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Kurzfassung

Wegen nichtholonomer Einschränkungen ist die Bahnplanung für autoähnliche Roboter eine
anspruchsvolle Aufgabe. Der wichtigste Beitrag dieser Dissertation ist es zu ermitteln, wie
man mit nichtholonomen Einschränkungen und dem lokalen Minimum der Bahnplanung
autoähnlicher mobiler Roboter umgehen kann. Zudem soll dessen Echtzeitleistung verbessert
werden. Eine neue Voronoi-basierte Heuristik wird vorgeschlagen, welche die Suche nach dem
Ziel viel schneller durchführen kann. Die Komplexität und die Rechenzeit der Bahnplanung
autoähnlicher Roboter werden durch die Voronoi-basierte Heuristik erheblich reduziert.

Zuerst wird ein neuer primitiver Trajektoriensatz anhand der nichtholonomen Einschränk-
ungen definiert. Dieser kann mehrfach verwendet werden, um einen Suchbaum für die Unter-
suchung des Suchraums zu konstruieren; somit ist der erzeugte Pfad immer manövrierbar für
autoähnliche Roboter. Der definierte primitive Trajektoriensatz ist sehr einfach, aber den-
noch können mit unterschiedlichen Kombinationen verschiedene Manöver erzeugt werden,
die Einfachheit und Vielfältigkeit enthalten. Später wird ein neuer Ansatz vorgeschlagen,
um die Veränderung der Krümmung entlang der Bahn zu reduzieren, so dass die Manöver
mit aggressiver Lenkung weitgehend eliminiert werden.

Angesichts der nichtholonomen Einschränkungen muss der Lenkwinkel und die Richtung
in die Bahnplanung integriert werden, um einen durchführbaren Weg zu produzieren, dem
auch autoähnliche Roboter physikalisch folgen können. Dies kann die Komplexität der Bahn-
planung erheblich erhöhen und fast unendlich Rechenzeit und Speicherplatz kosten, beson-
ders unter großen Clusterumgebungen. Die Voronoi basierte Heuristik wird vorgeschlagen,
um dieses Problem zu umgehen. Das generalisierte Voronoi Diagramm ist eine hohe Ab-
straktion der Umgebung, die immer als ideale Roadmap gilt. Mithilfe der Voronoi-basierten
Heuristik ist die Suche in der Lage leicht durch den Raum zu navigieren, alle Arten von
lokalen Minima zu vermeiden und somit die Rechenzeit des Bahnplanungsprozesses weitge-
hend zu reduzieren.

Globale und lokale Bahnplanungsprozesse haben ihre eigenen Stärken und Schwächen.
Globale Bahnplanung wird bevorzugt für eine statische globale Umgebung angewendet,
während lokale Bahnplanung mehr für eine lokale dynamische Umgebung geeignet ist. Um
während des Folgens eines globalen Pfads zu einem Ziel mit dynamischen Hindernissen
umzugehen, wird ein neuer Ansatz vorgeschlagen. Dabei werden beide Prozesse integriert,
um ihre jeweilige Schwäche zu überwinden.

Um die vorgeschlagenen Ansätze im Rahmen dieser Arbeit zu überprüfen, werden die Al-
gorithmen in einer simulierten Umgebung getestet. Da die Systemdynamik des autoähnlichen
Roboters ebenfalls eine wichtige Rolle spielt, was die Leistung des Bahnplaners beeinflussen
kann, wird ein autoähnlicher Roboter modelliert, um die Prüfung der vorgeschlagenen Ansätze
zu erleichtern.

Schlagworte: autoähnliche mobile Roboter, Bahnplanung, Voronoi
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Abstract

Nonholonomic constraints based path planning for car-like robots is a challenging task. The
most important contribution of this dissertation is how to deal with nonholonomic constraints
and the local minimum of car-like mobile robot path planning, as well as improvements
of its real-time performance. A new Voronoi-based heuristic, which is able to guide the
search to the goal much faster, is proposed. Voronoi-based heuristic significantly reduces the
complexity and the computation time of car-like robot path planning.

First of all, a novel primitive trajectory set is defined based on the nonholonomic con-
straints. It can be applied repeatedly to construct a search tree for space exploration; the
produced path is, thus, always maneuverable for car-like robots. The defined primitive tra-
jectory set is very simple, but with different trajectory combinations, various maneuvers that
maintain both simplicity and diversity can nevertheless be produced. Later, a new approach
is proposed to reduce the variation of the curvature along the path during the search, so
that the maneuvers of aggressive steering can be largely eliminated.

Given the nonholonomic constraints, the steering angle and orientation must also be
integrated in path planning to produce a feasible path that the car-like robot can physically
follow. This highly promotes the complexity of path planning and can cost almost infinite
computation time and memory space, especially under large clustered environments. The
Voronoi-based heuristic is proposed to deal with this problem. The generalized Voronoi
diagram is a high abstraction of the environment which is always regarded as the ideal
roadmap. With the help of the Voronoi-based heuristic, the search is able to easily navigate
through the space and avoid all kinds of local minima. Thus, the computation time of the
path planning process is largely reduced.

Both global and local path-planning processes have their own strengths and weaknesses.
Global path planning is preferable for a static global environment whereas local path planning
is more suitable for a local dynamic environment. In order to cope with dynamic obstacles
while following the global path to a goal, this work proposes a new approach to integrate
both processes to counteract their shortcomings.

To evaluate the proposed approaches within this work, the algorithms are tested under
a simulated environment. Since the system dynamics of the car-like robot also play an im-
portant role that may affect the performance of the path planner, an intricate car-like robot
is modeled to facilitate the testing of the proposed approaches.

key words: car-like mobile robot, path planning, Voronoi
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Chapter 1

Introduction

In modern times, robotic technologies influence almost every aspect of human life, but the
mobility of a nonholonomic mobile robot remains a challenge. This dissertation deals with
some fundamental path planning problems of the nonholonomic mobile robot under large-
scale, clustered, planar environments, particularly for car-like robots.

1.1 Motivation

Generally speaking, there are three types of wheeled mobile robots: omnidirectional robots;
differential wheeled robots; and car-like robots. The omnidirectional robot [Fig. 1.1(a)]
provides the most flexible mobility and requires almost no constraints of maneuvers; it
largely simplifies the process of path planning. However, it is only applicable to clean,
indoor environments with a very slow speed due to the high complexity of the mechanical
structure of omnidirectional wheels.

(a) (b) (c)

Figure 1.1: a) Omnidirectional robot; b) Differential wheeled robot; c) Car-like robot

Differential wheeled [Fig. 1.1(b)] and car-like mobile robots [1.1(c)] are nonholonomic
mobile robots. The steering systems of such robots are quite simple and, therefore, they
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can move faster and run on rough and dirty surfaces. The shortcoming of the differential
wheeled robot is its distinctive lateral movement of wheels while cornering, which produces
large friction between the wheels and the ground. Thus, the robot may lose a large amount
of energy which can affect the linear velocity. Therefore, differential wheeled robots are still
not applicable to high-speed movement in large environments.

Compared to omnidirectional and differential wheeled mobile robots, the car-like robot
requires a simple mechanical structure and less energy cost, thus providing the most prefer-
able mobility under large-scale environments. However, the nonholonomic constraints of the
car-like robot pose a challenge to path planning; for example, even a simple parallel parking
may become very complex since it involves several frequent steering moves with forward
and backward maneuvers. Despite the numerous researches on car-like robots in the last
few years [4–7], the existing solutions for such robots still mostly concentrate on an on-road
environment, where the nonholonomic constraints are guaranteed by the road itself and,
therefore, can be ignored or simplified during path planning. However, in off-road, planar
environments with more sophisticated and no predefined road information, the noholonomic
constraints must be guaranteed by the planner. As will be mentioned in the next chapter,
because the nonholonomic constraints largely increase the complexity of path planning, ex-
isting solutions are only applicable to simple and small spaces. In planar, large and clustered
environments, especially with the existence of a large number of concave local minima, the
search could be trapped. The search either takes a very long computation time or produces
a poor path, or even fails. There are still some fundamental problems concerning car-like
robot path planning and, therefore, a more intelligent path planning algorithm is required.
This is the motivation of this work.

This work concentrates on service mobile robot path planning based on car-like platforms
under the planar human environment, such as shopping center, airport, residential area,
warehouse, factory, etc., where the ground surface is assumed to be flat. The roughness,
slop, or unevenness of the ground are therefore not considered, since those factors are more
generally concerning the field robot which is a different topic that will not be covered in this
work.

1.2 Problem Statement

One of the problems regarding search-based path planning is the local minimum that is
caused by the inaccuracy of heuristic. Heuristic helps the search become more goal-oriented
and reach the goal faster. However, the inaccuracy of heuristic can also lead the search to
the wrong direction and make it trapped, thereby necessitating more computation cost. The
path planning of omnidirectional or differential wheeled robots can be performed in a 2D
space and therefore requires relatively low computation cost, where the effect of the local
minimum can be mostly neglected. However, the nonholonomic constraints of the car-like
robot greatly add to the complexity of path planning. As will be shown in Section 2.4.1, the
path planning of the car-like robot needs to be performed in a 3D or even higher dimensional
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space. Moreover, the factors causing local minimum for car-like robot are more complex. It
can be caused by obstacle constraints and nonholonomic constraints, separately or combined.
The local minimum can happen during the process of global or local path planning. Hence,
the problem of the local minimum for car-like robots is much more dominant than for om-
nidirectional or differential wheeled robots. The local minimum problem for car-like robots
is decomposed into several fundamental problems pertaining to nonholonomic constraints,
global path planning, and local path planning. The present dissertation seeks to solve these
problems.

Nonholonomic Constraints

Nonholonomic constraints pose a challenge for car-like robot path planning that not only
requires the continuity of the curvature along the produced path, but also stipulates no
violation of the minimum turning radius that the robot can perform. Owing to nonholonomic
constraints, the local minimum problem for car-like robots becomes more complex, thus
increasing the computation cost of path planning.

Primitive Trajectory Set

In recent years, the motion primitives-based path planning has attracted a great amount of
interest as it provides a successful tool to comply with the nonholonomic constraints. In terms
of the mobile robot, the motion primitives are a set of primitive trajectories by sampling the
control space. Therefore, the primitive trajectories take care of the nonholonomic constraints,
so the planner can solely focus on the obstacle constraints. However, it is always difficult
to define a primitive trajectory set, which satisfies the system constraints without reducing
the diversity of the control space. Some of the existing approaches tend to make a large
trajectory set by discretizing the control space as fine as possible [8]. This is very difficult to
implement and requires a large amount of work to be done in advance. Additionally, it can
also increase the time cost of the search being trapped by the local minimum, since more
primitive trajectories need to be tested in the process of path planning. Other approaches
prefer to make a simple trajectory set [9], but may lose the diversity of the control space
and, thus, reduce the optimality of the produced path. This leads to the problem of how
to define a primitive trajectory set in a simple form while simultaneously maintaining the
diversity of the control space.

Aggressive Steering

The most particular feature that differentiates a car-like robot from other types of robots is
the Ackermann steering system [10]. As will be discussed in Section 3, the turning radius
of the car-like robot depends directly on the steering angle. Since the steering angle is
supposed to vary continuously, the curvature of the trajectory must also be continuous along
the trajectory, failing which the robot has to frequently stop and perform a steering action
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at the curvature-discontinuous points. To find a feasible path with a continuous curvature
is no longer difficult with many solutions proposed. These will be discussed in Section 2.4.1.
However, few of them have ever efficiently minimized the variation of the curvature along
the path. A large variation in the curvature will cause aggressive steering, i.e. to perform a
large-scale steering angle in a very short time. The aggressive steering will result in a large
torque on the steering wheel. This will not only require a high-energy cost but may also
damage the steering system. Therefore, having to avoid aggressive steering by minimizing
the variation of the curvature along the path also becomes a problem.

Local Minimum of Search-based Path Planning

Motion primitives are utilized to explore the space and produce a path that meets the
nonholonomic constraints. In order to avoid uniformly exploring the entire space, which
may require a large computation time and memory space, the search-based algorithm applies
heuristic to guide the search, moving towards the direction of the goal. Intensive researches
of search-based path planning have been done in the last few decades, but the topic of the
heuristic has barely been touched. The Euclidean distance is still the most widely used
heuristic. Although a few works have been done on heuristic [11–21], they all degenerate to
the Euclidean distance-based heuristic for long-range path planning. The Euclidean-based
heuristic brings a major drawback that the search may be trapped if concave obstacles
happen to be located in the middle of the goal and the starting point. This is known as the
local minimum problem in path planning. In a clustered environment, such local minimum
could be everywhere and will dramatically slow down the search.

Goal

Start

H
e

u
r
is

tic

(a)

Goal

Start

Local Minimum

(b)

Goal

Start

(c)

Figure 1.2: Path planning with Euclidean-based heuristic: a) Without local minimum; b)
With local minimum; c) Goal can only be reached when local minimum is filled
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The problem of the local minimum can be illustrated as Fig. 1.2. The small blue ball
is initiated from the start and is supposed to reach the goal. The Euclidean-based heuristic
in this case can be regarded as the gravity field (shown as light green arrows) that pulls the
blue ball moving towards the goal. The blue ball may land directly on the goal if nothing
exists in between [as in Fig. 1.2(a)]. However, if there is an obstacle on the way [as in Fig.
1.2(b)], the blue ball may get trapped and then the obstacle would form a local minimum.
As shown in Fig. 1.2(c), the current solution for the local minimum is simply to drop more
blue balls in the local minimum until it is full, and then the next blue ball can eventually
reach the goal. Unfortunately, filling the local minimum takes too long, especially in a large
clustered environment. This is the major problem that this work seeks to solve.

Roadmap

The roadmap is an abstract description of the environment, which connects the entire free
space with a graph structure. Since the graph only consists of a very limited number of
nodes, the path planning problem can be greatly simplified by just searching a sequence
of connected nodes along the graph that connects both the start and the goal instead of
the whole space. The computation of the roadmap-based search is very fast and, therefore,
can hardly be affected by the local minimum. In this dissertation, a roadmap is used as
a guidance that leads the nonholonomic path planning away from the local minimum and
largely reduces the computation cost.

Unfortunately, there are two problems of roadmap-based path planning. First, it is
always hard to create a roadmap that describes the environment in an optimal way. As
will be discussed later in Section 2.1.2, the computation cost of such a roadmap is very
high which makes such an approach very sensitive to the dynamics of the environment.
Second, the resulting path by searching the roadmap can hardly guarantee the nonholonomic
constraints. Since the path can pass through some very winding and narrow corridors that
the nonholonomic robot cannot follow, there is a problem of how to apply the roadmap to
serve nonholonomic path planning. These two problems are also supposed to be solved in
this dissertation.

Integration of Global and Local Path Planning

Global path planning is supposed to produce a global path based on a premade static map,
which can be guaranteed to be collision-free only against static obstacles on the map. How-
ever, the global path can be locked when dynamic obstacles exist and can, therefore, not
be applied directly. In such cases, reproducing the whole global path may take too long
to catch up with the dynamics in a large environment. The existing solutions are making
local changes along the global path to avoid dynamic obstacles. However, the changed path
cannot vary too much since obstacle avoidance always has to be done based on the original
global path. This will tremendously reduce the flexibility of the local planner and increase
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the risk of it being trapped by the local minimum. Thus, the local planner can fail sometimes
even when a feasible path does exist.

