v o l l t e x t e / 2 0 0 7 / 1 6 1 1 / .

[2] P.K. Agarwal and N.H. Mustafa. Independent set of intersection graphs of convex

objects in 2D. Computational Geometry: Theory and Applications, 34(2):83-95, 2006.

[3] P.K. Agarwal and M-T. Shing. Oriented aligned rectangle packing problem. European

Journal of Operational Research, 62(2):210-220, 1992.

[4] P.K. Agarwal, M. van Kreveld, and S. Suri. Label placement by maximum independent

set in rectangles. Computational Geometry: Theory and Applications, ll(3-4):209-218,

1998.

[5] A. Aggarwal. The Art gallery problem: Its variations, applications and algorithmic

aspects. PhD thesis, John Hopkins University, 1984.

[6] A. Aggarwal and B. Chazelle. Efficient algorithm for partitioning a polygon into

star-shaped polygons. Technical report, IBM T.J. Watson Research Center, 1984.

[7] A. Aggarwal, S.K. Ghosh, and R.K. Shyamasundar. Computational complexity of

restricted polygon decompositions. In Godfried Toussaint, editor, Computational

Morphology, pages 11-11. North-Holland, 1988.

[8] O. Aichholzer, C. Huemer, S. Kappes, B. Speckmann, and C D . Toth. Decompositions,

partitions, and coverings with convex polygons and pseudo-triangles. Graphs and

Combinatorics, 23(5):481-507, 2007.

132

http://opus.kobv.de/tuberlin/volltexte/2007/1611/

[9] J. Akiyama, G. Nakamura, E. Rivera-Campo, and J. Urrutia. Perfect divisions of a

cake. In Proceedings of the 10th Canadian Conference on Computational Geometry,

pages 114-115, 1998.

[10] J. Akiyama, G. Nakamura, E. Rivera-Campo, and J. Urrutia. Radial perfect partitions

of convex sets in the plane. Revised Papers from the Japanese Conference on Discrete

and Computational Geometry, 1763:1-13, 1998.

[11] M.O. Albertson and C.J. O'Keefe. Covering regions with squares. SI AM Journal on

Algebraic and Discrete Methods, 2(3):240-243, 1981.

[12] H. Alt and F. Hurtado. Packing convex polygons into rectangular boxes. Revised Papers

from the Japanese Conference on Discrete and Computational Geometry, 2098:67-80,

2001.

[13] T. Asano, T. Asano, and H. Imai. Partitioning a polygonal region into trapezoids.

Journal of the ACM, 33(2):290-312, 1986.

[14] J. Augustine, S. Banerjee, and S. Irani. Strip packing with precedence constraints

and strip packing with release times. In Proceedings of the 18th ACM Symposium on

Parallelism in Algorithms and Architectures, pages 180-189, 2006.

[15] L.J. Aupperle. Covering regions by squares. Master's thesis, University Saskatchewan,

1987.

[16] L.J. Aupperle, H.E. Conn, J.M. Keil, and J. O'Rourke. Covering orthogonal polygons

with squares. In Proceeding of the 26th Allerton Conference Communication, Control,

and Computing, pages 97-106, 1988.

[17] F. Aurenhammer. Weighted skeletons and fixed-share decomposition. Computational

Geometry: Theory and Applications, 40(2):93-101, 2008.

[18] D. Avis and G.T. Toussaint. An efficient algorithm for decomposing a polygon into

star-shaped polygons. Pattern Recognition, 13(6):395-398, 1981.

133

[19] Y. Azar and L. Epstein. On two dimensional packing. Journal of Algorithms, 25(2):290-

310, 1997.

[20] C.L. Bajaj and T.K. Dey. Convex decomposition of polyhedra and robustness. SIAM

Journal on Computing, 21(2):339-364, 1992.

[21] A.L. Bajuelos, A.P. Tomas, and F. Marques. Partitioning orthogonal polygons by

extension of all edges incident to reflex vertices: lower and upper bounds. Lecture

Notes in Computer Science, 3045:127-136, 2004.

[22] B.S. Baker, D.J. Brown, and H.P. Katseff. A | algorithm for two-dimensional packing.

Journal of Algorithms, 2(4):348-368, 1981.

[23] B.S. Baker, E.G. Coffman, and R.L. Rivest. Orthogonal packings in two dimensions.

SIAM Journal on Computing, 9(4):846-855, 1980.

[24] V. Balint. Two packing problems. Discrete Mathematics, 178(1-3):233-236, 1998.

[25] N. Bansal, X. Han, K. Iwama, M. Sviridenko, and G. Zhang. Harmonic algorithm for

3-dimensional strip packing problem. In Proceedings of the 18th Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 1197-1206, 2007.

[26] R. Bar-Yehuda and E. Ben-Chanoch. A linear time algorithm for covering simple

polygons with similar rectangles. International Journal of Computational Geometry

and Applications, 6(1):79-102, 1996.

[27] G. Barequet, M. Dickerson, and D. Eppstein. On triangulating three-dimensional

polygons. In Proceedings of the 12th Annual Symposium on Computational Geometry,

pages 38-47, 1996.

[28] F.W. Barnes. How many (1 x 2 x 4) bricks can you get into an odd box? Discrete

Mathematics, 133(1-3) :55-78, 1994.

[29] F.W. Barnes. Best packing of rods into boxes. Discrete Mathematics, 142(l-3):271-275,

1995.

134

[30] H. Bast and S. Hert. The area partitioning problem. In Proceedings of the 10th

Canadian Conference on Computational Geometry, pages 163-171, 2000.

[31] C. Baur and S.P. Fekete. Approximation of geometric dispersion problems. Algorthmica,

30:450-470, 2001.

[32] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert. Matrix-matrix multiplication

on heterogeneous platforms. IEEE Transactions on Parallel and Distributed Systems,

12(10):1033-1051, 2001.

[33] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert. Partitioning a square into

rectangles: NP-completeness and approximation algorithms. Algorithmica, 34:217-239,

2002.

[34] P. Belleville. Computing two-covers of simple polygons. Master's thesis, Mcgill

University, 1991.

[35] P. Belleville. On restricted boundary covers and convex three-covers. In Proceedings

of the 5th Canadian Conference on Computational Geometry, pages 467-472, 1993.