Start

Goal

(a)

Start

Goal

(b)

Figure 1.3: Dashed blue spline is global path: a) Green spline is ideal local path; b) Red
spline is actual local path.

Even when the local planner has successfully avoided the obstacles, the varied local path
is no longer optimal. As in Fig. 1.3(a), the dashed blue spline represents the precalculated
global path and there are several dynamic obstacles laid on the global path (shown as circular
objects). The green spline represents the ideal local path. Since the robot always tries to
follow the global path, it will have to leave the global path for a while if there is an obstacle
laid in the way and move back to the global path after it has bypassed the obstacle, i.e.,
simultaneous path following and obstacle avoidance (SPFOA) [22, 23]. Imaginably, when
there are multiple obstacles laid on the original global path [as in Fig. 1.3(b)], the robot has
to frequently leave and return to the global path, which eventually generates a very snaky
local path [shown as the red spline in Fig. 1.3(b)]. In this case, the global path serves as not
only a guidance that leads the robot to the goal, but also an extra constraint which requires
the robot to always follow. As a result, the optimality of the local path greatly deteriorates.
Therefore, effectively integrating the local and global path planners, while maintaining both
optimality and flexibility of the path, becomes a challenge.

1.3 Concept of Solutions

This work proposes solutions to the local minimum problem of both global path planning and
local path planning. The search-based path planning is carried out by repeatedly applying
a new primitive trajectory set that defines the basic behavior of the nonholonomic mobile
robot. The continuity of the curvature along the trajectory is achieved by smoothing the
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primitive path with the Bézier spline [24]. Besides, the aggressive steering is also avoided
by attaching large costs to the trajectories of aggressive steering so that the trajectories of
peaceful steering become more preferable during the search. Therefore, the variation of the
curvature along the path can be minimized directly during the search.

Goal

Start

H
e

u
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tic

Figure 1.4: Heuristic navigates its way around concave obstacle

As mentioned in Section 1.2, the local minimum problem in Fig. 1.2 results from
Euclidean-based heuristic that pulls the search directly toward the goal. Therefore, a new
type of heuristic that reflects the accurate cost to the goal is proposed. The heuristic cost
is measured in accordance with a roadmap that is constructed on the basis of a generalized
Voronoi diagram (GVD). Generally speaking, the GVD is simply a collection of the medial
lines between the obstacles and precisely reflects the geometry of the environment. There-
fore, the GVD is always considered as an ideal representation of the environment and the
heuristic value measured along the GVD becomes more accurate. As a result, the search will
no longer be attracted to the local minimum and the computation time of the search can
be greatly reduced. As shown in Fig. 1.4, the proposed Voronoi-based heuristic can also be
illustrated as a gravity field. The difference is that the heuristic (shown as arrows along the
light green lines) now navigates its way around the concave obstacle, so that the blue object
can reach the goal directly without being trapped in the local minimum.

An improved thinning algorithm is also proposed which not only simplifies the construc-
tion of the GVD-based roadmap but also provides the connections between the free space
and the GVD. Therefore, any position in the free space can be easily evaluated based on
the connection to the GVD. This makes the computation of the Voronoi-based heuristic as
fast as that of the Euclidean-based heuristic while largely promoting the accuracy of the
heuristic at the same time.

To effectively integrate global and local path planning, the global path will not be used
directly but will be transformed into a sequence of corridor sections that the global path
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passes through. The corridor sections define the maximum space along the global path. The
robot is not required to always follow the global path but only limited inside the corridors.
This clearly endues the robot more flexibility to avoid dynamic obstacles and reduces the
risk of being trapped by the local minimum. Meanwhile, the path corridor-based heuristic
is also extracted from the global path to attract and navigate local path planning efficiently
through the corridors.

1.4 Structure of Chapters

Fig. 1.5 shows the structure of this dissertation. The chained yellow boxes represent the
major components of the path-planning algorithm. Each component takes the input from
the previous component (shown as the pink boxes). The green boxes show the input from
the environment and the blue box is the mobile robot platform that takes velocity v and
steering angle α as inputs. Basically speaking, this dissertation consists of four parts.

Motion Primitive Set chapter 3( ) Voronoi based Thinning chapter 4- ( )

Global Path Planning chapter 5( )

Local Path Planning chapter 6( )

Car like Robot-

Global Grid Map

Local Grid Map

Start

Goal

GVD

Global Path

Local Path

System Environment

Figure 1.5: New Voronoi-based path planning process
(Details of proposed approach are described in more detail in indicated chapters).

Chapter 2 in Part I introduces the current state of nonholonomic mobile robot path
planning as well as the problems that are supposed to be solved in this dissertation.

Part II (Chapter 3) proposes a new primitive trajectory set to solve the problem of the
nonholonomic constraints for the car-like robot path planning. With various combinations
of primitive trajectories, all kinds of maneuvers can be produced.

Part III proposes several Voronoi-based algorithms to solve global, local as well as
multi robot path planning problems that are separated into four chapters. Chapter 4
proposes a new thinning algorithm that provides a very simple way to extract the GVD
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based roadmap from the grid map and serves as a tool to facilitate path planning algorithms
in other chapters. Chapter 5 concerns global path planning. Primitive trajectory set-
based path planning is applied with the help of the extracted GVD roadmap that provides a
more accurate heuristic estimation of the goal. Compared to the traditional Euclidean-based
heuristic, the Voronoi-based heuristic largely reduces the computation time of the search.
A new local path planning algorithm is proposed in Chapter 6. Instead of following a
specific global path, the local planner produces a path corridor which defines the maximum
space along the global path, and the actual local path is produced on the fly within the path
corridor. This endues the robot with great flexibility to avoid dynamic obstacles.

Part IV provides the tests and evaluations of the proposed approaches. The approaches
are tested on a simulated vehicle illustrated in Appendix A. Some experiments are made in
Chapter 7 to demonstrate the efficiency and usefulness of the proposed solutions. It shows
the proposed solutions only require very low computation time and memory cost without
reducing the optimality of the produced path.
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Chapter 2

State of the Art in Path Planning

In this chapter, the current state of different aspects concerning nonholonomic mobile robot
path planning is introduced. Path planning must be applied to a certain type of map rep-
resentation. The actual map representation largely affects the behavior of path planning.
Several popular map representations are presented and evaluated followed by a discussion on
three major types of nonholonomic path planning algorithms which brings out the impor-
tance of heuristic for path planning. The focus then shifts to the current state of heuristic
as well as their problems, followed by motion primitives-based path planning with an illus-
tration of how motion primitives can affect the efficiency and flexibility of path planning. As
mentioned in Section 1.2, the local planner plays an important role in dealing with dynamic
obstacles based on the global path. The integration of local and global planner highly af-
fects the real-time performance of the robot, and the existing local planners and their major
shortcomings are also addressed in this chapter.

2.1 Map Representations

The map representation is the first step of path planning. A well-defined map structure can
dramatically reduce the complexity of path planning. The map should be not only easy to
create and modify, but also simple to query. Generally speaking, mobile robot path planning
uses two major types of map: the metric maps and topological maps. Both map types have
their significant drawbacks and, therefore, current researches on mobile robot path planning
generally use a hybrid form [25–28] of metric and topological maps. As mentioned in Section
1.3, the proposed strategy to avoid the local minimum during the path planning process is
also based on a hybrid map.

2.1.1 Metric Maps

Metric maps provide an accurate description of the environments that record the precise
locations of all the obstacles in space. They are more suitable for precise collision-checking
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during the path planning process. Grid maps [29] are the most widely used example of metric
maps for mobile robot. Grid maps discretize the space with equally spaced cells [as shown
in Fig. 2.1(a)], and each cell can be located with the x-y coordinate and is attached to a
value specifying whether or not the cell is occupied. The gray cells represent the obstacle
cells. Grid maps, which are very simple to query, provide a simple way for collision checking.
However, grid maps are still low-level map types. For wide, clustered environments, the
search space can be very large, searching directly over grid map can easily be trapped by
local minimum and, thus, requires relatively large computation cost.

(a) (b) (c)

Figure 2.1: a) Grid map; d) Quadtrees; c) Polygonal map

Increasing the resolution of the grid map may result in a higher memory space cost,
whereas lower resolution can make the narrow corridors disappear, thereby reducing the
map precision. Unlike grid maps, quadtrees provide a solution to adaptively change the
resolutions [30–32] of the map, which reduces the memory cost but preserves the precision
[as shown in Fig. 2.1(b)]. Quadtrees initially treat the map as a single cell. If the cell
consists of both free space and obstacles, then quadtrees equally divide the cell into four
subcells. The same process is iteratively applied to the subcells until the minimum size has
been reached. However, compared with a regular grid map, quadtrees are very difficult to
apply with the path planning algorithm directly [33, 34], since any cell in quadtrees-based
map can no longer be easily located based on its coordinates and its neighboring cells can
only be returned by recursively search the quadtrees. Although the fundamental advantage
of quadtrees is their low memory cost, such an advantage become less evident in the recent
years due to the falling cost of the computer memory.

Alternatively, polygonal maps [Fig .2.1(c)] pose another way to represent the obstacles
with a sequence of geometric features. The polygonal map is applicable for the environment
where obstacles are mostly in a relative regular form, for example an indoor space where walls,
tables or chairs can always be represented with regular shapes. Such environments can be
represented by polygonal maps at a very small memory cost. However, under more complex
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Figure 2.2: Extraction of geometric features from raw data of ranger sensor (image from [1])

environments with various types of objects, polygonal maps can be very difficult to use. As
shown in Fig. 2.2, the blue points represent the raw data gathered with the ranger sensor and
the black lines represent the extracted geometric features. It can be seen that the raw data
is very noisy. Some raw points cannot be efficiently defined directly with polygonal shapes.
The extraction of the geometric features in a real-word environment can be very challenging
[35–37]. Therefore, polygonal maps are more useful for navigation problems under simulated
environments or computer games, where all objects are geometrically predefined.

As mentioned, the grid map is very simple to create and query, moreover, the falling
cost of the computer memory in recent years also eliminates the limitation of grid map
representing large scale environments. All of this makes the grid map more effective compared
with other types of map. The present dissertation uses the grid map combined with a
topological map to serve the path planning of the car-like robot.

2.1.2 Topological Maps

A topological map is a highly extracted abstraction of an environment, and represents the
environment with a graph structure that connects all traversable areas. The topological
map has the advantage of being able to handle a large environment with a small and simple
data structure, largely reducing both memory cost and complexity of path planning. This
provides an opportunity to use the topological map as a roadmap to guide the search away
from the local minimum (as introduced in Section 1.3). However, as it will be discussed later
in this section, accurate and consistent topological maps are considerably difficult to create
in clustered, large-scale environments.

Fig. 2.3(a) shows the same map as Fig. 2.1(c). There are black lines that connect all
intervisible vertexes of the polygons, i.e. the lines that connect any two vertexes without
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(a) (b) (c)

Figure 2.3: a) Visibility graph; b) Trapezoidal decomposition; d) Triangular decomposition

intersecting with the obstacle. These lines comprise a graph that can be used for path
planning as a topological map to find the Euclidean shortest path among a set of polygonal
obstacles [38]. The definition of a visibility graph is simple and straightforward. However,
the edges of the visibility graph dramatically increase with the number of vertexes. This
makes the visibility graph very hard to apply and maintain for large, clustered environments
that consist of obstacles with a large number of vertexes.

Polygon decomposition [39–41] divides the space into small fractions, and a topological
map can be constructed by connecting the neighboring fractions. As in Fig. 2.3(b), the
trapezoidal decomposition divides the space into small trapezoids with the gray vertical
lines that connect the vertexes as well as the upper and lower boundaries. The topological
map is constructed by connecting the center of the divided neighboring trapezoids. The
triangular decomposition [as in Fig. 2.3(c)] divides the space into small pieces of triangles.
The back lines connecting the center of the edges of the triangles form a topological map.
Both topological maps created with trapezoidal and triangular decompositions are complete;
a path can be found as long as it does exist between the start and the goal. However, because
of the drawbacks of polygonal maps mentioned in Section 2.1.1, a polygonal decomposition
can be hardly applied in a real-word environment.

Fig. 2.4(a) is the topological map created by the probabilistic roadmap method (PRM)
[42]; the randomized path planning algorithm will be discussed later in this chapter as well.
PRM creates a topological map by randomly sampling the nodes in a free space and making
connections between them. As shown in Fig. 2.4(a), the created topological map cannot
precisely describe the geometries of the space since all the nodes are randomly sampled.
Besides, PRM also has the problem of losing the connectivity of narrow corridors since they
fail to get enough samples to maintain the connectivity, especially for clustered environments.
This could be solved by promoting the sampling intensity but it also increase the overall
number of samples and, consequently, the memory and computation cost.
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(a) (b)

Figure 2.4: a) Probabilistic roadmap; b) Generalized Voronoi diagram

Because of mentioned drawbacks, the above approaches of building a topological map are
not applicable to large, clustered environments. A method to extract the topological map
that can accurately describe the geometry of the environment at a very small computation
cost is required.

A Voronoi diagram can be regarded as a collection of medial lines between sites. The
first work of Voronoi is presented in the work of [43, 44], then a number of algorithms that
extract the Voronoi diagram from point-based sites become available [45–47]. To apply the
Voronoi diagram to a real-word environment, the sites are extended to general shapes. This
transforms the Voronoi diagram into the generalized Voronoi diagram (GVD). Likewise, the
GVD is also a collection of the medial lines between the generalized sites [as in Fig. 2.4(b)].
Compared with the other types of topological maps, the GVD [48] is regarded as the most
simple and ideal description of the environment. Therefore, the present dissertation uses the
GVD as the topological map to enhance the path planning of the car-like robot.

One of the methods to extract the GVD is based on the polygonal map. The GVD is
extracted by analyzing the geometrical relationships between the elementary objects [49–52].
However, because of the drawbacks of polygonal maps (Section 2.1.1), such algorithms are
not applicable to real-world environments. Apart from the problem of building the polygonal
map, computation of the GVD is very time consuming and difficult to implement when the
given environment includes a large number of objects in a polygonal form.

Figure 2.5: Thinning algorithm
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Another type of GVD calculation applies the thinning algorithm [53–58]. This algorithm
is originally one of the image processing algorithms. It iteratively removes small fractions
along the boundary of the object to make the object thinner and thinner until only a very
thin line is left (as in Fig. 2.5). The thinning algorithm can be directly applied to a grid map,
so the conversion of a polygonal map is no longer required. Since the thinning algorithm
deals with the grid map cell by cell, the computation time is proportional to its size of the
map and independent of its complexity. [59] shows that the cost of GVD calculation with
thinning algorithms is very low and even meets the requirement of real-time applications.

Furthermore, since the GVD is extracted from the grid map, the extracted GVD can be
naturally mapped to the original grid map. This allows every cell in the grid map to be
easily connected to the GVD (as will be introduced later in Chapter 5). The connection
between the GVD and the grid map becomes the key to using the GVD to guide the search
exploring the grid map.

However, the thinning-based GVD calculation also has its drawbacks. The result of the
thinning algorithm does not represent the real GVD. The layout of the grid map gives rise to
square effect during the thinning process,making the resulting GVD inaccurate. A Voronoi-
based parallel thinning algorithm to solve this problem which precisely extracts the GVD
from the grid map at a small time cost will be proposed in Chapter 4.

2.1.3 Clearance Map

(a) (b)

Figure 2.6: a) Grid map; b) Clearance map

Clearance maps also known as distance maps can be produced by applying a distance
transformation [60–63] on grid maps. On a clearance map, each cell is assigned a value
representing the distance to its nearest obstacle. Fig. 2.6(a) is the grid map of the environ-
ment and Fig. 2.6(b) is the produced clearance map based on the grid map. Each cell ci
in the grid map has a corresponding clearance value at the same location on the clearance
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map which represents the distance from ci to its nearest obstacle. Since the clearance map
provides an easy way to measure the distance to the obstacles, it becomes a simple tool of
collision checking for mobile robot path planning, i.e. the robot may have a collision at a
certain point when the clearance value is less than the safety threshold. In Chapter 3, the
clearance map is used for path optimization so that the planner may choose the areas with
higher clearance or, in other words, the area away from the obstacles. This increases the
safety assurance for the robot against the obstacles. In Chapter 4, the clearance map is also
used to improve the accuracy of GVD calculation.

2.2 Path Planning Algorithms

The research over nonholonomic robot path planning has been continuing for a few decades
and despite great improvements most solutions are still only applicable to small and simple
environments. Generally speaking, there are three most intensively discussed types of path
planning algorithms concerning nonholonomic mobile robots—the rapidly exploring random
tree (RRT), the probabilistic roadmap method (PRM), and search-based path planning. The
RRT and the PRM are regarded as randomized path planners, whereas search-based path
planning is the deterministic path planner. Given a particular input, the randomized path
planners return different outputs whereas the deterministic path planner will always produce
the same output. Therefore, the behavior of search-based path planning is more predictable
and easy to control. The search-based algorithm creates a motion-primitive subset that
defines the movement of the mobile robot with several simple primitive motions and then
repeatedly applies those trajectories during the path planning process to eventually create
a feasible path.

2.2.1 Randomized Path Planner

The RRT and the PRM explore the space by randomly sampling the space. The RRT
randomly samples the space to build a tree object that roots from the start and reaches the
goal, whereas the PRM randomly samples the space to create a roadmap object that covers
the start and the goal.

Rapidly Exploring Random Tree

The RRT [2, 64, 65] provides a new tool for mobile robot path planning. It is based on an
open loop system model of a mobile robot. Since all the explored states of the RRT are
generated based on the system model, it guarantees that any state in the exploring tree can
be reached by following the nonholonomic constraints. This makes the RRT a useful tool for
solving nonholonomic problems. As Fig. 2.7 shows, the blue and green objects represent the
starting point and the goal respectively. The RRT can start from either one of the objects
or both and uniformly explore the space until the goal has been reached.
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Figure 2.7: Rapidly-exploring random trees (image from [2])

The algorithm of the RRT is shown as Alg. 2.1, the first node of T is ζinit ∈ Sfree on the
start state. In each iteration, a random state ζrand is selected from space S, and the closest
node nnear to ζrand is found in line 5, and then an input u, which minimizes the distance from
nnear.ζ to ζrand, is selected (line 6) and applied to the system to produce a new state ζnew
based on nnear.ζ (line 9). The new state ζnew is added as a new node nnew to the exploring
tree T (line 8). A traversable path is found if any new node lands on the goal (line 10).
Otherwise the loop continues until k = K (line 3), which means no path is found.

Algorithm 2.1: Generate RRT

ζstart: Initial state of mobile robot
ζgoal : Goal state
K :
T : Exploring tree object

1 Function ret Generate RRT (ζstart, ζgoal, K,4t)
2 T.init(ζstart);
3 for k=1 to K do
4 ζrand ← Random State();
5 nnear ← Nearest Neighbor(ζrand, τ);
6 u← Select Input(ζrand, nnear.ζ);
7 ζnew ← New State(nnear.ζ, u,4t);
8 nnew ← {ζnew, nnear, u};
9 T.add node(nnew);

10 if nnew.ζ = ζgoal then // when new node lands on ζgoal
11 return nnew; // path is found, return last nnew

12 return null; // no path is found
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[66] shows that the RRT will uniformly distribute over the space as the number of
iterations approaching infinity. However, without any bias towards the goal, the convergence
of the RRT is very slow. The RRT-GoalBias is an improved RRT-based planner deduced
from redefining the function Random State() (Alg. 2.1, line 4) with a function that tosses
a biased coin to determine whether a random state or the goal state will be returned. With
a small probability of the returned goal states, the RRT-GoalBias converges to the goal
much faster but also brings the problem of the planner likely being trapped in the local
minimum [66]. The RRT-GoalZoom made some improvement by choosing the random state
in the whole space or the space around the goal. However, it still cannot avoid the planner
being trapped due to the existence of the local minimum [66].

To avoid being trapped in the local minimum, the RRT-Connect [65] extends the step
until the goal or an obstacle is reached. [67], [68] are such types of approaches; however, the
extended steps seriously reduce the optimality of the produced path.

The bidirectional planner [66] and the local trees [69] planner maintain multiple trees
simultaneously that can explore the free space very fast. It has proved effective where the
planner has to repeatedly pass several different regions. However, as pointed out by [66], to
grow multiple random trees is similar to the PRM [42]. It shows the same problem of the
PRM which will be introduced in the following section.

On the one hand, the uniform distribution of the RRT can take too much time to reach the
goal. On the other hand, greedy heuristic can make the distribution of the RRT more goal-
oriented but can trap the planner in the local minimum. The abovementioned approaches
mostly try to find a balance between them but both problems are not really solved. Another
problem of the RRT is its randomness. Since the RRT randomly explores the space, the
result is almost surely not optimal. This is also one of the problems of the PRM. Therefore,
the produced path cannot be applied directly and extra optimization is always required,
increasing the complexity and the computation cost.

Probabilistic Roadmap Method

The PRM [as shown in Fig. 2.4(a)] has been introduced by [42,70–74]. Basically the concept
of PRM includes two phases—a learning phase, and a query phase.

During the learning phase (as in Alg. 2.2), the PRM randomly samples the search space
and tests whether or not the samples are in free space (line 6). A roadmap is then created
by repeatedly connecting each sample and its neighboring samples with a local planner (line
9). A sample is defined as a neighbor of the current sample if its distance from the current
sample is less than a certain threshold. In the query phase (as in Alg. 2.3), the PRM
tries to connect the start and the goal to the closest corresponding states ζs and ζg on the
roadmap (line 3 and line 8) respectively, and then the path planning is done to search a path
connecting ζs and ζg over the roadmap (line 12).

The PRM divides a global path planning problem into many local path planning problems
since solving every single local path planning problem separately is much easier than directly
solving the global path planning problem. This simplifies the process of global path planning.
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Algorithm 2.2: Construct roadmap of PRM

V : Collection of samples
E : Collection of edges
same connected component(ζ ′, ζ): Function test if ζ ′ and ζ in same component
local planner(ζ ′, ζ) : Function tries to find path between ζ ′ and ζ

1 V ← ∅;
2 E ← ∅;
3 loop
4 ζ ← random state in Cfree;
5 V ← V ∪ {ζ};
6 Nc ← set of candidate neighbor configurations of ζ in V ;
7 forall the ζ ′ ∈ Nc, in order of increasing distance from ζ do
8 if same connected component(ζ ′, ζ) = false then
9 if local planner(ζ ′, ζ) 6= null then

10 E ← E ∪ {ζ ′ζ}

Algorithm 2.3: Path query of PRM

ζstart: Start state
ζgoal : Goal state

1 Function ret Path Query(ζstart, ζgoal)
2 Vs ← {ζ ∈ V | Distance(ζstart, ζ) < M};
3 if planner can find a path between ζstart and a state in Vs then
4 let ζs ∈ Vs be that state;
5 else
6 return failure;

7 Vg ← {ζ ∈ V | Distance(ζgoal, ζ) < M};
8 if the planner can find a path between ζgoal and a state in Vs then
9 let ζg ∈ Vg be that state;

10 else
11 return failure;

12 if a path P between ζs and ζg is found then
13 return overall solution path (ζstart, ζs), p, (ζg, ζgoal);
14 else
15 return failure;
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The PRM has been used for many different motion planning problems [42,75–81] because of
its simplicity.

The PRM assumes that a roadmap can be constructed by connecting neighboring states.
However, it is very difficult to connect two random states by following the nonholonomic
constraints. This poses a challenge to constructing a roadmap for the PRM. In addition,
the PRM also has problems when applied to narrow corridors connecting several subspaces.
Since narrow corridors only take up very small spaces, there may not be enough samples to
maintain the connectivity of the roadmap. This makes the PRM-based roadmap incomplete.
The methods [82–87] proposed to solve this problem. However, for nonholonomic mobile
robot path planning, any connection between sampled states must meet the nonholonomic
constraints, otherwise the connection will no long be traversable for the robot. Finding a
feasible connection between two neighboring states is non-trivial, which highly increases the
computation cost of creating a PRM, making the PRM very sensitive to dynamic changes.

2.2.2 Search-based Path Planning Algorithms

Search-based algorithms use a set of motion primitives. The motion primitives (which will
be covered in Section 2.4 later) define the most basic movement of the robot. By repeatedly
making use of the motion primitives, the search-based algorithm grows a search tree that
explores the space and eventually reaches the goal if a feasible path does exist. Unlike ran-
domized algorithms that randomly explore the space, search-based algorithms incrementally
explore the space based on the node with the minimum cost at every step, guaranteeing the
optimality of the produced path.

Dijkstra’s algorithm [88] is one of the first search-based path planning algorithms and
uniformly explores every state in the space and returns the optimal path if it does exist.
However, uniformly exploring the space can take too much computation time to reach the
goal.

Start

Goal

h(n )i

g(n )i

n i

Figure 2.8: Exploring tree

The A* algorithm [89] introduces a heuristic value into the evaluation of each node in
the search tree, which makes the search more goal-oriented, rather than uniformly exploring
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the space. For the A* algorithm, each node in the exploring tree is evaluated based on the
cost f(ni) calculated based on (2.1),

f(ni) = g(ni) + h(ni) (2.1)

where f(ni) is the summation of two parts—the path cost g(ni), and the heuristic cost
h(ni). As shown in Fig. 2.8, the path cost g(ni) is the actual cost from the start to the
current node (marked as red path), and the heuristic cost h(ni) is the estimating cost from
the current node to the goal. Dijkstra’s algorithm could be considered a special case of the
A* algorithm, where h(ni) is constantly set as zero. The node with the smaller cost value
f(ni) is regarded as more promising so it has more chances of being explored first. The A*
algorithm iteratively explores the node with the lowest cost value f(ni). As in Fig. 2.8,
the Euclidean-based heuristic cost helps the exploring tree always to grow towards the goal,
instead of uniformly exploring the whole space, which saves both time and memory cost.

The A* algorithm is shown as Alg. 2.4, in which the search builds a search tree that is
rooted to the start ζstart (line 2). The search tree iteratively stretches out to reach the goal
ζgoal by exploring the space. The nodes of the search tree are saved in two sets—openset,
and closedset. closedset keeps the nodes that have already been fully explored. openset
keeps track of the nodes that have been reached, but have yet to be explored.

The complexity of the search in each step is reduced by narrowing down the candidate
nodes in openset instead of the whole search tree. g score[] saves minimum path costs where
the search tree has currently achieved. In every step, the node nc with the lowest cost in
openset will be explored (line 10). Each possible neighbor ni of nc is validated, by comparing
the path cost new g score of ni with the value that saved at g score[ni.ζ] (line 19), where
ni.ζ represents the state or location of ni. If new g score is less than the value saved by
g score[ni.ζ] (line 19), it means ni has made a better achievement, so g score[ni.ζ] will be
updated by new g score (line 21), and ni will be added into openset (line 24) if it is still not
in openset.

The search goes on until one of the nodes ngoal lands on the goal (Alg. 2.4, line 11), and
then a feasible path can be found with Alg. 2.5 by traversing the search tree back to nstart
from ngoal. If no node has ever landed on the goal until openset is empty (line 9), it means
a feasible path does not exist.

Since each step is based on the node with the lowest cost calculated based on (2.1), the
nodes with similar path costs g(ni) but lower heuristic costs h(ni) will always be explored
first. Heuristic guides the search to explore the areas regarded more promising.

2.3 Heuristic

Based on the above analysis, the integration of the heuristic makes the search more goal-
oriented, instead of uniformly exploring the whole space. This consequently reduces the
computation cost. However, if the heuristic function h(ni) does not correctly reflect the true
cost between ni and the goal, the search can be guided to the wrong place and, sometimes,
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Algorithm 2.4: A* algorithm

openset : Open Set
closedset : Closed Set
neighbor nodes(nc): Function returns the set of neighbor nodes around nc

1 Function ret A Star(ζstart, ζgoal)
2 n.ζ ← ζstart;
3 n.parent node← null;
4 initiate all state in g score[] Infinite;
5 g score[n.ζ]← 0;
6 n.f ← g score[n.ζ] + heuristic(n.ζ, ζgoal);
7 openset← {n};
8 closedset← ∅;
9 while openset 6= ∅ do

10 nc ← node in openset with lowest f cost;
11 if nc.ζ = ζgoal then
12 return reconstruct path(nc);

13 openset← openset− {nc};
14 closedset← closedset ∪ {nc};
15 forall the node ni ∈ neighbor nodes(nc) do
16 if ni ∈ closedset then
17 continue;

18 new g score = g score[nc.ζ] + path cost(nc, ni);
19 if ni /∈ openset or new g score < g score[ni.ζ] then
20 ni.parent node← nc;
21 g score[ni.ζ]← new g score;
22 ni.f ← g score[ni.ζ] + heuristic(ni.ζ, ζgoal);
23 if ni /∈ openset then
24 openset← openset ∪ {ni};

25 return failure;
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Algorithm 2.5: Path reconstruction

1 Function ret reconstruct path(n)
2 path← n;
3 n← n.parent node;
4 while n.ζ 6= null do
5 path← path+ n;
6 n← n.parent node;

7 return path

even be trapped in the local minimum. This is the major problem of the heuristic-based
search and is expected to be solved in this work. Defining an accurate heuristic function
becomes the key to solve the problem of local minimum (as discussed in Section 1.2).

2.3.1 Euclidean-based Heuristic

Despite the intensive research on search-based path planning algorithms, the topic of heuris-
tic has barely been touched. The most widely used heuristic is Euclidean-based heuristic
heuc. heuc is calculated based on (2.2),

heuc =
√

(xi − xgoal)2 + (yi − ygoal)2 (2.2)

which is simply the Euclidean distance from the current location (xi, yi) to goal (xgoal, ygoal).
The Euclidean-based heuristic always guides the search directly towards the goal. This idea is
very intuitive under an environment with no local minima, as incrementally moving towards
the goal will make the search reach the goal eventually. However, as stated in Section 1.2,
since the Euclidean-based heuristic ignores obstacle constraints, the search of the Euclidean-
based heuristic will be trapped in the presence of the local minimum. This effect becomes
more dominant under a clustered environment. The local minimum is the fundamental
problem of path planning by applying Euclidean heuristic. Under high dimensional state-
space, especially, the search could be almost indefinitely trapped.

For real-time applications, the robot is required to find a feasible path in a very short
time span. D* algorithm [90] is proposed based on A* algorithm. It is able to efficiently
update the path when only small parts of the environment change since only the affected
fraction of the search space required recomputation. However, this is based on the fact
that a global path has already been produced, which is still generated with the original A*
algorithm. The D* algorithm can efficiently deal with the dynamics in a varied environment,
but cannot solve the problem of the local minimum. There are approaches similar to D*—D*
Lite [91], and Delayed D* [92].