[36] P. Belleville. A study of convex covers in two or more dimensions. Master's thesis,

Simon Fraser University, 1995.

[37] A. Below, J.A. De Loera, and J. Richter-Gebert. Finding minimal triangulations

of convex 3-polytopes is NP-hard . In Proceedings of the 11th Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 65-66, 2000.

[38] M. Benkert, J. Gudmundsson, C. Knauer, E. Moet, R. van Oostrum, and A. Wolff. A

polynomial-time approximation algorithm for a geometric dispersion problem. Lecture

Notes in Computer Science, 4112:166-175, 2006.

[39] P. Berman and B. DasGupta. Approximating rectilinear polygon cover problems.

In Proceedings of the 4th Canadian Conference on Computational Geometry, pages

229-235, 1992.

135

[40] P. Berman and B. DasGupta. Complexities of efficient solutions of the rectilinear

polygon cover problems. Algorithmica, 17(4):331-356, 1997.

[41] P. Berman, B. DasGupta, S. Muthukrishnan, and S. Ramaswami. Improved approxi­

mation algorithms for rectangle tiling and packing. In Proceedings of the 12th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 427-436, 2001.

[42] M. Bern. Compatible tetrahedralizations. In Proceedings of the 9th Annual Symposium

on Computational Geometry, pages 281-288, 1993.

[43] M. Bern. Triangulations and mesh generation. In J.E. Goodman and J. O'Rourke,

editors, Handbook of Discrete and Computational Geometry, pages 563-582. CRC

Press, 2004.

[44] M. Bern and D. Eppstein. Mesh generation and optimal triangulation. In D-Z. Du

and F. Hwang, editors, Computing in Euclidean Geometry. World Scientific, 1992.

[45] M. Bern and D. Eppstein. Approximation algorithms for geometric problems. In D.S.

Hochbaum, editor, Approximation Algorithms for NP-Hard Problems, pages 296-345.

PWS Publishing Company, 1997.

[46] S. Bespamyatnikh. Packing two disks in a polygon. Computional Geometry: Theory

and Applications, 23(l):31-42, 2002.

[47] T.C. Biedl, E.D. Demaine, M.L. Demaine, A. Lubiw, and G.T. Toussaint. Hiding disks

in folded polygons. In Proceedings of the 10th Canadian Conference on Computational

Geometry, pages 36-37, 1998.

[48] R.P. Boland and J. Urrutia. Polygon area problems. In Proceedings of the 12th

Canadian Conference on Computational Geometry, pages 159-162, 2000.

[49] R.P. Boland and J. Urrutia. Partitioning polygons into tree-monotone and y-monotone

subpolygons. Lecture Notes in Computer Science, 2669:985-994, 2003.

136

[50] R. Boppana and M.M. Halldorsson. Approximating maximum independent sets by

excluding subgraphs. In Proceedings of the 2nd Scandinavian Workshop on Algorithm

Theory, pages 13-25, 1990.

[51] P. Bose, J. Czyzowicz, E. Kranakis, D. Krizanc, and D. Lessard. Near optimal-

partitioning of rectangles and prisms. In Proceedings of the 11th Canadian Conference

on Computational Geometry, pages 162-165, 1999.

[52] P. Bose, J. Czyzowicz, E. Kranakis, D. Kriznac, and A. Maheshwari. Cutting circles

and squares in equal area pieces. Geombinatorica, XI-1, 2001.

[53] P. Bose, J. Czyzowicz, E. Kranakis, and A. Maheshwari. Algorithms for packing two

circles in a convex polygon. Revised Papers from the Japanese Conference on Discrete

and Computational Geometry, 2098:93-103, 2000.

[54] P. Bose, J. Czyzowicz, and D. Lessard. Cutting rectangles in equal area pieces. In

Proceedings of the 10th Canadian Conference on Computational Geometry, pages

94-95, 1998.

[55] P. Bose, E.D. Demaine, J. Iacono, and S. Langerman. Quartering a square optimally.

In Abstracts of the Japan Conference on Discrete and Computational Geometry, 2002.

[56] P. Bose, P. Morin, and A. Vigneron. Packing two disks into a polygonal environment.

Journal of Discrete Algorithms, 2(3):373-380, 2004.

[57] K. Brakke. Surface evolver. Experimental Mathematics, 1(2):141-165, 1999.

[58] A. Brandstadt. The jump number problem for biconvex graphs and rectangle covers of

rectangular regions. In Proceedings of the International Conference on Fundamentals

of Computation Theory, pages 68-77, 1989.

[59] D. Bremner and T.C. Shermer. Point visibility graphs and o-convex cover. International

Journal of Computational Geometry and Applications, 10(1):55-71, 2000.

[60] S. Cabello. Approximation algorithms for spreading points. Journal of Algorithms,

62(2):49-73, 2007.

137

[61] P. Cappanera. A survey on obnoxious facility location problems. Technical report,

University of Pisa, 1999.

[62] S. Carlsson, B.J. Nilsson, and S.C. Ntafos. Optimum guard covers and m-watchmen

routes for restricted polygons. Algorithms and Data Structures, 519:367-378, 1991.

[63] L.G. Casado, T. Csendes, I. Garcia, and P. G. Szabo. Lower bounds for equal circles

packing in a square problem using the TAMSASS-PECS stochastic algorithm. In

Proceedings of the International Workshop on Global Optimization, 1999.

[64] L.G. Casado, I. Garcia, P.G. Szabo, and T. Csendes. Equal circles packing in a square

II: New results for up to 100 circles using TAMSASS-PECS algorithm. Optimization

Theory: Recent Developments from Matrahaza, 2001.

[65] L.G. Casado, P. G. Szabo, and I. Garcia Fernandez. Packing up to 100 equal circles in

a square. Technical report, Universidad de Almeria, 1999.

[66] S. Chaiken, D. Kleitman, M. Saks, and J. Shearer. Covering regions by rectangles.

SIAM Journal of Algebraic Discrete Methods, 2(4):394-410, 1981.

[67] A. Chalcraft. Perfect square packings. Journal of Combinatorial Theory Series A,

92(2):158-172, 2000.