A number of anytime algorithms, such as the Weighted A*, the Anytime A* and the
Anytime Repairing A* [11–16], make use of the fact that inflating the heuristic term with
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ε > 1 as in (2.3) may substantially expedite the search.

f(ni) = g(ni) + εh(ni) (2.3)

However, this reduces the optimality of the produced path. In a sense, Dijkstra and A*
algorithm are special cases of anytime algorithms, where ε = 0 and ε = 1 receptively. The
concept of anytime algorithms is to initially generate a suboptimal solution by inflating the
heuristic term with ε > 1. If there is still time left, anytime algorithms keep improving
the result until the optimal path is found or the calculating time has lapsed. Inflating the
heuristic term only helps under an environment consisting of shallow local minima; for the
environments that consist of deep local minima, the search can nevertheless be trapped.

The Manhattan distance (2.4) can also be used as a heuristic because of its simplicity.
However, since it still does not include any information regarding obstacle constraints, Man-
hattan distance-based heuristic hmanh also attracts the search directly toward the goal, which
can inevitably lead the search to be trapped by the local minimum in the same way as the
Euclidean-based heuristic.

hmanh = (xi − xgoal) + (yi − ygoal) (2.4)

2.3.2 Reference Path-based Heuristic

There are other approaches [18–21] that produce a reference path first with a simple planner
without considering the nonholonomic constraints based on the GVD-based road map; then
a second search tries to follow the reference path with a randomized path planner that follows
the nonholonomic constraints. The reference path is used as guidance for the randomized
path planner. As a result, the second search will be less likely to be trapped in the local
minimum. Therefore, the reference path serves in the same way as heuristic. Sometimes, the
reference path indeed helps speed up the search. However, since the reference path does not
follow the nonholonomic constraints, it is not guaranteed optimal or not even traversable for
the robot. For example, the reference path may pass through a narrow corridor with sharp
turns that violate the nonholonomic constraints, which may still trap the search and take
even longer than Euclidean-based heuristic.

2.3.3 Informative Heuristic

The informative heuristic was proposed by [93], which solves the problem by running a 2D
[(x, y)] version of Dijkstra’s search starting at the cell of the goal. The 2D search computes
the costs of shortest paths from the cell of the goal cell into all other cells in the environment.
This search is therefore rerun every time the goal is changed. The costs are used later as part
of the informative heuristic (2.5) to guide the motion primitive-based search in 3D [(x, y, θ)]
or higher dimensional space.

h(ni) = max(hfsh(ni), h2D(ni)) (2.5)
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As shown in Fig. 2.9, the green line represents obstacle-constrained cost h2D(ni) of ni that
calculated by a 2D Dijkstra’s search, and the blue line represents nonholonomic-constrained
cost hfsh(ni) of ni regardless of obstacles. In Fig. 2.9(a), when ni is close to the location
of the robot without obstacles, there is hfsh(ni) > h2D(ni), then h(ni) = hfsh(ni) [based
on (2.5)]. However, when ni and the robot are separated far apart by the obstacles in a
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Figure 2.9: a) Informative heuristic without obstacle, h(ni) = hfsh(ni); b) Informative
heuristic with obstacle, hfsh(ni) < h2D(ni)

clustered environment as shown in Fig. 2.9(b), there is hfsh(ni) < h2D(ni), then h(ni) =
h2D(ni) [based on (2.5)]. This means that the informative heuristic only depends on obstacle-
constrained cost h2D(ni), regardless of nonholonomic constraints. h2D(ni) helps to better lead
and navigate the search through obstacles. However, as it will be shown in Section 7.2.2,
the search can still be trapped, when it is guided to the narrow corridor that violates the
nonholonomic constraints of the robot (this will be discussed more in detail later in Section
5.3). Additionally, obstacle-constrained cost h2D(ni) of informative heuristic is required to
recalculated every time the goal is changed, which becomes another overhead of the search.

2.3.4 GVD-based Solutions

The idea of applying the GVD to facilitate mobile robot path planning has been applied
in the works of [18–21], which use a reference path (produced based on GVD) to guide
the search. However, as discussed above in Section 2.3.2, they are unable to deal with
the problem when the reference path passes through a narrow corridor that violate the
nonholonomic constraints. [86, 87] are PRM-based path planning algorithm, which tries to
make the samples in the neighborhood of the GVD and, therefore, covers the shortage
of the PRM regarding narrow corridors. However, as mentioned in 2.2.1, connecting two
neighboring states by following nonholonomic constraints is a non-trivial problem, this largely
increases the computation cost of creating the PRM. Additionally, the randomized algorithm
does not guarantee the optimality of the produced path, which becomes another issue of this
approach.
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As it will be proposed in Chapter 5, the proposed Voronoi-based heuristic directly uses
the entire GVD-based roadmap to guide the search, instead of a simple reference path. Ad-
ditionally, the Voronoi-based heuristic adaptively varies during the process of path planning
to avoid the search being trapped. This makes the proposed approach capable of dealing
with both nonholonomic-constrained and obstacle-constrained local minimum with a small
computation cost.

2.4 Motion Primitives

Motion primitives can be considered as a collection of outputs of the system by applying
a set of sampled control input. More complex movements can be created with various
combinations of motion primitives. Motion primitives simplify the problem of nonholonomic
path planning since the nonholonomic constraints of the system are automatically integrated.
The planner is allowed to ignore the nonholonomic constraints and focus on the obstacle
constraints. In Chapter 3, motion primitives are used as a tool to solve the problem of
nonholonomic constraints as discussed in Section 1.2.

2.4.1 Trajectory Requirements of Car-like Robots

Fig. 2.10(a) shows the Ackermann steering system [10] of the car-like robot. When the robot
steers, its inside and outside front wheels are following the orbits of different radii. In order
to perform a stable steering [as in Fig. 2.10(a)], different steering angles αl and αr need to
be applied on the front wheels. The Ackermann steering system produces different steering
angles for the front wheels to turn peacefully [10].
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Figure 2.10: a) Ackermann steering; b) Configuration space (xt, yt, θt, ρt) ∈ S4 of car-like
robot
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As shown in Fig. 2.10(a), the platform of a car-liker robot is simplified as a bicycle
model [10] in order to simplify the geometry of the steering motion. This represents the
front wheels and the rear wheels as the virtual wheels in the center, where L is the wheelbase
of the car-liker robot, and α is the steering angle of the virtual front wheel. Based on the
Ackermann steering geometrics in Fig. 2.10(a), given wheelbase L, turning radius R (or
curvature ρ) depends directly on steering angle α calculated by (2.6).

R = L/tan(α) or ρ = tan(α)/L (2.6)

As shown in Fig. 2.10(b), the search space of the car-like robot is a 4D configuration
space (xt, yt, θt, ρt) ∈ S4, xt and yt represent the position of the robot, θt and ρt are the
orientation and the turning curvature, respectively. Since the steering angle is limited by the
maximum steering angle αmax, this results in a maximum turning curvature of the car-like
robot ρmax = tan(amax)/L. ρmax is the major constraint for the car-like robot and is also the
most distinct feature that differentiates the car-like robot from other types of mobile robots.

The steering angle α of the front wheels can only vary continuously. Based on (2.6),
the trajectory curvature depends directly on steering angle α, so the curvature along the
trajectory must also vary continuously. Therefore, from the above analysis, the curvature ρ
along the trajectories of the car-like robot should meet the following conditions:

1©: ρ must be continuous along the trajectory; and
2©: −ρmax ≤ ρ ≤ ρmax

center

Figure 2.11: Nonholonomic constraints of car-like robot

As Fig. 2.11 shows, the robot is trying to go through a corridor and the red curve shows
the trajectory of its maximum steering. Clearly, the corridor is no longer traversable for the
car-like robot because of limited maximum steering curvature ρmax. This special behavior
makes car-like robot path planning much more complex since it has to take care of not only
obstacle constraints but also nonholonomic constraints. The situation shown in Fig. 2.11
forms a very challenging task and appears very often in clustered environments. In order
to avoid the robot being trapped in such situation, a new approach to detect and deal with
this problem at a very small computation cost is proposed in Chapter 5.



2.4. MOTION PRIMITIVES 31

2.4.2 Primitive Trajectory-based Path Planning

Fig. 2.12(a) is the result of the classic grid map-based path planning algorithm which defines
the movement from the current cell to its eight neighbors as motion primitives [Fig. 2.12(b)].
However, this cannot be directly applied to nonholonomic mobile robot since the produced
path based on the the grid map search consists of many sharp turns as shown in Fig. 2.12(a).
Primitive trajectory-based path planning is applied [Fig. 2.12(d)] to solve this problem. The

(a) (b) (c) (d)

Figure 2.12: a) Grid map-based path planning; b) 8 neighbor cells; c) Primitive trajectory-
based path planning; d) Primitive trajectory set

primitive trajectories are several simple possible trajectories that the robot can move in a
very short step, which describes the basic movement of the nonholonomic mobile robot. As
shown in Fig. 2.12(c), the primitive trajectory set has been repeatedly used to generate a
continuous path. Details of the primitive trajectory set will be proposed in Chapter 3.

[9] applies Ariadne’s Clew algorithm [94] as the planner which is a path planning algo-
rithm similar to Dijkstra’s algorithm [88]. [95] improved the above approach [9] by combining
the A* [89] algorithm. As mentioned in last section, the car-like robot requires a continuous
curvature along the path. Taking the curvature into account results in too many variations
and makes it very difficult to find a trajectory set that is able to fully describe all movements
of the car-like robot. In order to simplify the problem, [96] always assumes the curvature
ρ at the start and the end point of any primitive trajectory is zero. With such a feature,
different subtrajectories can be easily connected to each other without disrupting the conti-
nuity of the curvature. However, the flexibility of the produced path is largely limited. This
approach becomes inadequate when more intricate maneuvers are required in a clustered
environment. Although the state lattice [8] can produce more natural maneuvers, it requires
a substantial computation in advance to produce a very complicated trajectory set. The
computational expense of path planning over a long distance with the state lattice remains
challenging making the state lattice planner more applicable to local path planning.

In Chapter 3, a new primitive trajectory set is proposed to make the produced path
more flexible. Unlike the state lattice that tries to define a complete trajectories set with a
large computation cost in advance, the proposed trajectory set is defined in a much simple
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form. Additionally, the mentioned works have tried to produce a smoothed trajectory set,
but not many of them have ever discussed how to minimize the variation of the curvature to
avoid aggressive steering (as we stated in Section 1.2). This becomes another problem that
Chapter 3 is supposed to solve.

2.5 Local Path Planning

Generally speaking, after the global path has been found, the mobile robot will try to follow
the path and reach the goal. However, there are usually some dynamic objects moving around
in the environment, and can block the pre-calculated path. The general solution would
be combining global path planning with either local path planning or obstacle avoidance.
Therefore, an effectively integration of the two processes (as mention in Section 1.2) becomes
another problem that is expected to be solved in this dissertation.

2.5.1 Artificial Potential Field

An artificial potential field (APF) [97] treats the robot as a point in a potential field where
the robot is assumed to be attracted to the goal and repulsed by the obstacles. This approach
requires very little computation but it can easily be trapped in the local minima. Therefore,
the APF is generally used as a local planner under the guidance of the global path [98–100].
The global path helps avoid the global static local minimum but it is still possible for the
APF to be trapped by the local minimum formed by the dynamic obstacles.

2.5.2 Vector Field Histogram

The vector field histogram (VFH) method builds a polar histogram based on the discetized
directions around the robot’s current position. The VFH assigns a cost value to each of
these primary candidate directions, and selects the primary direction with the lowest cost
as its new direction of the next movement [101–105]. However, the VFH only considers the
immediate effects of its selections so, consequently, the VFH may also be trapped in the
local minimum.

The problem of the APF and the VFH can be partly solved by setting intermediate
goals along the global path. The robot can avoid the global local minima by sequentially
reaching each intermediate goals. However, this still cannot avoid the local minimum formed
by the dynamic obstacles. The VFH* [106] is proposed to solve these shortcomings of the
VFH by constructing several histograms to form a search tree based on the A* algorithm.
This is similar to locally applying primitive trajectories-based path planning (Section 2.4.2).
However, since the search always tries to approach the intermediate goals and stay with the
global path as much as possible, the global path becomes another type of constraint reducing
the flexibility of local path planning as described in Section 1.2. This makes the produce
path no longer optimal. Chapter 6 proposes a new heuristic type, rather than set a sequence
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of intermediate goals which guides the local path planner to follow the global path without
reducing its flexibility.

2.5.3 Elastic Bands

Elastic bands [3, 107–112] are also among the widely used local path planners. The global
path is transformed into a sequence of bubbles that forms the elastic bands. The attraction
between the bubbles pulls the bands together, whereas the obstacles apply virtual forces on
them. The bubbles move incrementally to minimize the forces. The bubbles can also be
inserted or removed to maintain the connectivity of the elastic bands. As shown in Fig.
2.13, the elastic bands are “pushed”away from the obstacles, making it very flexible to deal
with the dynamic obstacles.

(a) (b) (c) (d)

Figure 2.13: “As the obstacle moves, the bubbles also move to minimize the force on the elas-
tic band. If needed, bubbles are inserted and deleted to maintain a collision-free path.”(image
from [3])

One of the drawbacks of the elastic bands is that it can be “pushed”into a narrow space
as the obstacles keep moving as in Fig. 2.14. In this scenario, the resulting path is no
longer guaranteed safe since it is too close to the obstacles. The elastic bands can provide
a very smooth path but the produced path is not guaranteed to follow the nonholonomic
constraints. This becomes another problem of the elastic bands in terms of car-like robot
path planning.

As mentioned, the above local path planners can be trapped in a certain the local mini-
mum, especially under a clustered environment. The general idea is to set intermediate way
points along the global path. The robot reaches the goal by approaching each intermediate
way point sequentially with the local planner [22, 23, 113–116]. However, as introduced in
Section 1.2, this can result in a snaky path when multiple obstacles are located in the original
global path, since the robot has to simultaneously follow the global path and avoid obstacles
in the way. As it will be shown in Section 7.4, this will dramatically reduce the optimality
of the result. Therefore a new local planner will proposed to solve this problem in Chapter
6. The proposed local planner does not require the robot to follow any global path, which
gives the robot enough flexibility to avoid obstacles while approaching the goal.
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Figure 2.14: The elastic bands can be “pushed”to a narrow area by the moving obstacles,
even when there is more space on the other side of the obstacle (image from [3])

2.6 Summary

The current states of several aspects for car-like robot path planning concerning map rep-
resentation, motion primitives, global and local path planning have been presented in this
chapter. They play important roles in different sections of path planning. Any defect in
them can reduce the optimality of the whole path planning result.

As mentioned in Section 2.1, there are two major types of map representations—metric
maps, and topological maps. The metric map saves detailed information of the environment.
It provides a straightforward connection to the real-world environment and is, therefore, very
simple to create and modify. However, for large environments, the information contained
by the metric maps is overwhelming. The planner directly applied to such maps can be
easily trapped in the local area and take an almost indefinite amount of computation time
to produce a feasible path. Topological maps contain highly compressed information of the
space that connects the traversable subspaces with a very limited number of nodes. In order
to maintain detailed information of the environment without losing the global perspective,
the proposed path planning algorithm in this dissertation is based on a hybrid map structure
of both metric and topological maps.