[68] T.M. Chan. Polynomial-time approximation schemes for packing and piercing fat

objects. Journal of Algorithms, 46(2):178-189, 2003.

[69] T.M. Chan. A note on maximum independent sets in rectangle graphs. Information

Processing letters, 89(l):19-23, 2004.

[70] T.M. Chan. Three problems about simple polygons. Computational Geometry: Theory

and Applications, 35(3):209-217, 2006.

[71] B. Chandra and M.M. Halldursson. Approximation algorithms for dispersion problems.

Journal of Algorithms, 38(2):438-465, 2001.

138

[72] R. Chandrasekaran and A. Daughety. Location on tree networks: P-centre and

n-dispersion problems. Mathematics of Operations Research, 6:50-57, 1981.

[73] B. Chazelle. Convex decompositions of polyhedra. In Proceedings of the 13th Annual

ACM Symposium on Theory of Computing, pages 70-79, 1981.

[74] B. Chazelle. A theorem on polygon cutting with applications. In Proceedings of the

23rd IEEE Symposium on Foundations of Computer Science, pages 339-349, 1982.

[75] B. Chazelle. Convex partitions of polyhedra: a lower bound and worst-case optimal

algorithm. SIAM Journal on Computing, 13(3):488-507, 1984.

[76] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Computational

Geometry, 6(5):485-524, 1991.

[77] B. Chazelle and D. Dobkin. Decomposing a polygon into its convex parts. In Proceedings

of the 11th Annual ACM Symposium on Theory of Computing, pages 38-48, 1979.

[78] B. Chazelle and L. Palios. Triangulating a non-convex polytype. In Proceedings of the

5th Annual Symposium on Computational Geometry, pages 393-400, 1989.

[79] D.Z. Chen, X. Hu, Y. Huang, Y. Li, and J. Xu. Algorithms for congruent sphere packing

and applications. In Proceedings of the 17th Annual Symposium on Computational

Geometry, pages 212-221, 2001.

[80] Y. Cheng, S.S. Iyengar, and R.L. Kashyap. A new method of image compression using

irreducible covers of maximal rectangles. IEEE Transactions on Software Engineering,

14(5):651-658, 1988.

[81] F.Y.L. Chin, S.P.Y. Fung, and C.A. Wang. Approximation for minimum triangulation

of convex polyhedra. In Proceedings of the 12th Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 128-137, 2001.

[82] M. Chlebfk and J. Chlebikova. Approximation hardness of optimization problems

in intersection graphs of d-dimensional boxes. In Proceedings of the 19th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 267-276, 2005.

139

[83] V. Chvatal. A combinatorial theorem in plane geometry. Journal of Combinatorial

Theory Series B, 18:39-41, 1975.

[84] V. Chvatal. Linear Programming. Freeman, 1983.

[85] E.G. Coffman, M.R. Garey, D.S. Johnson, and R.E. Tarjan. Performance bounds

for level-oriented two-dimensional packing algorithms. SIAM Journal on Computing,

9(4):808-826, 1980.

[86] H.E. Conn and J. O'Rourke. Some restricted rectangles covering problems. Technical

report, John Hopkins University, 1987.

[87] H.E. Conn and J. O'Rourke. Minimum weight quadrilaterilization in 0 (n 3 log n)

time. In Proceedings of the 28th Allerton Conference on Communication, Control and

Computing, pages 788-797, 1990.

[88] H.T. Croft, K.J. Falconer, and R.K. Guy. Unsolved Problems in Geometry. Springer-

Verlag, 1991.

[89] J. Csirik and G.J. Woeginger. Shelf algorithms for online-strip packing. Information

Processing Letters, 63(4):171-175, 1997.

[90] J.C. Culberson and R.A. Reckhow. Covering polygons is hard. Journal of Algorithms,

17(l):2-44, 1994.

[91] M. Damian and J. O'Rourke. Partitioning regular polygons into circular pieces II:

Nonconvex partitions. Unpublished Draft.

[92] M. Damian and J. O'Rourke. Partitioning regular polygons into circular pieces I:

Convex partitions. In Proceedings of the 15th Canadian Conference on Computational

Geometry, pages 43-46, 2003.

[93] M. Damian-Iordache. Exact and approximation algorithms for computing a-fat

decompositions. In Proceedings of the 12th Canadian Conference on Computational

Geometry, pages 93-96, 2002.

140

[94] M. Damian-Iordache and S.V. Pemmaraju. Computing optimal a-fat and a-small

decompositions. In Proceedings of the 12th Annual Symposium on Discrete Algorithms,

pages 338-339, 2001.

[95] K. Daniels and V. Milenkovic. Multiple translational containment, part I: An approxi­

mate algorithm. Algorithmica, 19(1-2):148-182, 1997.

[96] W. Fernandez de la Vega and V. Zissimopoulos. An approximation scheme for strip

packing of rectangles with bounded dimensions. Discrete Applied Mathematics, 82(1-

3):93-101, 1998.

[97] E.D. Demaine, J.S.B. Mitchell, and J. O'Rourke. The Open Problems Project.

http://maven.smith.edu/ orourke/TOPP/ .

[98] V.J. Dielissen and A. Kaldewaij. Rectangular partition is polynomial in two dimensions

but NP-complete in three. Informaion Processing Letters, 38(l) : l -6 , 1991.

[99] D. Dobkin, D.L. Souvaine, and C.J. van Wyk. Decomposition and intersection of

simple polygons. Algorithmica, 3(l):473-485, 1988.

[100] K.A. Dowsland. An exact algorithm for the pallet loading problem. European Journal

of Operational Research, 31:78-84, 1987.

[101] P. Eades. Symmetry finding algorithms. In G.T. Toussaint, editor, Computational

Morphology, pages 41-51. North Holland, 1988.

[102] H. Edelsbrunner, J. O'Rourke, and E. Welzl. Stationing guards in rectilinear art

galleries. Computer Vision, Graphics and Image Processing, 28(2):167-176, 1984.

[103] F. Eisenbrand, S. Funke, A. Karrenbauer, J. Reichel, and E. Schomer. Packing a

trunk: now with a twist! In Proceedings of the 2005 ACM Symposium on Solid and

Physical Modeling, pages 197-206, 2005.

[104] F. Eisenbrand, S. Funke, J. Reichel, and E. Schomer. Packing a trunk. In Proceedings

of the 11th Annual European Symposium on Algorithms, pages 618-629, 2003.

141

http://maven.smith.edu/

[105] D. El-Khechen and T. Fevens. Minimal perimeter cuttings of squares and rectangles into

equal area pieces. In Abstracts of the Japan Conference on Discrete and Computational

Geometry, 2004.

[106] D. El-Khechen, T. Fevens, J. Iacono, and G. Rote. Partitioning a polygon into two

congruent pieces. In Abstracts of the Kyoto International Conference on Computational

Geometry and Graph Theory, 2007.

[107] D. El-Khechen, T. Fevens, J. Iacono, and G. Rote. Partitioning a polygon into

two mirror congruent pieces. In Proceedings of the 20th Canadian Conference on

Computational Geometry, pages 131-134, 2008.

[108] L. Epstein and R. van Stee. This side up! ACM Transaction on Algorithms, 2(2):228-

243, 2006.

[109] P. Erdos and R.L. Graham. On packing squares with equal squares. Journal of

Combinatorial Theory Series A, 19:119-123, 1975.

[110] E. Erhan. The discrete p-dispersion problem. European Journal of Operational

Research, 46(l):48-60, 1990.

[I l l] K. Erikson. Splitting a polygon into two congruent pieces. The American Mathematical

Monthly, 103(5) :393-400, 1996.

[112] T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time approximation schemes for

geometric graphs. In Proceedings of the 12th Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 671-679, 2001.

[113] H. Everett, W. Lenhart, M. Overmars, T.C. Shermer, and J. Urrutia. Strictly convex

quadrilateralizations of polygons. In Proceedings of the 4th Canadian Conference on

Computational Geometry, pages 77-83, 1992.

[114] H. Exeler. Das homogene packproblem in der betriebswirtschaftlichen praxis. European

Journal of Operational Research, 1988.

142

[115] M. Farach and S. Muthukrishnan. Perfect hashing for strings: formalization and

algorithms. Combinatorial Pattern Matching, 1075:130-140, 1996.

[116] H. Y. F. Feng and T. Pavlidis. Decomposition of polygons into simpler components:

Feature generation for syntactic pattern recognition. IEEE Transactions on Computing,

24(6):636-650, 1975.

[117] L. Ferrari, P.V. Sankar, and J. Sklansky. Minimal rectangular partitions of digitized

blobs. Computer Vision, Graphics and Image Processing, 28:58-71, 1984.

[118] A.V. Fishkin, O. Gerber, K. Jansen, and R. Solis-Oba. On packing squares with

resource augmentation: maximizing the profit. In Proceedings of the 2005 Australasian

Symposium on Theory of Computing, pages 61-67, 2005.

[119] F. Fodor. Densest packing of nineteen congruent circles in a circle. Geometriae

Dedicata, 74(2):139-145, 2004.

[120] A. Fournier and D.Y. Montuno. Triangulating simple polygons and equivalent problems.

ACM Transactions on Graphics, 3(2):153-174, 1984.

[121] R. Fowler, M. Paterson, and S. Tanimoto. Optimal packing and covering in the plane

are NP-complete. Information Processing Letters, 12:133-137, 1981.

[122] D.S. Franzblau. Performance guarantees on a sweep-line heuristic for covering rectilinear

polygons with rectangles. SIAM Journal on Discrete Mathematics, 2(3):307-321, 1989.

[123] D.S. Franzblau and D.J. Kleitman. An algorithm for covering polygons with rectangles.

Information Control, 63(3): 164-189, 1986.

[124] E. Friedman. Erich friedman packing center,

http://www.stetson.edu/ efriedma/packing.html.

[125] E. Friedman. Packing unit squares in squares: A survey and new results. The Electronic

Journal of Combinatorics, 7, 2002.

143

http://www.stetson.edu/

[126] S.P.Y. Fung, F.Y.L. Chin, and C. Keung Poon. Approximating the minimum triangu-

lation of convex 3-polytopes with bounded degrees. Computational Geometry Theory

and Applications, 32(1):1-12, 2005.

[127] Z. Fiiredi. The densest packing of equal circles into a parallel strip. Discrete Compu­

tational Geometry, 6(2):95-106, 1991.

[128] M.R. Garey, D.S. Johnson, F.P. Preparata, and R.E. Tarjan. Triangulating a simple

polygon. Information Processing Letters, 7:175-179, 1978.

[129] S. Gerdjikov and A. Wolff. Pseudo-convex decomposition of simple polygons. In

Abstracts of the 22nd European Workshop on Computational Geometry, pages 13-16,

2006.

[130] L. Gewali, M. Keil, and S. Ntafos. On covering orthogonal polygons with star-shaped

polygons. Information Sciences, 65(l-2):45-63, 1992.

[131] L. Gewali and Ntafos. Minimum covers for grids and orthogonal polygons by periscope

guards. In Proceedings of the 2nd Canadian Conference on Computational Geometry,

pages 358-361, 1990.

[132] S.K. Ghosh. Approximation algorithms for art gallery problems. In Proceedings of

Canadian Information Processing Society Congress, 1987.

[133] I. Golan. Performance bounds for orthogonal, oriented two-dimensional packing

algirithms. SI AM journal on Computing, 10:571-582, 1981.

[134] T. Gonzalez, M. Razzazi, M-T. Shing, and S-Q. Zheng. On optimal guillotine partitions

approximating <i-box partitions. Computational Geometry: Theory and Applications,

4(1):1-12, 1994.

[135] T. Gonzalez, M. Razzazi, and S-Q. Zheng. An efficient divide-and-conquer approxima­

tion algorithm for partitioning into d-boxes. International Journal of Computational

Geometry and Applications, 3(4):417-428, 1993.

144

[136] T. Gonzalez and S-Q. Zheng. Bounds for partitioning rectilinear polygons. In Pro­

ceedings of the 1st Annual Symposium on Computational Geometry, pages 281-287,

1985.

[137] T. Gonzalez and S-Q. Zheng. Approximation algorithms for partitioning a rectangle

with interior points. Algorithmica, 5(l):ll-42, 1990.