As discussed in Section 2.2, there are three major types of path planning algorithms for
car-like robots. The RRT and the PRM are both randomized algorithms. Apart from their
drawbacks mentioned before, the most severe shortcoming of randomized algorithms is the
uncertainty of the produced path. In other words, with the same input, randomized algo-
rithms can produce very different results due to the nature of randomized algorithms since
both the RRT and the PRM explore the space by randomly sampling it. The uncertainty
of the produced path makes the behavior of the RRT and the PRM very unpredictable.
For real-time applications, this is a very dangerous feature. Search-based algorithms are
deterministic algorithms that produce the same result when the inputs are the same. How-
ever the search-based algorithm also has its own drawbacks. As mentioned in Section 2.2.2,
the computation cost directly depends on the accuracy of the heuristic function that esti-
mates the distance from the current location to the goal. However, apart from the Euclidean
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distance, the topic of heuristic for path planning has barely been touched. Since the Eu-
clidean distance-based heuristic pulls the search directly towards the goal, the search could
be trapped if there is any obstacle between the goal and the start. This is also the major
problem that search-based algorithms might encounter under large, clustered environments.
This problem is solved by a new type of Voronoi-based heuristic proposed later in this dis-
sertation.

Motion primitives are another important part of search-based path planning. As dis-
cussed in Section 2.4, the existing approaches try to either develop a set of simple primitives
that only defines very limited behavior of the car-like robot and, hence, reduces the diversity
of the produced path, or define a complex primitive set that covers all possible movements
although this requires a great amount of computation cost done in advance. A new primitive
trajectory set that is simple to create but can still preserve the flexibility of the produced
path is proposed in Chapter 3.

Given the presence of the dynamic obstacles, the produced path can become less optimal
or even blocked in real time. In an environment that is full of such obstacles, the produced
global path can almost never be applied directly. As introduced in Section 2.5, the existing
approaches try to deal with this problem by partly modifying the global path in real time
with the local path planner, i.e. the robot leaves the global path shortly and moves back later.
However, as discussed in Section 1.2, apart from the obstacle and noholonomic constraints,
the global path imposes extra constraints that the robot must follow. This reduces the
flexibility of local path planning and can make the search trapped in the local minimum,
which increases the computation cost and reduces the real time performance. In Chapter 6,
the proposed local path planner avoids such constraints by converting the global path into
a path corridor. The robot is free to move inside the path corridor and no longer required
to strictly follow the global path.

To summarize, due to the inaccuracy of the heuristic, the current solutions for nonholo-
nomic mobile robot path planning can easily drop into local minimum and require a high
computation cost. This makes them either only applicable to small and simple environ-
ments, or not flexible enough to cope with the dynamics. A new type of heuristic will be
proposed in the following parts of this dissertation, which enables the nonholonomic path
planning process to be applied to large-scale, clustered dynamic environments with a very
low computation cost.
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Nonholonomic Constraints
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Chapter 3

Primitive Trajectory Set for Car-like
Robots

Voronoi based Thinning chapter 4- ( )

Global Path Planning chapter 5( )

Local Path Planning chapter 6( )
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Figure 3.1: New Voronoi-based path planning process: primitive trajectory set

In this chapter, a very simple primitive trajectory set for car-like robots is proposed. As
introduced in Section 2.4, primitive trajectories are a set of basic movements that the robot
can perform in short steps [as shown in Fig. 3.2(b)], and can be combined to construct more
complex movements to achieve the goal [Fig. 3.2(a)].

The primitive trajectory set (highlighted in Fig. 3.1) serves as the motion primitives of
the car-like robot for both global and local path planning. The state lattice [8] defines the
complex primitive trajectories that connect states (xi, yi, θi, ρi) in a 4D space, where θi and
ρi represent the orientation and the curvature along the path respectively. The state lattice
guarantees the continuity of curvatures along the path. However, as the search has to be
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(a) (b)

Figure 3.2: a) Primitive trajectory-based path planning; b) Primitive trajectory set

done in a 4D space, the computation cost of the search is very high. [96] uses simplified
trajectories that assume zero curvatures on both ends of the trajectories. Therefore, the
trajectories can be easily connected without breaking the continuity of the curvatures and
allows the search to be done in a 3D space. This largely reduces the computation cost.
However, the assumption of zero curvature on both sides of the trajectory largely reduces
the flexibility of the produced path, thus disturbing the optimality of the result.

A different solution is proposed in this chapter. Unlike [8] that defines a complex primitive
trajectory set, the proposed primitive trajectory set is comprised of only a few short primitive
trajectories of constant curvatures (Section 3.1). However, they have unlimited combinations.
This maintains the diversity of the movement that the robot can perform. The produced
path is then smoothed using a Bézier spline [24] (Section 3.2) to meet the continuity of
the curvatures. This allows the search to be done in a 3D space without considering the
continuity of the curvatures, which, therefore, renders the search more flexible. As the
trajectories are created based on the kinematic model of the car-like robot, the produced path
naturally inherits all the nonholonomic requirements. The proposed primitive trajectory set
is easy to generate and reduces the offline computation cost.

Additionally, the steering rate cost is proposed and integrated with the evaluation of
the trajectories, which effectively reduces the variation of the curvature along the produced
path. This allows the robot to steer peacefully while it moves along the produced path and
largely avoids aggressive steering (as mentioned in Section 1.2).

3.1 Primitive Trajectory Set

As mentioned, the proposed primitive trajectories are defined in a discrete 3D space (xi, yi, θi) ∈ S3
d

as in Fig. 3.3(a) and 3.3(b). The directional dimension θ is divided in K directions, so

θmin =
2π

K
is the minimum step in directional dimension. As in Fig. 3.3(b), there is θi ∈ Θ,

where Θ is the discrete directional space {θ|θ = kθmin, k ∈ Z}.
As in Fig. 3.3(c), every primitive trajectory starts and ends in the discrete directional
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Figure 3.3: a) 3D dimensional space; b) Directional dimension with θmin as minimum step;
c) Primitive trajectories always start and end inside the space S3

d

space Θ. The proposed primitive trajectory set consists of two subsets, the basic and ex-
tended set. The basic set defines the primary movement of the car-like robot, and then
it is extended to a more general form (extended set) to produce more natural and further
smoothed trajectories.

3.1.1 Basic Primitive Trajectory Set

Fig. 3.4 shows a simplified bicycle model for the car-like robot [10] which is mentioned in
Section 2.4.1 [Fig. 2.10(a)]. The front and rear wheels are represented as the virtual wheels
in the center (shown as the gray boxes in Fig. 3.4). As shown in Fig. 3.4(a), the wheelbase
is set as L, and the maximum steering angle αmax represents the maximum steering limit of
the front wheel. The steering space is divided in M sections, so the minimum steering step

is αmin =
2αmax
M

.

The primitive trajectory Tα is shown as the red curve in Fig. 3.4(b). Tα is the path
on which the robot moves with the steering angle α = hαmin(h ∈ Z). In order to make Tα
always end in the discrete directional space Θ, Tα terminates when the orientation of the
robot turns ∆θ = hθmin as shown in Fig. 3.4(b), where θmin is the minimum step in the
discrete directional dimension [as in Fig. 3.3(b)].

Based on the geometry shown in Fig. 3.4(b), the turning radius of Tα is Rα = L/tan(α),
so the length ∆sα of Tα(α = hαmin, h 6= 0) could be calculated as (3.1).

∆sα = Rα∆θα =
L

tan(α)
hθmin =

L

tan(hαmin)
hθmin (α = hαmin, h 6= 0) (3.1)

However, when the steering angle α = 0 (h = 0), there are Rα = ∞ and ∆θα =
0. Therefore the length ∆s0 [Fig. 3.4(c)] of the trajectory Tα(α = 0) cannot directly be
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Figure 3.4: a) Steering space division; b) Primitive trajectory Tα with steering angle α =
hαmin; c) Primitive trajectory Tα with steering angle α = 0

calculated with (3.1). Since h cannot be directly set as 0, we substitute h in (3.1) with an
indefinitely small value ε ∈ R, then ∆s0 can be calculated by taking the limit of ∆sα with
ε→ 0 as (3.2).

∆s0 = lim
α→0

∆sα = lim
ε→0

L

tan(εαmin)
εθmin (3.2)

When ε → 0, then tan(εαmin) → εαmin, so tan(εαmin) in (3.2) can be substituted with
εαmin, which yields (3.3).

∆s0 = lim
ε→0

L

εαmin
εθmin =

Lθmin
αmin

(3.3)

As mentioned at the beginning of this chapter, unlike [8], a very simple primitive tra-
jectory set will be proposed here. The total steering space is divided into only four basic
steering sections, there is M = 4. The minimum steering step angle is αmin = 2αmax/4,
where αmax is the maximum steering angle of the car-like robot. The trajectories in the
basic primitive trajectory set are created by setting the steering angle α = ±2αmin,±αmin
and 0, respectively, as shown in Fig. 3.5(a). Trajectory T 3 is generated by applying no steer-
ing. Trajectories T 1 and T 5 are generated by applying steering −2αmin and 2αmin, which
terminate when the orientation turns −2θmin and 2θmin, respectively. Trajectories T 2 and T 4

are generated by applying steering −αmin and αmin, which terminate when the orientation
turns −θmin and θmin, respectively..
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Figure 3.5: a) Basic primitive trajectory set; b) Full directional basic primitive trajectory
set; c) Simple combination of trajectories

In order to reduce calculations during the search, the trajectory set is rotated into all
K directions in advance [Fig. 3.5(b)]. Fig. 3.5(c) shows a resulting path constructed by
duplicating the basic primitive trajectories [Fig. 3.5(c)].

3.1.2 Extended Primitive Trajectory Set

In the basic primitive trajectory set, αmax/2 is the minimum steering angle for the robot to
steer. However, when the robot is moving at a higher speed, the steering angle is required
to be small, or else the robot can lose its stability or even roll over. To solve this issue,
the steering angle is further subdivided into smaller angles by taking the half of the original
amount αmax/2 [as in Fig. 3.6(a)]. Fig. 3.6(b) and 3.6(c) are the extended primitive
trajectories by applying steering αmax/4 and αmax/8 respectively. The extended trajectory
terminates when the body of the robot turns θmin. For even finer steering angles, more
divisions with a smaller steering angle αmax/2

m can be created accordingly. By combining
with the basic primitive trajectory set, the full primitive trajectory set can be obtained [Fig.
3.6(d)]. Various types of maneuvers can be produced by applying different combinations of
the proposed primitive trajectories.

3.2 Smoothed by Means of Bézier Spline Fitting

As mentioned in Section 2.4.1, the curvature ρ along the trajectories of the car-like robot
should meet the following conditions:

1©: ρ must be continuous along the trajectory; and
2©: −ρmax ≤ ρ ≤ ρmax
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Figure 3.6: a)Extended division of steering angle; b) Extended primitive trajectories of
steering angle α = αmax/4; c) Extended primitive trajectories of steering angle α = αmax/8;
d) Full trajectory set

The path generated with this primitive trajectory set guarantees that the curvature ρ
along the path never goes beyond the limit −ρmax ≤ ρ ≤ ρmax, i.e. the condition 2©. How-
ever, ρ is not continuous at the joints of different primitive trajectories, and this still violates
condition 1©. To solve this problem, the proposed approach is to smooth the produced path
with the Bézier spline [24]. Bézier spline is a parametric curve widely used in computer
graphics to model smooth curves [117].

In Fig. 3.7, the black curves represent the primitive trajectories. The red curve is the
Bézier spline which passes through each end point of the primitive trajectories n0,n1 and
n2. The curvatures of the primitive trajectories connecting n0, n1 and n2 are ρ and −ρ
respectively. The initial directions and curvatures of both ends of the Bézier spline at n0

and n2 are defined the same way as that of the primitive trajectories. The purple box stands
for the car-like robot, whereas the dashed lines outside the box represent the safety margin
of the robot.

As shown in Fig. 3.7, the blue lines derived from the Bézier spline help visualize the
curvature variation along the Bézier spline, which shows that the resulting Bézier spline
has a continuous curvature. The Bézier spline is only slightly different from the original
primitive trajectories. Fig. 3.7 shows the Bézier spline gives nice continuous curvatures
without destroying the result of the original path.
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Figure 3.7: Smoothed with Bézier spline. (the blue lines derived from the Bézier spline help
visualize the curvature variation along the Bézier spline.)

3.3 Path Cost Function

To evaluate the costs of primitive trajectories, a cost function path cost(ni−1, ni) is proposed
in this section. path cost(ni−1, ni) is defined as the estimated cost for the robot to move
from ni to ni−1, where ni is one of the sub nodes of ni−1 connected by one of the primitive
trajectories. Since an optimized trajectory should let the robot achieve the goal sooner,
path cost(ni−1, ni) is defined as the estimated minimum time cost while the robot moves
from ni to ni−1. path cost(ni−1, ni) is used later in the A* algorithm to find the path with
the minimum time cost from the start to the goal.

The proposed cost function path cost(ni−1, ni) consists of two factors—steering rate cost,
and the clearance cost. They evaluate the produced path from different perspectives. The
steering rate cost attaches less cost to the path of less steering. The steering rate cost makes
the produced path to be as smooth as possible which can effectively avoid the aggressive
steering mentioned in Section 1.2. The clearance cost attaches less cost to the path that is
relatively far away from the obstacles. The clearance cost avoids the produced path to be
too close to the obstacles.

3.3.1 Steering Rate Cost

The maximum steering rate ωmax is the maximum steering velocity, which defines how fast
the front wheels can steer. ωmax can affect the linear velocity of the robot. This can be
explained with Fig. 3.8, which shows different steering strategies. Fig. 3.8(a) shows the
combination of the trajectory set that is required to steer from the extreme left position
α = −αmax to the extreme right position α = αmax. In such case, the car-like robot has to
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either apply large-scale steering in a very short time (aggressive steering) or reduce its linear
velocity to slow down the steering. Frequently applying aggressive steering can damage the
steering system, whereas reducing the linear velocity increases the time cost of reaching the
goal.

In Fig. 3.8(b), rather than steering directly from the extreme left to the extreme right,
the robot steers from the extreme left to the center and then to the extreme right. The total
steering angle is still the same, but the traveled distance is longer. With the same maximum
steering rate ωmax, the robot is allowed to move faster on the path [as shown in Fig. 3.8(b)].
Fig. 3.8(c) is the third example in which the robot steers even slower. This results in a
further smoothed trajectory and allows the robot to move faster.

(a) (b) (c)

Figure 3.8: Different steering strategies

Steering rate cost ∆tsteer in (3.4)is the time cost to steer the front wheels from αi−1 to
αi. αi−1 and αi are the expected steering position on ni−1 and ni respectively. The total
time cost of the robot to move from ni−1 to ni should no less than ∆tsteer, otherwise the
robot could not steer to αi on time, as the robot approaches ni from ni−1. To simplify (3.4),
ωmax is transformed into steering rate coefficient κsteer = 1/ωmax, which is used to transfer
the steering angle into the steering rate cost.

∆tsteer =
| αi − αi−1 |

ωmax
= κsteer | αi − αi−1 | (3.4)
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3.3.2 Clearance Cost

Out of the safety issues, the mobile robot is always expected to stay away from the obstacles
or slow down as it approaches them. Based on this assumption, the trajectories too close to
the obstacles can take longer to execute.