[138] K.D. Gourley and D.M. Green. A polygon-to-rectangle conversion algorithm. IEEE

Computer Graphics, 3(l):31-36, 1983.

[139] R.L. Graham and B.D. Lubachevsky. Repeated patterns of dense packings of equal

disks in a square. The Electronic Journal of Combinatorics, 3, 1996.

[140] R.L. Graham, B.D. Lubachevsky, K.J. Nurmela, and P.R.J. Ostergaard. Dense packings

of congruent circles in a circle. Discrete Mathematics, 181(1-3):139-154, 1998.

[141] D.H. Green. The decomposition of polygons into convex parts. Advances in Computing

Research, 1:235-259, 1983.

[142] B. Griinbaum and G.C. Shephard. Tiling and Patterns. Freeman, 1987.

[143] R. Guardia and F. Hurtado. On the equipartitions of convex bodies and convex

polygons. In Proceedings of the 16th European Workshop on Computational Geometry,

2000.

[144] J. Gudmundsson, T. Husfeldt, and C. Levcopoulos. Lower bounds for approximate

polygon decomposition and minimum gap. Information Processing Letters, 81(3):137-

141, 2002.

[145] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan. Linear time algorithms

for visibility and shortest path problems inside simple polygons. Algorithmica, 2(1-

4):1-13, 1987.

[146] O. Gunther. Minimum fc-partitioning of rectilinear polygons. Journal of Symbolic

Computation, 9(4):457-483, 1990.

145

[147] E. Gyori, F. Hoffmann, K. Kriegel, and T.C. Shermer. Generalized guarding and

partitioning for rectilinear polygons. Computatinal Geometry: Theory and Applications,

6(l):21-44, 1996.

[148] T.C. Hales. The Honeycomb Conjecture. Discrete Computational Geometry, 25:1-22,

2001.

[149] J. Hastad. Clique is hard to approximate within n 1 _ e . Acta Mathematica, pages

105-142, 1999.

[150] A. Hegedus. Algorithms for covering polygons by rectangles. Computer Aided Design,

14:257-260, 1982.

[151] L. Heinrich-Litan and M.E. Liibbecke. Rectangle covers revisited computationally.

Journal of Experimental Algorithmics, 11:1-21, 2006.

[152] J. Hershberger and J. Snoeyink. Convex polygons made from few lines and convex

decompositions of polyhedra. In Proceedings of the 3rd Scandinavian Workshop on

Algorithm Theory, pages 376-387, 1992.

[153] S. Hert and V.J. Lumelsky. Polygon area decomposition for multiple-robot workspace

division. International Journal of Computional Geometry and Application, 8(4):437-

466, 1998.

[154] S. Hertel and K. Mehlhorn. Fast triangulation of the plane with respect to simple

polygons. Information and Control, 64(1-3):52-76, 1985.

[155] D.S. Hochbaum and W. Maass. Approximation schemes for covering and packing

problems in image processing and VLSI. Journal of the ACM, 35(1):130-136, 1985.

[156] J. Hoffman, http://www.msri.org/publications/sgp/jim/geom/cmc/library/

cube/ mainc.htm.

[157] H.B. Hunt III, M.V. Marathe, V. Radhakrishnan, S.S. Ravi, D.J. Rosenkrantz, and

R.E. Stearns. NC-approximation schemes for N P - and P S P A C E - h a r d problems for

geometric graphs. Journal of Algorithms, 26(2):238-274, 1998.

146

http://www.msri.org/publications/sgp/jim/geom/cmc/library/

[158] H. Imai and T. Asano. Finding the connected components and a maximum clique of

an intersection graph of rectangles in the plane. Journal of Algorithms, 4(4):310-323,

1983.

[159] H. Imai and T. Asano. Efficient algorithms for geometric graph search problems. SIAM

Journal on Computing, 15(2):478-494, 1986.

[160] K. Jansen and R. Solis-Oba. An asymptotic approximation algorithm for 3D-strip

packing. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 143-152, 2006.

[161] K. Jansen and R. van Stee. On strip packing with rotations. In Proceedings of the

37th ACM Symposium on Theory of Computing, pages 755-761, 2005.

[162] K. Jansen and G. Zhang. On rectangle packing: maximizing benefits. In Proceedings

of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 204-213,

2004.

[163] J. Januszewaki. Packing similar triangles into a triangle. Periodica Mathematica

Hungarica, 46(l):61-65, 2003.

[164] D. Jennings. On packing unequal rectangles in the unit square. Journal of Combina­

torial Theory Series A, 68(2):465-469, 1994.

[165] D. Jennings. On packings of squares and rectangles. Discrete Mathematics, 138(1-

3):293-300, 1995.

[166] D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of

Computing and Systems Sciences, 9(3):256-278, 1974.

[167] J. Kahn, M. Klawe, and D. Kleitman. Traditional galleries require fewer watchmen.

SIAM Journal of Algebraic and Discrete Methods, 4(2):194-206, 1983.

[168] J.M. Keil. Decomposing a polygon into Simpler Components. PhD thesis, University

of Toronto, 1983.

147

[169] J.M. Keil. Decomposing a polygon into simpler components. SIAM Journal on

Computing, 14(4):799-817, 1985.

[170] J.M. Keil. Minimally covering a horizontally convex orthogonal polygon. In Proceedings

of the 2nd Annual Symposium on Computational Geometry, pages 43-51, 1986.

[171] J.M. Keil. Covering orthogonal polygons with non-piercing rectangles. International

Journal of Computational Geometry and Applications, 7(5):473-484, 1997.

[172] J.M. Keil. Polygon Decomposition, chapter 11. Elsevier Science B. V, 2000.

[173] J.M. Keil and J.R. Sack. Minimum decompositions of polygonal objects. In Godfried

Toussaint, editor, Computational Morphology, pages 197-216. North-Holland, 1988.

[174] J.M. Keil and J. Snoeyink. On the time bound for convex decomposition of sim­

ple polygons. International Journal on Computational Geometry and Applications,

12(3):181-192, 2002.

[175] C. Kenyon and E. Remila. Approximate strip packing. In Proceedings of the 37th

Annual IEEE Symposium on Foundations of Computer Science, pages 31-36, 1996.