To evaluate the trajectories based on their distances from the obstacles, each primitive
trajectory between ni and ni−1 is further sampled with a sequence of trajectory points Ptj,
that are equally spaced at very small distances from each other (shown as the blue dots on
the trajectory in Fig. 3.9). It is defined that dist(Ptj, P tj−1) is the distance between Ptj
and Ptj−1, k is the number of sampled points on the trajectory between ni−1 and ni, vj is
the safety velocity that the robot travels from Ptj−1 to Ptj. So, the total time cost that the
robot travels from ni−1 to ni can be calculated as (3.5).

k∑
j=2

dist(Ptj, P tj−1)

vj
(3.5)

n
i-1

n
i

Figure 3.9: Evaluation of trajectory with sampled trajectory points on clearance map

As mentioned above, the robot is expected to slow down as it approaches the obstacles.
Therefore, the safety velocity vj on Ptj is supposed to be very low when Ptj on the primitive
trajectory is close to the obstacles. Therefore, vj is set proportional to the distance between
Ptj and its nearest obstacle, and such distance information is available from the clearance
map. As mentioned in Section 2.1.3, each cell on a clearance map is assigned with a value
representing the distance to its nearest obstacles. As shown in Fig. 3.9, the gray cells
represent the distance information from the current cell to the obstacles. The darker it is,
the closer it is to the obstacles.

Therefore, vj is set proportional to the clearance value of Ptj. There is vj = κ′ clear[Ptj].
clear[Ptj] represents the clearance value of Ptj on the clearance map, and κ′ is the coefficient
that transfers the clearance into a velocity. Since the sampled points Ptj are equally spaced
along the trajectory, the distance dist(Ptj, P tj−1) between Ptj and Ptj−1 can be defined as
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a constant ∆d. By substituting both vj and dist(Ptj, P tj−1) in (3.5) with κ′ clear[Ptj] and
∆d, respectively, the time cost affected by the clearance can be calculated with (3.6).

∆tclear =
k∑
j=2

∆d

κ′ clear[Ptj]
=
∆d

κ′

k∑
j=2

1

clear[Ptj]
(3.6)

Since both ∆d and κ′ are constant, ∆d and κ′ can be further combined together into a

single clearance coefficient κclear =
∆d

κ′
; so, (3.6) becomes (3.7).

∆tclear = κclear

k∑
j=2

1

clear[Ptj]
(3.7)

3.3.3 Path Cost Function

As mentioned above, ∆t is the minimum time cost for the robot to move from ni−1 to ni.
If ∆t is less than ∆tsteer, the robot fails to steer fast enough and can no longer stay on the
path. If ∆t is less than ∆tclear, it means the velocity of the robot goes beyond the safety
limit regarding the obstacles. Therefore, the minimum time cost ∆t must be no less than
both ∆tsteer and ∆tclear.

Apart from ∆tsteer and ∆tclear, ∆t also must be no less than ∆tmin. ∆tmin is the time cost
while the robot moves on the trajectory with its maximum velocity. Therefore, ∆t should
be no less than any ∆tsteer, ∆tclear and ∆tmin. The path cost path cost(ni−1, ni) between
ni−1 and ni is then defined as (3.8):

path cost(ni−1, ni) = ∆t = maximum(∆tsteer, ∆tclear, ∆tmin) (3.8)

3.4 Footprint

The footprint is the trace that the mobile robot leaves as it moves along a trajectory. Each
trajectory must be checked to see whether it is collision-free before it is applied. This means
that the footprint of the trajectory cannot overlap any area labeled as an obstacle. For a
circular mobile robot, this can be done by simply checking whether any of the points on
the trajectory is too close to the obstacles. That is one of the reasons why the circular
mobile robot is the most popular type. In the case of the car-like robot, the process is not as
simple. This increases the complexity of the collision checking for the car-like robot. Some
approaches [19] simplify the footprint to polygons. If the footprint polygon has overlapped
any obstacle, then the trajectory is declared as not collision-free. However, this is only
applicable to the polygon-based map rather than the gridmap. Here, a simplified gridmap-
based collision checking of [118] will be proposed.
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3.4.1 Footprint Trajectory T footα and Footprint Width W foot
α

The footprint is defined based on the margin box of the car-like robot as in Fig. 3.10. Wheel
base L and wheel gauge W define the distances between the wheels. Front margin Mfront,
rear margin Mrear and side margin Mside define the margin box that is occupied by the
car-like robot. Out of the safety issues, the margin box could be set slightly larger than the
actual size of the robot.

M rear

W Mside

L

M front

L
W
M

M

M

front

rear

side

:Wheel base

:Wheel gauge

:Front margin

:Rear margin

:Side  margin

Figure 3.10: Margin box of the car-like robot

Fig. 3.11(a) shows a robot moving along the primitive trajectory Tα (the arrowed red
line) around the center O. The gray box is defined by wheel base L and wheel gauge W ,
whereas the dashed box is the margin box of the robot. The circular track shows the footprint
that a car-like robot will leave, according to the Ackermann steering mechanism [10] [Fig.
2.10(a)]. Points A and C are fixed to the robot, where point A is the top-left point of the
margin box and point C is the bottom-right point of the margin box as shown in Fig. 3.10.
The outside ring of the circular track is the trace of point A and the inside ring is the trace
of point C. Both the outside ring and the inside ring form the footprint of the car-like robot.
It is obvious that the width of the footprint W foot

α is always wider than that of the robot.
Point D is the intersection of line AO and the medial line of the footprint, D is also fixed
with the robot. As the robot moves along the primitive trajectory, point D also moves along
the medial line of the track to D’, so the curve DD’ forms the footprint trajectory T footα of
Tα. It is observable that primitive trajectory Tα can be considered as collision-free if there
are no obstacles inside its footprint trajectory T footα (DD’).

Footprint trajectory T footα is saved as a sequence of footprint trajectory points, which
are spaced at very small distances from each other along T footα . This greatly simplifies the
collision checking of the trajectories. Clearly if any of the footprint trajectory points is too
close to any of the obstacles, then trajectory Tα is considered as not collision-free.

Fig. 3.11(b) shows the footprint trajectories of different steering angles α = αmax and
α = αmax/4. It can be seen that smaller steering angles would also generate smaller W foot

α .
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A
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Figure 3.11: a) Footprint trajectory geometry; b) Difference of footprint trajectories with
different steering angles

A little accuracy may be lost since there is a small overestimation at the end of the track
section, but such a tiny loss is negligible in real applications.

3.5 Summary

A new primitive trajectory set for the car-like robot is proposed in this chapter. By combining
and duplicating the primitive trajectories, various maneuvers can be created. The produced
path is further smoothed with the Bézier spline which, in turn, results in a continuous
maneuver. Instead of the distance cost, the time cost is used to evaluate the path. The time
cost is affected by the steering rate, and the clearance cost. Large-scale steering in a short
time range, especially with the steering rate cost, can be mostly avoided which produces
more maneuvers that allow the car-like robot to move in a stable state.
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Part III

Voronoi-based Path Planning
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Global Path Planning chapter 5( )
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Figure 4.1: New Voronoi-based path planning process: Voronoi-based thinning

A topological map (introduced in Section 1.3) will be used to guide the search so that
the search does not get trapped in the local minimum. The GVD is the ideal type of the
topological map which can accurately reflect the geometry of the space (As discussed in
section 2.1.2). However, an accurate GVD is always difficult to get. The method proposed
in this chapter is to extract an accurate GVD from a given gridmap.

As discussed in Section 2.1.2, the thinning algorithm is easier to implement and requires
less computation and memory cost compared to polygon map-based methods [49–52]. Since
the thinning algorithm can be directly applied to the gridmap, it requires no conversion to
the polygonal map. However, the thinning algorithm also has its own problems that may
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affect the accuracy of the produced GVD. Therefore, a new improved thinning algorithm
will be proposed later in this chapter.

As the highlighted yellow box shown in Fig. 4.1, the proposed thinning process takes a
gridmap as an input and produces the extracted GVD (shown as the pink box in Fig. 4.1)
to serve the global path planning that will be covered in Chapter 5.

4.1 Ideal Thinning Algorithm

Fig. 4.2(a) shows the process of the thinning algorithm, in the top-left image, there is a
white disk object with a hole in its center. As the following images show, the disk gets
thinner and thinner until only a white circle is left.

In theory, an ideal thinning process spreads in all directions with the same speed and
results in the medial line of the object [Fig. 4.2(b)]. However (as Section 4.4 will discuss),
the actual thinning process applied to a grid map does not perform this way and, thus,
results in an inaccurate GVD. In order to promote the accuracy of the generated GVD, an
improved thinning algorithm based on [53] is proposed in this chapter.

(a) (b)

Figure 4.2: a) Ideal thinning process; b) Ideal thinning direction and velocity

4.2 Parallel Thinning Algorithm

Parallel Thinning algorithm [53] is one of the widely used thinning algorithms. It applies a
3×3 pattern (Fig. 4.3 ) on a grid map, with 0 as obstacles and 1 as unoccupied areas (Setting
obstacles as 0 makes it easier to transform a grid map to a clearance map afterwards). Each
time based on current cell P1, the algorithm checks the pattern of its eight neighbors to
decide whether current cell P1 needs to be set. The parallel thinning algorithm is shown as
Alg. 4.1. In each iteration, parallel condition checks run for each cell in the gridmap (lines
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P1

P2 P9

P8

P7P6P5

P4

P3

Figure 4.3: Thinning pattern

(a) (b) (c) (d) (e)

Figure 4.4: a) Thinning object; b) Mark cells on top-left side of object; c) Set marked cells
0; d) Mark cells on bottom right side of object; e) Set marked cells 0

5 and 11 of Alg. 4.1). Fig. 4.4 shows the thinning process in one iteration. Any cell that
meets the conditions will be marked first, and then set as 0. After the first condition check,
the cells on the top-left side of the object are marked [line 6 of Alg. 4.1, Fig. 4.4(b)] and
set as 0 [line 8 of Alg. 4.1, Fig. 4.4(c)]. After the second condition check, the cells on the
bottom-right side of the object are marked [Fig. 4.4(d)] and set as 0 [Fig. 4.4(e)]. As the
thinning process continues, there will eventually be only a very thin object.

4.3 Pattern Number

To simplify the algorithm, all patterns are defined with pattern numbers according to the
3 × 3 neighborhood as proposed in [119]. As shown in Fig. 4.3, each neighbor of grid P1
can be regarded as zero or non-zero. The pattern of the neighborhood can be considered as
an eight-bit pattern number, with P2 as the lowest bit and P9 as the highest bit, with 1 as
non-zero and 0 as zero (Fig. 4.5).

P2P9 P8 P7 P6 P5 P4 P3

Figure 4.5: Pattern number

In such a manner, all types of cells can be defined with a pattern number between 0 ∼ 255.
Based on this number, cells which meet the first condition check in line 5 of Alg. 4.1 are
grouped in set Υbottom [as in Fig. 4.6(b)], and cells that meet the second condition check in
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Algorithm 4.1: Parallel thinning algorithm

gridmap: Gridmap, where obstacles are labeled as zero and free space as non-zero
N(P1) : Function returns amount of non-zero neighbors of P1
S(P1) : Function returns number of 0 to 1 (or 1 to 0) transitions in sequence of p2,

p3, p4, p5, p6, p7, p8, p9.

1 Function ret Thin(gridmap)
2 while while any cell changed do
3 // Mark cells on top-left side of objects.

4 foreach cell P1 in gridmap do
5 if P1 = 1∧ 2 ≤ N(P1) ≤ 7∧S(P1) = 1∧P2 ·P4 ·P8 = 0∧P2 ·P6 ·P8 = 0

then
6 mark P1;

7 // Set marked cells.

8 set all marked cells as 0;
9 // Mark cells on bottom-right side of objects.

10 foreach cell P1 in gridmap do
11 if P1 = 1∧ 2 ≤ N(P1) ≤ 7∧S(P1) = 1∧P2 ·P4 ·P6 = 0∧P4 ·P6 ·P8 = 0

then
12 mark P1;

13 // Set marked cells.

14 set all marked cells as 0;

(a) (b)

Figure 4.6: a) Elements of Υtop; b) Elements of Υbottom
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line 11 are grouped in set Υtop [as in Fig. 4.6(a)]. Then the algorithm Alg. 4.1 becomes Alg.
4.2.

Algorithm 4.2: Parallel thinning algorithm with pattern number

A(P1) : Function calculating pattern number of P1 (calculated as Fig. 4.5)

1 Function ret Thin(gridmap)
2 while while any cell changed do
3 foreach cell P1 in gridmap do
4 if A(P1) ∈ Υbottom then
5 mark P1;

6 set all marked cells as 0;
7 foreach cell P1 in gridmap do
8 if A(P1) ∈ Υtop then
9 mark P1;

10 set all marked cells as 0;

4.4 Problems of Classic Parallel Thinning Algorithm

There are two major problems of the classic parallel thinning algorithm, which may result in
an inaccurate or ambiguous GVD: first, the square effect that is caused by the special layout
of the gridmap, which would produce a very inaccurate GVD; and second, the produced
GVD not being thin enough which may lead to ambiguity in the distance evaluation along
the GVD.

4.4.1 Square Effect

Compared with the ideal thinning (Fig. 4.2), the square effect of actual classic parallel
thinning is shown in Fig. 4.7. It is assumed that the thinning process spreads in all directions
with the same speed. However, because classic parallel thinning depends on the 3 × 3
neighborhood (Fig. 4.3), the layout of the 3 × 3 neighborhood brings a square effect. In
other words, the classic parallel thinning process goes faster in diagonal directions than in
vertical and horizontal directions.

4.4.2 Single Cell-connected GVD

As in Fig. 4.8(a) and 4.8(b), the blue cell connects to a single gray cell on the one side, but
on the other side, two cells (yellow and green) connect with the blue cell. This would lead to
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(a) (b)

Figure 4.7: Classic parallel thinning process

(a) (b) (c)

Figure 4.8: Ambiguity of connecting non-single cell connection

ambiguity, since there are two ways to calculate the length along the GVD as shown in Fig.
4.8(a) and 4.8(b), respectively. Both generate different results. In fact, Fig. 4.8(b) is the
correct way to calculate the length. In order to avoid such ambiguity, the green cell needs to
be removed [as in Fig. 4.8(c)], so that there is only one way to connect a cell with one of its
GVD branches. It can be observed in Fig. 4.9(c) that the green cell is the thinning result
from the above sections, and there are some of the non-single cell-connected spots marked.
In order to find a more accurate length along the GVD, the diagram needs to be further
refined.

4.5 Voronoi-based Parallel Thinning Algorithm

Voronoi-based parallel thinning is proposed to improve the classic parallel thinning algorithm.
It solves both abovementioned problems to get an accurate GVD without any ambiguity
regarding distance evaluation.
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(a) (b) (c)

Figure 4.9: a) Original gridmap; b) Clearance map; c) Thinning result based on clearance
map

4.5.1 Clearance-based Thinning

In order to solve the problem of the square effect and produce a more accurate GVD, the
thinning algorithm is modified as Alg. 4.3. The grid map is transformed into a clearance
map [63], first as Alg. 4.3, line 2 [Fig. 4.9(b)]. Each cell in a clearance map is attached with
a clearance value (introduced in Section 2.1.3), which represents its distance to the nearest
obstacles [shown as the black cells in Fig. 4.9(a)]. The darker the cell, the nearer it is to the
obstacles. The thinning process starts with the cell of the lowest clearance value (Alg. 4.3,
line 4), then iteratively goes on to cells with larger clearance values (Alg. 4.3, line 5). The
thinning process is sequentially applied to cells with different clearance values until all cells
have been processed. With the help of the clearance map, the square effect can be avoided
[as in Fig. 4.9(c)].