[176] C. Kenyon and E. Remila. A near-optimal solution to a two-dimensional cutting stock

problem. Mathematics of Operation Research, 25(4):645-656, 2000.

[177] S. Khanna, S. Muthukrishnan, and M. Paterson. On approximating rectangle tiling

and packing. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 384-393, 1998.

[178] S.K. Kim, C-S. Shin, and T-C. Yang. Placing two disks in a convex polygon. Informa­

tion Processing Letters, 73:33-39, 2000.

[179] T. Y. Kong, D.M. Mount, and M. Werman. The decomposition of a square into

rectangles of minimal perimeter. Discrete Applied Mathematics, 16(3):239-243, 1987.

[180] T.Y. Kong, D.M. Mount, and A.W. Roscoe. The decomposition of a rectangle into

rectangles of minimal perimeter. SIAM Journal on Computing, 17(6):1215—1231, 1988.

148

[181] E. Koutsoupias, C.H. Papadimitriou, and M. Sideri. On the optimal bisection of

a polygon (extended abstract). In Proceedings of the 6th Annual Symposium on

Computational Geometry, pages 198-202, 1990.

[182] V.S. Anil Kumar and H. Ramesh. Covering rectilinear polygons with axis-parallel

rectangles. In Proceedings of the 31st Annual ACM Symposium on Theory of Computing,

pages 445-454, 1999.

[183] H.C. Lee and T.C. Woo. Determining in linear time the minimum area convex hull of

two polygons. HE Transactions, 20(4):338-345, 1988.

[184] J.Y.-T. Leung, T.W. Tam, C.S. Wong, G.H. Young, and F.Y. L. Chin. Packing squares

into a square. Journal of Parallel and Distributed Computing, 10(3):271-275, 1990.

[185] C. Levcopoulos. A fast heuristic for covering polygons by rectangles. Lecture notes in

Computer Science, 199:269-278, 1985.

[186] C. Levcopoulos. Fast heuristics for minimum length rectangular partitions of polygons.

In Proceedings of the 2nd Annual Symposium on Computational Geometry, pages

100-108, 1986.

[187] C. Levcopoulos. Minimum length and thickest-first rectangular partitions of poly­

gons. Technical report, Department of Computer and Information Science, Linkoping

University, 1986.

[188] C. Levcopoulos. Improved bounds for covering general polygons with rectangles.

Lecture Notes in Computer Science, 287:95-102, 1987.

[189] C. Levcopoulos and J. Gudmundsson. Approximation algorithms for covering polygons

with squares and similar problems. In Proceedings of the International Workshop on

Randomization and Approximation Techniques in Computer Science, pages 27-41,

1997.

[190] C. Levcopoulos and J. Gudmundsson. Close approximation of minimum rectangular

coverings. Journal of Combinatorial Optimization, 3:437-452, 1999.

149

[191] C. Levcopoulos and A. Lingas. Bounds on the length of convex partitions of polygons.

In Proceedings of the J^th Conference on Foundations of Software Technology and

Theoretical Computer Science, pages 279-295, 1984.

[192] C. Levcopoulos and A. Lingas. Covering polygons with the minimum number of

rectangles. Lecture Notes in Computer Science, 166:63-72, 1984.

[193] C. Levcopoulos, A. Lingas, and J-R. Sack. Algorithms for minimum length partitions

of polygons. BIT, 27:474-479, 1987.

[194] K. Li and K-H. Cheng. On three-dimensional packing. SIAM Journal on Computing,

19(5):847-867, 1990.

[195] K. Li and K-H. Cheng. Heuristic algorithm for online packing in three dimensions.

Journal of Algorithms, 13(4):589-605, 1992.

[196] J-M. Lien and N.M. Amato. Approximate convex decomposition of polyhedra. In

Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling, pages

121-131, 2007.

[197] A. Lingas. The power of non-rectilinear holes. In Proceedings of the 9th Colloquium

on Automata, Languages and Programming, pages 369-383, 1982.

[198] A. Lingas. Heuristics for minimum edge length rectangular partitions of rectilinear

figures. In Proceedings of the 9th International Colloquium Automata, Languages and

Programming, pages 369-383, 1983.

[199] A. Lingas, R. Pinter, R. Rivest, and A. Shamir. Minimum edge length partitioning of

rectilinear polygons. In Proceedings of the 20th Allerton Conference on Communication,

Control and Computation, pages 53-63, 1982.

[200] A. Lingas and V. Soltan. Minimum convex partition of a polygon with holes by cuts

in given directions. In Proceedings of the 7th International Symposium on Algorithms

and Computation, pages 315-325, 1996.

150

[201] A. Lingas, A. Wasylewicz, and P. Zylinski. Note on covering monotone orthogonal

polygons with star-shaped polygons. Information Procesing Letters, 104(6):220-227,

2007.

[202] A. Lingas, A. Wasylewicz, and P. Zylinski. Linear-time 3-approximation algorithm for

the r-star covering problem. Lecture Notes in Computer Science, 4921:157-168, 2008.

[203] W.T. Liou, J.J. Tan, and R. C. Lee. Minimum partitioning simple rectilinear polygons

in O(nloglogn) - time. In Proceedings of the 5th Annual Symposium on Computational

Geometry, pages 344 - 353, 1989.

[204] W.T. Liou, J.J. Tan, and R. C.T. Lee. Covering convex rectilinear polygons in linear

time. International Journal of Computational geometry and applications, 1(2): 137 -

185, 1991.

[205] W. Lipski. Finding a manhattan path and related problems. Networks, 13:399-409,

1983.

[206] W. Lipski. An 0(n log n) manhattan path algorithm. Information Processing Letters,

19:99-102, 1984.

[207] W. Lipski, E. Lodi, F. Luccio, C. Mugnai, and L. Pagli. On two-dimensional data

organization II. Fundamentae Informaticae, 2:245-260, 1979.

[208] R. Liu and S. Ntafos. On decomposing a polygon into uniformly monotone parts.

Information Processing Letters, 27:85-89, 1988.

[209] R. Liu and S. Ntafos. On partitioning rectilinear polygons into star-shaped polygons.

Algorithmica, 6(l):771-800, 1991.

[210] M. Locatelli and U. Raber. Packing equal circles in a square: I. solution properties.

Unpublished manuscript, 1998.

[211] M.A. Lopez and D.P. Mehta. Efficient decomposition of polygons into 1-shapes with

application to VLSI layouts. ACM Transactions Design Automation of Electronic

Systems, l(3):371-395, 1996.

151

[212] B.D. Lubachevsky and R.L. Graham. Dense packings of equal disks in an equilaterial

triangle: From 22 to 34 and beyond. The Electronic Journal of Combinatorics, 2,

1995.

[213] B.D. Lubachevsky, R.L. Graham, and F.H. Stillinger. Pattern and structures in disk

packings. Periodica Mathematica Hungarica, 34(1-2):123-142, 1997.

[214] A. Lubiw. Decomposing polygonal regions into convex quadrilaterals. In Proceedings

of the 1st Annual Symposium on Computational Geometry, pages 97-106, 1985.

[215] A. Lubiw. The boolean basis problem and how to cover some polygons by rectangles.

SIAM Journal on Discrete Mathematics, 3(1):98-115, 1990.

[216] F. Maire. Polyominos and perfect graphs. Information Processing Letters, 50(2):57-61,

1994.

[217] G.D. Mar anas, C.A. Floudas, and P.M. Pardalos. New results in the packing of equal

circles in a square. Discrete Mathematics, 142(1-3) :287-293, 1995.

[218] H. Martini and V. Soltan. Minimum convex partition of a polygon by guillotine cuts.

Discrete and Computational Geometry, pages 291-305, 1998.

[219] W.J. Masek. Some NP-complete set covering problems. Manuscript, 1979.

[220] A. Meir and L. Moser. On packing squares and cubes. Journal of Combinatorial

Theory, 5:126-134, 1968.

[221] J.B.M Melissen. Densest packing of congruent circles in an equilateral triangle. The

American Mathematical Monthly, 100(10):916-925, 1993.

[222] J.B.M. Melissen. Densest packing of eleven congruent circles in a circle. Geometriae

Dedicata, 50(l):15-25, 1994.

[223] J.B.M. Melissen and P.C. Schuur. Packing 16, 17 or 18 circles in an equilateral triangle.

Discrete Mathematics, 145(1-3):333-342, 1995.

152

[224] V. Milenkovic. Multiple translational containment, part II: Exact algorithms. Algo­

rithmic, 19(1-2):183-218, 1997.

[225] V. Milenkovic. Rotational polygon overlap minimization. In Proceedings of the 13th

Annual Symposium on Computational Geometry, pages 334-343, 1997.

[226] V. Milenkovic. Rotational polygon containment and minimum enclosure. In Proceedings

of the 14th Annual Symposium on Computational Geometry, pages 1-8, 1998.

[227] V. Milenkovic. Rotational polygon overlap minimization and compaction. Computa­

tional Geometry: Theory and Applications, 10(4):305-318, 1998.

[228] V. Milenkovic. Rotational polygon containment and minimum enclosure using only

robust 2D constructions. Computational Geometry: Theory and Applications, 13(1):3-

19, 1999.

[229] F.K. Miyazawa and Y. Wakabayashi. An algorithm for the three-dimensional packing

problem with asymptotic performance analysis. Algorithmica, 18(1):122-144, 1997.

[230] F.K. Miyazawa and Y. Wakabayashi. Packing problems with orthogonal rotations.

Lecture Notes in Computer Science, 2976:359-368, 2004.

[231] F.K. Miyazawa and Y. Wakabayashi. Two- and three-dimensional parametric packing.

Computers Operations Research, 34(9):2589-2603, 2007.

[232] D. Moirtra. Finding a minimal cover for binary images: An optimal parallel algorithm.

Algorithmica, 6(l-6):624-657, 1991.

[233] J. Mookherje and N. Prabhakaran. Spatial decomposition of a tumor into a minimum

number of spherical components. In Proceedings of the 1992 ACM-SIGAPP Symposium

on Applied Computing, pages 988-992, 1992.

[234] J.W. Moon and L. Moser. Some packing and covering theorems. Colloquium Mathe-

maticum, 17:103-110, 1967.

[235] R. Motwani. Lecture notes on approximation algorithms- volume I. Book in preparation.

153

[236] R. Motwani, A. Raghunathan, and H. Saran. Covering orthogonal polygons with star

polygons: the perfect graph approach. In Proceedings of the 4th Annual Symposium

on Computational Geometry, pages 211-223, 1988.

[237] R. Motwani, A. Raghunathan, and H. Saran. Perfect graphs and orthogonally convex

covers. SIAM Journal Discrete Mathematics, 2(3):371-392, 1989.

[238] M. Miiller-Hannemann and K. Weihe. Minimum strictly convex quadrangulations of

convex polygons. In Proceedings of the 13th Annual Symposium on Computational

Geometry, pages 193-202, 1997.

[239] K. Mulmuley. A fast planar partition algorithm, I. Journal of Symbolic Computation,

10:253-280, 1990.

[240] H. Nagamochi and Y. Abe. An approximation algorithm for dissecting a rectangle into

rectangles with specified areas. Discrete Applied Mathematics, 155(4):523-537, 2007.

[241] S. Nahar and S.K. Sahni. Fast algorithm for polygon decomposition. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 7(4):473-483, 1988.

[242] J. Neliben. New approaches to the pallet loading problem. Technical report, RWTH

Aachen, Lehrstuhl fur Angewandte Mathematik, 1993.

[243] T. Ohtsuki. Minimum dissection of rectilinear regions. In Proceedings of the IEEE

International Symposium on Circuits and Systems, pages 1210-1213, 1982.

[244] J. O'Rourke, I. Pashchenko, and G. Tewari. Partitioning orthogonal polygons into

fat rectangles. In Proceedings of the 13th Canadian Conference on Computational

Geometry, pages 133-136, 2001.

[245] J. O'Rourke and K. Supowit. Some NP-hard decomposition problems. IEEE Trans­

actions on Information Theory, 29(2):181-190, 1983.

[246] J. O'Rourke and G. Tewari. The structure of optimal partitions of orthogonal polygons

into fat rectangles. Computational Geometry: Theory and Applications, 28(1):49-71,

2004.