4.5.2 Refinement
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P2 P9

P8

P7P6P5

P4

P3
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P2 P9

P8

P7P6P5
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P3
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P7P6P5

P4

P3

Figure 4.10: Types of non-single cell-connected pattern

Several types of non-single cell-connected spots are marked with a red square [as in
Fig. 4.9(c)]. There are three types of non-single cell-connected patterns (as in Fig. 4.10).
These patterns and their variations are grouped and integrated as supplementary elements
in Υtop and Υbottom, respectively, as shown in Fig. 4.11(a) and 4.11(b). The solution for
the second problem is to include the supplementary elements into Υtop and Υbottom. After
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Algorithm 4.3: Voronoi-based parallel thinning algorithm

A(P1) : eight-bit integer (calculated as Fig. 4.5)

1 Function ret Thin(gridmap)
2 clearmap← distance transform(gridmap);
3 max clear ← get the maximum clearance value in clearmap;
4 d← 1.5;
5 while d ≤ max clear do
6 foreach cell P1 in gridmap, clear[P1] < d do
7 if A(P1) ∈ Υbottom then
8 mark P1;

9 set all marked cells as 0;
10 foreach cell P1 in gridmap, clear[P1] < d do
11 if A(P1) ∈ Υtop then
12 mark P1;

13 set all marked cells as 0;
14 d← d+ 1;

the abovementioned steps, all non-single cell-connected spots that can create ambiguity in
calculating the length will disappear, and an accurate GVD can be extracted from the grid
map (as Section 7.1.2 will show).

(a) (b)

Figure 4.11: a) Supplementary elements of Υtop, b)Supplementary elements of Υbottom

4.6 Summary

A Voronoi-based parallel thinning algorithm (VPT) is proposed to extract the GVD based
on the grid map. Since the classic parallel thinning algorithm always comes with a square
effect, it will severely affect the accuracy of the GVD. The proposed VPT algorithm could
avoid such a square effect and the generated GVD is always single cell-connected, which
makes it easier to evaluate the distance along the GVD. Compared to the polygon-based
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(i.e. involving lines and curves) algorithms, the VPT algorithm can be directly applied to
the grid map. The thinning is done only on the 3× 3 neighbors of the current cell and the
VPT processes the cells one by one so that the computation time only relies on the size of
the map instead of the complexity. This makes the VPT a great tool for dealing with the
clustered environment.
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Figure 5.1: New Voronoi-based path planning process: global path planning

1The highlighted yellow box in Fig. 5.1 shows the location of global path planning
in the system. The search firstly forms a global path with the primitive trajectory set
produced in Chapter 3. As mentioned in Section 1.2, the local minimum is the major
problem slowing down search-based path planning. The local minimum results from the
application of the Euclidean-based heuristic. Although a number of solutions [11–16,90–92]
have been developed to reduce the computation time of search-based path planning, the
topic of heuristic itself has barely been touched. A new type of heuristic, measured with
the help of the GVD, is proposed in this chapter. The proposed heuristic provides a more
accurate estimate of the cost to the goal and, therefore, is able to navigate the search to
avoid the local minimum, dramatically speeding up the global path planning process.

1Part of the work in this chapter has been published at [120]



64 CHAPTER 5. GLOBAL PATH PLANNING

5.1 Ideal Heuristic

It costs a large amount of memory and computation time to universally search the space (as
discussed in Section 2.2.2). In order to make the search more goal-oriented, the A* algorithm
integrates a heuristic cost into the estimation of each node, which guides the direction of the
exploring tree.

ζ
start

ζgoal

Figure 5.2: Exploring tree with ideal heuristic cost

As mentioned in Chapter 2, the Euclidean distance is still the most widely used heuristic.
Fig. 5.2 shows the problem of the Euclidean-based heuristic. The gray trajectories show
the behavior of the search applying the Euclidean-based heuristic. As mentioned in Section
2.2.2, the exploring tree always grows towards the goal. The blue trajectories represent the
ideal searching direction, but the search will not go for that until the concave area has been
totally searched. Fully searching the concave area costs extra computation time and memory
cost. When the robot moves in a large, clustered area that consists of many concave objects,
it may either run out of memory or take too long to get a result. For large-scale, clustered
environments, it may take a very long time until the search eventually gets rid of all the
local minima, making the search with the Euclidean-based heuristic a very time-consuming
process.

5.2 Voronoi-based Heuristic

The GVD can be understood as a collection of medial axes between the obstacles which
forms a roadmap that accurately describes the geometry of the environment (as in Chapter
4). For each state ζi in the free space, position χi on the GVD, which is closest to ζi, is
defined as the corresponding GVD position of ζi. The GVD position provides the connection
from any state in the space to the GVD. The localization of the GVD position for a certain
state ζi is provided in next Section (5.2.1). The Voronoi-based heuristic estimates the time
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cost between arbitrary state ζi and goal ζgoal by first determining position χgoal on the GVD
closest to goal ζgoal and position χi closest to currently targeted state ζi. Consecutively, the
algorithm determines the minimum cost between χgoal and χi on the GVD by applying the
Voronoi cost distribution (explained later in Section 5.2.2).

The Voronoi-based heuristic is the estimated cost evaluated based on the cost along the
GVD, which provides a more accurate measurement compared to the Euclidean distance.
The proposed Voronoi-based heuristic is not simply a distance cost along the GVD, but an
estimated time cost that the robot may spend on the way.

5.2.1 GVD Position

As introduced in Section 3.1, the configuration of the car-like robot is represented with
ζi(xi, yi, θi), where xi and yi represent the position of the robot and θi is the direction of the
robot. For simplicity, here the configuration ζi(xi, yi, θi) of the robot is reformed as ζi(ci, θi),
where ci(xi, yi) is used to represent the position of ζi.

(a) (b) (c)

Figure 5.3: a) Clearance map overlaid by GVD; b) Subarea around position ci of ζi; c) Cost
distribution along GVD

Fig. 5.3(a) is the clearance map overlaid by the GVD. For any given configuration
ζi(ci, θi), there is always a corresponding position χi on GVD, χi is defined as the GVD
position of ζi. The GVD position can be found with the help of the clearance map by
iteratively moving from position ci of ζi along the direction of the gradient on the clearance
map [shown as arrows in Fig. 5.3(b)].

5.2.2 Time Cost Distribution over GVD

As shown in Fig. 5.3(c), for given goal configuration ζgoal in the free space, its GVD position
can be found as χgoal. Based on χgoal, any cell on the GVD will be attached with a cost
representing the cost from the current position to χgoal along the GVD. This is done with the
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Dijkstra’s algorithm [88] as Alg. 5.1. All costs of GVD cells are initiated as infinite, except
the cost of χgoal that is set as 0 (Alg. 5.1, line 2∼ 6). The cost is then distributed from χgoal
over the GVD (Alg. 5.1, line 7∼16), where cost between(χc, χb) calculates the cost between
χc and χb (Alg. 5.1, line 12). The definition of cost between(χc, χb) is presented in the next
section. As shown in Fig. 5.3(c), the transition of the color along the GVD shows how the
cost is distributed on it; the blue sections are close to the goal and the red sections are far
from the goal. Since the GVD is the highly extracted geometry of the environment, the
cost distribution is generated very fast even for a large-scale environment. From the cost
distribution, any configuration ζi in the free space can now be evaluated based on cost[χi]
as shown in Fig. 5.3(c), where χi is the GVD position of ζi.

Algorithm 5.1: Cost distribution

1 Function CostDistribution()
2 foreach χi ∈ XGVD do
3 cost[χi]← infinity;

4 cost[χgoal]← 0;
5 openset← ∅ ;
6 openset← openset ∪ {χgoal};
7 while openset 6= ∅ do
8 χc ← the GVD position with the minimum cost in openset;
9 openset← openset− {χc};

10 foreach neighbor GVD position χb of χc do
11 // cost between(χc, χb) calculates cost between χc and χb, which

is proposed in Section 5.2.3.

12 new cost← cost[χc] + cost between(χc, χb);
13 if new cost < cost[χb] then
14 cost[χb]← new cost;
15 if χb /∈ openset then
16 openset← openset ∪ {χb};

5.2.3 Cost Function of Neighboring GVD Positions

Instead of the distance cost, the cost function between the neighboring cells is actually the
time cost that the robot moves between them. As in (5.1), dist(χa, χb) is the distance
between χa and χb. v(χa, χb) is the velocity, with which the robot moves from χa to χb. As
(5.2), v(χa, χb) is the average of the estimated velocity on χa and χb. The estimated velocity
on χa and χb are defined by (5.3) and (5.4). However, (5.3) and (5.4) are defined in a general
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form for any given position ci, which can also be GVD positions.

cost between(χa, χb) =
dist(χa, χb)

v(χa, χb)
(5.1)

v(χa, χb) =
v(χa) + v(χb)

2
(5.2)

τclear

vmin

vmaxv(c )i

clear c[ ]i

Figure 5.4: Estimated velocity propositional to clearance

Obviously, the position ci with larger clearance value clear[ci] is relatively far from the
obstacles, and provides higher safety and a lower possibility of traffic jams. Therefore, the
estimated velocity of the robot on ci is allowed to be higher than that on the positions with
lower clearance values. The estimated velocity of the mobile robot at ci (as in Fig. 5.4) is
defined proportionally to its clearance value clear[ci] as (5.4), where τclear is the coefficient
to transform the effect of clearance into velocity. However, since the movement of the mobile
robot is also limited by its maximum velocity vmax and minimum velocity vmin, v(ci) can
only vary between vmax and vmin.

v(ci) =


vmax, vclear(ci) ≥ vmax

vclear(ci), vmax > vclear(ci) ≥ vmin

vmin, vmin > vclear(ci)

(5.3)

vclear(ci) = τclearclear[ci] (5.4)

Based on such a relationship, higher clearances will produce higher velocities and, in
turn, will lead to lower time costs. This will help distribute the time cost faster along the
GVD sections with higher clearances (in other words, the corridor sections that are wider).
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Figure 5.5: Evaluating nodes with GVD

5.2.4 GVD-based Heuristic Estimate

As shown in Fig. 5.5, the heuristic estimate measures the cost along the GVD. The pink line
is the GVD created with the VPT algorithm (Chapter 4). XGVD represents the collection
of all GVD positions. χgoal is the GVD position of ζgoal. n1 and n2 are two nodes in the
exploring tree with GVD positions χ1 and χ2 , respectively. As shown in Fig. 5.5, the cost
is distributed along the GVD based on χgoal (shown as the arrows). Each cell on the GVD
is set with a value based on the cost function (5.1). The heuristic estimations of n1 and n2

are cost[χ1] and cost[χ2], respectively. Clearly, χ1 is nearer to χgoal along the GVD than χ2,
so that h(n1) < h(n2). Based on (2.1), this yields f(n1) < f(n2) according to Fig. 5.5. This
means node n1 will be explored in the next iteration which will eventually produce the result
shown in Fig 5.6. With the help of the GVD, the exploring tree can efficiently avoid being
trapped in the local minimum.

5.2.5 Goal Zone

However, this approach can only guide the search to χgoal instead of the real configuration
of goal ζgoal. To let the search eventually reach ζgoal, a goal zone is defined as shown in Fig.
5.6. The goal zone is a set of GVD positions Xgoal (shown as the green section of GVD in
Fig. 5.6). Xgoal is defined by (5.5), where dist(χi, χgoal) is the distance between χi and χgoal,
clear[χgoal] is the clearance value of χgoal, and XGVD is the collection of all GVD positions.

Xgoal = {χi | dist(χi, χgoal) ≤ clear[χgoal], χi ∈ XGVD} (5.5)

Any node ni with the GVD position of χi ∈ Xgoal is considered in the goal zone. As
shown in Fig. 5.6, the GVD position χ2 of n2 is inside the goal zone, since dist(χ2, χgoal) <
clear[χgoal], and χ2 ∈ Xgoal. However, the GVD position χ1 of n1 does not belong to Xgoal,
so n1 is not in the goal zone.
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Figure 5.6: Goal zone XGVD

5.2.6 Heuristic Function

The Voronoi-based heuristic is defined by Alg. 5.2. It provides an estimated time cost
between current node ni and goal ζgoal.

As in Alg. 5.2, line 3, when χi ∈ Xgoal, (χi is the GVD position of ni), it means ni and
ζgoal are in the same convex area and there are no obstacles between them (as n2 in Fig 5.6).
Therefore, the heuristic cost of ni can be calculated based on (5.6), which is the time cost
between ni and ζgoal based on the generalized Euclidean distance between ζi and ζgoal, where
ζi is the state of ni.
‖ ζi−ζgoal ‖ in (5.6) is the generalized Euclidean distance between ζi and ζgoal, defined by

(5.7) in 3D space. κθ in (5.7) is the coefficient that transfers the angular difference between
ζi and ζgoal into distance.

v(ci, cgoal) in (5.6) is the estimated average velocity of robot moving from ζi to ζgoal, and
is calculated in the same way with (5.2), where ci and cgoal are the position of ζi and ζgoal,
respectively.

EuclideanHeuristic(ni) =
‖ ζi − ζgoal ‖
v(ci, cgoal)

(5.6)

‖ ζi − ζgoal ‖=
√

(xi − xgoal)2 + (yi − ygoal)2 + κθ(θi − θgoal)2 (5.7)

As in Alg. 5.2, line 8, when χi /∈ Xgoal, which means ni and the goal ζgoal may be not
in the same convex area (as n1 in Fig. 5.6). As a result, the time cost between ni and ζgoal
must be evaluated based on the time cost distribution cost[χi] over the GVD in Section 5.2.2,
where χi is the GVD position of ni. However, cost[χi] only provides the time cost from χi
to χgoal, rather than the time cost from χi to ζgoal (χgoal is the GVD position of goal ζgoal).
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Algorithm 5.2: Voronoi-based heuristic

ni : Input node
ret: Voronoi heuristic of ni

1 Function ret V oronoiHeuristic(ni)
2 χi ← the GVD position of ni;
3 if χi ∈ Xgoal then
4 // When ni is in goal zone.

5 return EuclideanHeuristic(ni);

6 else
7 // When ni is not in goal zone.

8 return cost[χi] + remain cost;

Therefore, apart from cost[χi], the time cost between χgoal to ζgoal should also be added,
which is represented by remain cost in Alg. 5.2, line 8.

The time cost between χgoal to ζgoal (remain cost) is also calculated based on the gen-
eralized Euclidean distance between χgoal and ζgoal, which is in the same way with (5.6).
However, since χgoal is only a 2D position, whereas ζgoal is a 3D state, the generalized Eu-
clidean distance can not be directly calculated between χgoal and ζgoal. Therefore, a 3D
auxiliary state ζ ′goal is created at the same position of χgoal as shown in Fig. 5.7. The direc-
tion of ζ ′goal is pointed from χgoal to the position of ζgoal. As shown in Fig. 5.7, ζ ′goal can be
regarded as the estimated orientation to approach the goal ζgoal from χgoal.