154

[247] M.M. Paulhus. An algorithm for packing squares. Journal of Combinatorial Theory

Series A, 82(2):147-157, 1998.

[248] B. Ram. The pallet loading problem: A survey. International Journal of Production

Economics, 28(2):217-225, 1992.

[249] S.S. Ravi, D.J. Rosenkrantz, and G.K. Tayi. Heuristic and special case algorithms for

dispersion problems. Operations Research, 42(2):299-310, 1994.

[250] R. A. Reckhow and J. Culberson. Covering a simple orthogonal polygon with a minimum

number of orthogonally convex polygons. In Proceedings of the 3rd Annual Symposium

on Computational Geometry, pages 268-277, 1987.

[251] T. Richardson. Optimal packing of similar triangles. Journal of Combinatorial Theory

Series A, 69(2):288-300, 1995.

[252] G. Rote. Some thoughts about decomposing a polygon into two congru­

ent pieces, 1997. Unpublished Draft, p a g e . m i . f u - b e r l i n . d e / ~ r o t e / P a p e r s /

pos tscr ip t /Decomposi t ion+of+a+polytope+into+two+congruent+pieces .ps .

[253] K.F. Roth and R.C. Vaughan. Inefficiency in packing squares with unit squares.

Journal of Combinatorial Theory Series A, 24:170-186, 1978.

[254] J. Ruppert and R. Seidel. On the difficulty of triangulating three-dimensional nonconvex

polyhedra. Discrete and Computational Geometry, 7(3):227-253, 1992.

[255] J.R. Sack. An 0{nlogn) algorithm for decomposing rectilinear polygons into convex

quadriltaerals. In Proceedings of the 20th Allerton Conference on Communication,

Control and Computing, pages 21-30, 1982.

[256] J.R. Sack and G.T. Toussaint. A linear-time algorithm for decomposing rectilinear

polygons into convex quadriltaerals. In Proceedings of the 19th Allerton Conference

on Communication, Control and Computing, pages 21-30, 1981.

[257] J.R. Sack and G.T. Toussaint. Guard placement in rectilinear polygons. In G.T.

Toussaint, editor, Computational Morphology, pages 153-175. North-Holland, 1988.

155

http://page.mi.fu-berlin.de/~rote/Papers/

[258] B. Schachter. Decomposition of polygons into convex sets. IEEE Transactions on

Computing, 27(11):1078-1082, 1978.

[259] I. Schiermeyer. Reverse-fit: a 2-optimal algorithm for packing rectangles. Lecture

Notes in Computer Science, 855:290-299, 1994.

[260] R. Seidel. A simple and fast incremental randomized algorithm for computing trape­

zoidal decompositions and for triangulating polygons. Computational Geometry:

Theory and Applications, l(l):51-64, 1991.

[261] M.I. Shamos. Computational Geometry. PhD thesis, Yale University, 1978.

[262] M.I. Shamos, 2004. Personal Communication.

[263] M.I. Shamos and F.P. Preparata. Computational Geometry: An introduction. Springer,

1985.

[264] M. Shapira and A. Rappoport. Shape blending using the star-skeleton representation.

Manuscript, 1994.

[265] T.C. Shermer. A linear time algorithm for bisecting a polygon. Information Processing

Letters, 41:135-140, 1992.

[266] T.C. Shermer. On recognizing unions of two convex polygons and related problems.

Pattern Recognition Letters, 14(9):737-745, 1993.

[267] H. Simon, 2004. Personal Communication.

[268] D.D. Sleator. A 2.5 optimal algorithm for packing in two dimensions. Information

Processing Letters, 10(l):37-40, 1980.

[269] A. Soifer. Packing triangles in triangles. Gcombinatorics, 8(4):110-115, 1999.

[270] V. Soltan and A. Gorpinevich. Minimum dissection of a rectilinear polygon with

arbitrary holes into rectangles. Discrete Computational Geometry, 9(l):57-79, 1993.

156

[271] A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM

Journal on Computing, 26(2):401-409, 1997.

[272] P.G. Szabo, T. Csendes, L.G. Casado, and I. Garcia. Equal circles packing in a square

I- problem setting and bound for optimal solution. Optimization Theory: Recent

Developments from Matrahaza, pages 191-206, 2001.

[273] M. Tanase and R.C. Veltkamp. Polygon decomposition based on the straight line

skeleton. In Proceedings of the 19th Annual Symposium on Computational Geometry,

pages 58-67, 2003.

[274] K. Tang, C. C.L. Wang, and D.Z. Chen. Minimum area convex packing of two

convex polygons. International Journal of Computional Geometry and Applications,

16(l):41-74, 2006.

[275] A.G. Tarnowsky. Exact polynomial algorithm for special case of the two-dimensional

cutting stock problem: A guillotine pallet loading problem. Technical report, Belarusian

State University,, 1992.

[276] G.F. Toth. Packing and covering, pages 19-41. CRC Press, 1997.

[277] G.T. Toussaint. Quadrangulations of planar sets. In Proceedings of the 4th International

Workshop on Algorithms and Data Structures, pages 218-227, 1995.

[278] M. van Kreveld. On fat partitioning, fat covering and the union size of polygons.

Computational Geometry: Theory and Applications, 9(4): 197-210, 1998.

[279] M. van Kreveld and I. Reinbacher. Good news partitioning a simple polygon by

compass directions. In Proceedings of the 19th Annual Symposium on Computational

Geometry, pages 78-87, 2003.

[280] C.A. Wang, B.-T Yang, and B. Zhu. On some polyhedra covering problems. Journal

of Combinatorial optimization, 4(4):437-447, 2000.

[281] C. Worman. Decomposing polygons into r-star or a-boundable subpolygons. Master's

thesis, University of Saskatchewan, 2004.

157

[282] C. Worman and J.M. Keil. Polygon decomposition and the orthogonal art gallery prob­

lem. International Journal of Computational Geometry and Applications, 17(2):105-

138, 2007.

[283] H. Yamazaki, K. Sakanushi, and Y. Kajitani. Optimum packing of convex polygons

by a new data structure sequence-table. In Proceedings of the IEEE Asia-Pacific

Conference on Circuits and Systems, pages 821-824, 2000.

158