ζ
start

ζgoal

χgoal

ζgoal
'

Figure 5.7: Auxiliary state ζ ′goal is used to calculated generalized Euclidean distance between
χgoal and ζgoal

As a result, the time cost between χgoal and ζgoal can be calculated with the help of
auxiliary state ζ ′goal as (5.8). c′goal is the position of ζ ′goal. There is c′goal = χgoal, because ζ ′goal
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is created on the same position of χgoal,

remain cost =
‖ ζ ′goal − ζgoal ‖
v(c′goal, cgoal)

(5.8)

5.3 Nonholonomic Local Minimum Avoidance

With the help of the Voronoi-based heuristic, the search can avoid the local minimum caused
by the obstacles. However, making use of the GVD could lead to another type of local mini-
mum, which is caused by the combination of the obstacles and the nonholonomic constraints.

5.3.1 Nonholonomic Local Minimum

χGoal

χstart A

B

(a)

ζGoaln
1 n

2
n

3

Nonholonomic

Local Minimum

ζstart

n
0

(b)

Figure 5.8: a) Directions of cost distribution; b) Nonholonomic local minimum

As shown in Fig. 5.8, there are corridors A and B, both of which can lead to the goal. The
pink lines located in the center of the corridor are the GVD of the environment. Clearly, the
path through corridor A is shorter than through corridor B. This can also be observed from
the cost distribution in Fig. 5.8(a). The red and green arrows show the cost distribution
along different GVD sections. Based on the cost distribution, the search is led to corridor A
first. However, corridor A includes a sharp corner that violates the nonholonomic constraints
of the car-like robot. This makes corridor A untraversable, which can be seen in Fig. 5.8(b).
As mentioned, the search is based on the A* algorithm. The dark nodes are the nodes in
the closed set which either are fully explored or have a collision against the obstacle. Green
nodes n0 ∼ n3 are the ones still in the open set. According to the cost distribution along
the GVD in Fig. 5.8(a), it is not hard to infer that the Voronoi-based heuristic estimation of
nodes n1 ∼ n3 would be less than the estimate of n0. This makes nodes n1 ∼ n3 be explored
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first before n0. Therefore, the search will not explore corridor B until corridor A is fully
explored, which results in the accumulated nodes around the corner and, consequently forms
another type of local minimum. Since such a type of local minimum is caused by the obstacles
and the nonholonomic constraints, it is defined as the nonholonomic local minimum (NLM)
marked with a dashed circle in Fig. 5.8(b) to be differentiated from the local minimum that
is caused by obstacle constraints only.

5.3.2 Nonholonomic Local Minimum Detection

In order to deal with the problem of the NLM, as long as there is a new node created, the
following function of Alg. 5.3 will be called for this node. At line 4 of Alg. 5.3, rnlm defines
the size of an effective area of χi on the GVD, where χi is the GVD position of ni. For
any GVD positions χj that locates inside the effective area of χi, i.e. dist(χj, χi) < rnlm,
the clearance value of χj will be reduced slightly by clearnlm (as at line 6), where clearnlm
defines the size of the minimum space that each node occupies.

Algorithm 5.3: Nonholonomic local minimum detection

ni: The input node

1 Function ret NLM Detection(ni)
2 χi ← GVD position of ni;
3 // For each state χj in the small neighborhood of χi.
4 foreach GVD position χj, dis(χj, χi) < rnlm do
5 // Reduce clearance value of χj slightly by clearnlm.
6 clear[χj]← clear[χj]− clearnlm;
7 if clear[χj] < 0 then
8 // A NLM is detected.

9 return true;

10 return false;

When the search reached an NLM, it will be blocked by the NLM. Therefore, the nodes
will quickly accumulate around χi. This makes the clearance values of the GVD section
around the NLM dramatically decrease. As the nodes keep accumulating, the clearance
value of a certain GVD position χj around the NLM (line 7 in Alg. 5.3) will eventually fall
below zero. Then, χj is detected as an NLM.

5.3.3 Update Cost Distribution

Alg. 5.4 is the modified A* algorithm with NLM avoidance. Alg. 5.4 is basically the same
with the original A* algorithm Alg. 2.4, but with some modification at line 23 and lines
27∼32. At line 23, the heuristic cost is replaced with the Voronoi-based heuristic. The NLM
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Figure 5.9: a) Reproduced cost distribution; b) Based on regenerated cost distribution,
exploring tree grows away from NLM.

detection and avoidance are added between line 27 and line 32. As long as an NLM (χnlm)
is found on the GVD (line 27), the cost distribution over GVD will be regenerated (line 29).
As mentioned in Section 5.3.2, the clearance value dramatically decreases around χnlm, so
that clear[χnlm] < 0.

Based on the definition of (5.1) in Section 5.2.3, a low clearance value will result in a
high time cost. Therefore, the cost over χnlm could be very high and this will change the
direction of the cost distribution over the GVD. As Fig. 5.9(a) shows, the high cost over
χnlm makes the cost distribution along the green arrows stop at χnlm, so the cost has to be
distributed from another direction along the red arrows. All nodes in openset of the exploring
tree will be then updated with the new heuristic value (line 32). Now the problem of the
NLM is solved, as shown in Fig. 5.8(b). According to the new updated cost distribution,
the heuristic estimate of n0 becomes lower than the estimates of n1 ∼ n6, so n0 will be
chosen as the current node to be explored and the exploring tree will follow the updated cost
distribution through corridor B without fully searching corridor A. The NLM can now be
efficiently avoided (as the experiment shows later in Section 7.2.2), saving time and memory
cost.

5.4 Summary

In this chapter, the Voronoi-based heuristic is proposed to deal with the local minimum
problem caused by the obstacles and the nonholonomic constraints of the car-like mobile
robot. The Voronoi-based heuristic provides a more accurate estimate to the goal so that
the search can be guided away from the local minimum. This largely saves computation
time during the search. Rather than the distance cost, the time cost is used to estimate the
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cost to the goal, which is inversely proportional to the clearance along the GVD sections.
Therefore, the GVD sections of the narrow corridors with a lower clearance value will be
attached with larger time costs. This helps the robot avoid narrow corridors and, thus,
minimize the possibilities of traffic jams. Since the GVD is the highly extracted geometrical
information of the map, the Voronoi-based heuristic can efficiently avoid the obstacle-based
local minimum. Then, the nonholonomic local minimum is introduced, which is caused by
the obstacles and the nonholonomic constraints. A corresponding solution is also proposed
to detect the nonholonomic local minimum and update the cost distribution over the GVD
during the search.
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Algorithm 5.4: Nonholonomic local minimum avoidance-based A*

1 Function ret A Star(ζstart, ζgoal)
2 ns.ζ ← ζstart;
3 ns.parent node← null;
4 initiate g score[] of all states infinite;
5 g score[ns.ζ]← 0;
6 ns.f ← g score[ns.ζ] + heuristic(ns.ζ, ζgoal);
7 openset← {ns};
8 closedset← ∅;
9 while openset 6= ∅ do

10 nc ← node in openset with lowest f cost;
11 if ζc = ζgoal then
12 return reconstruct path(nc);

13 openset← openset− {nc};
14 closedset← closedset ∪ {nc};
15 foreach node ni ∈ neighbor nodes(nc) do
16 if ni ∈ closedset then
17 continue;

18 // path cost(nc, ni) calculates cost between nc and ni, which is

defined in Section 3.3.

19 new g score← g score[nc.ζ] + path cost(nc, ni);
20 if ni /∈ openset or new g score < g score[ni.ζ] then
21 ni.parent node← nc;
22 g score[ni.ζ]← new g score;
23 ni.f ← new g score+ V oronoiHeuristic(ni); // Alg. 5.2

24 if ni /∈ openset then
25 openset← openset ∪ {ni};
26 // NLM avoidance.

27 if NLM Detection(ni) = true then // Alg. 5.3

28 // Regenerate cost distribution with Alg. 5.1.

29 CostDistribution();
30 // Update cost of each node in openset.
31 foreach node ni ∈ openset do
32 ni.f ← g score[ni.ζ] + V oronoiHeuristic(ni);

33 return failure;
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Figure 6.1: New Voronoi-based path planning process: local path planning

1This chapter proposes a new corridor-based local path planner. Local path planning
serves as a supplement to global path planning to avoid the dynamic obstacles in the en-
vironment while still following the guidance of the global path. As the highlighted yellow
box in Fig. 6.1 shows, the local path planning process uses the same primitive trajectory
set as global path planning. Instead of following any specific global path as mentioned in
Section 1.2, the proposed local path planner is guided by normative path-based heuristic
(proposed in Section 6.1.5) through a sequence of corridors [122] (Section 6.1.2) through
which the global path also passes (as in Fig. 6.1). As evident in the pink box in Fig. 6.1,
the local planner generates a local path that navigates the robot through the corridors and
approaches the goal.

1Part of the work in this chapter has been published at [121]
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As mentioned in Section 2.5, the existing solution [22,23,113–116] are generally applying
simultaneous path following and obstacle avoidance (SPFOA). SPFOA tries to follow the
global path as much as possible, and makes only minor modifications to avoid dynamic
obstacles. This increases the possibility of the local minimum if a concave obstacle happens
to be on the global path. The proposed corridor-based local path planner is not required
to precisely follow the global path. This lends the local planner more flexibility to avoid
the dynamic obstacles on the way and reduces its possibility of being trapped by the local
minimum.

The proposed corridor-based local path planner requires the search to be done in a path
corridor (Section 6.1.2), rather than the entire search space. The path corridor [122] defines
a small subspace around the global path. It largely reduces the computation time, ensuring
that the generated path will neither be too far away from the global path nor lose the
flexibility of avoiding dynamic obstacles.

6.1 Path Corridor-based Local Path Planner

With the global planner proposed in previous chapters, a traversable global path can be
found with the minimized time cost. The time cost is affected by steering rate, clearance,
distance, etc. The global path could form extra constraints that require the robot always to
follow, seriously disturbing the flexibility of local planning. Given this problem, global path
Pglobal will be transformed into normative path Pnorm first, instead of being applied directly.

Figure 6.2: Normative path exaction
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6.1.1 Normative Path Extraction

At first, normative path Pnorm is initiated as the connection of start point nstart to GVD
position χstart (shown as blue cells in Fig. 6.2). Then, for each path section between ni and
ni+1 of the global path, the GVD section between χi and χi+1 will be appended to Pnorm
(shown as green cells in Fig. 6.2), where χi and χi+1 are the GVD positions of ni and ni+1,
respectively. Finally, the connection of the goal to its GVD position χgoal is added to the
end of Pnorm (shown as red cells in Fig. 6.2).

6.1.2 Path Corridor

(a) (b)

(c) (d)

Figure 6.3: a) Clearance map; b) GVD topological map; c) GVD overlaid by global path; d)
Generation of path corridor

Fig. 6.3(a) is the clearance map and Fig. 6.3(b) is the GVD overlaid by global path Pglobal
(the gray line) and normative path Pnorm (the blue line). As shown in Fig. 6.3(c), there is



80 CHAPTER 6. LOCAL PATH PLANNING

a sequence of disks centered on each path position pi ∈ Pnorm, with the radius of clear[pi].
clear[pi] is the value of pi in the clearance map as shown in Fig 6.3(a). This produces a
path corridor [122] as shown in Fig. 6.3(d). The path corridor could be considered as the
maximum space along Pnorm, so Pnorm naturally becomes the medial line of the path corridor.
For local path planning, the area outside the corridor becomes irrelevant and only the area
inside the corridor is considered as free space [the gray area in Fig. 6.3(d)].

6.1.3 Corridor Clearance Map, Path Position and Normative
Path Cost

Based on the path corridor and normative path Pnorm, corridor clearance map path clear[]
[Fig. 6.4(a)] is generated. The rest area outside the path corridor is regarded as an obstacle
(the black area). The corridor clearance map is produced with Alg. 6.1.

(a) (b)

Figure 6.4: a) Corridor clearance map path clear[] overlaid by normative path cost distri-
bution norm cost[] along Pnorm; b) Path position can be found by repeatedly moving along
direction of gradient in corridor clearance map

Fig. 6.4(a) also shows cost distribution norm cost[] along the normative path which is
generated in the same way as the global path planning. The transition of the colors in Fig
6.4(a) shows the variation of the cost along Pnorm. For each configuration ζi inside the path
corridor, there is a corresponding path position pi ∈ Pnorm. Similarly, pi can be found
by repeatedly moving from the current position along the direction of the gradient in the
corridor clearance map, shown as the yellow arrows in Fig. 6.4(b). Any configuration ζi
inside the corridor could be connected to Pnorm with its path position pi, and also evaluated
with normative path cost norm cost[pi].
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Algorithm 6.1: Corridor clearance map

clear[] : Global clearance map [Fig 6.3(a)]
path clear[]: Corridor clearance map [Fig. 6.4(a)]
Pnorm : Normative path
dist(, ) : Function, which gets the distance between two points

1 Function ret GetClearanceMap(Pnorm)
2 initiate all occupied in path clear[] with 0;
3 foreach pi ∈ Pnorm do
4 foreach cell ζi, dist(ζi, pi) < clear[pi] do
5 clearance← path clear[ζi]− dist(ζi, pi);
6 if clearance > path clear[ζi] then
7 path clear[ζi]← clearance;

8 return path clear[];

6.1.4 Active Window

It is assumed that an active window [101] is attached with the robot and local path planning
is limited inside the window. The active window is centered on the robot and moves along
with it. The primitive trajectory-based search is applied inside the active window.

(a) (b)

Figure 6.5: Active window and local path planning

As shown in Fig. 6.5(a), the green frame is the active window attached with the robot.
Primitive trajectory-based path planning is applied locally inside both the active window
and the path corridor. The blue object is a dynamic obstacle that the robot encountered on
the way. Local path planning is restricted inside the path corridor and the active window,
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only a small area around the robot needs to be searched, largely reducing the computation
cost of local path planning.

6.1.5 Normative Path-based Heuristic

For path corridor-based path planning, the nodes are still evaluated based on the A* algo-
rithm (6.1) (Section 2.2.2).

f(ni) = g(ni) + h(ni) (6.1)

g(ni) is calculated in the same way as in the global path planning. However, the heuristic
value h(ni) is now evaluated by normative path-based heuristic as (6.2). pi is the path
position of ni on Pnorm [as in Fig. 6.4(b)]. As mentioned in Section 6.1.3, for each node
ni during local path planning process, there is corresponding path position pi on normative
path Pnorm. pi can be found in the same way by repeatedly moving from the current position
along the direction of the gradient in the corridor clearance map (this process is shown as
the white arrows in Fig. 6.6).

NormativePathHeuristic(ni) = norm cost[pi] + κori ori cost(ni) + κecc ecc cost(ni) (6.2)

norm cost[pi] in Eq. (6.2) is the normative path cost (Section 6.1.3), which represents
the estimated cost from current pi to the goal along the normative path [as in Fig 6.4(a)],
where pi is the path position of ni. norm cost[pi] always guides the search towards the goal
inside the path corridor.

Figure 6.6: Orientation cost;

Orientation cost ori cost(ni) represents the orientation difference between ni and the
reference orientation of pi. The orientation of pi can be found by setting a red circle with
the radius of clear[pi] on pi (as shown in Fig. 6.6). pa and pb are the intersection points of
Pnorm with the circle. Depending on the path cost of pa and pb, pb is nearer to the goal along
Pnorm. Therefore, the reference orientation of pi is −→uf = −−→pipb (the expected orientation of the
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robot on pi). ori cost(ni) is calculated as Eq. (6.3), where 〈, 〉 is the angle between the two
vectors. The orientation cost helps the search orient along the normative path.

ori cost(ni) = 〈−→ui ,−→uf〉 (6.3)

ecc cost(ni) of Eq. (6.2) is simply the distance between ni and its path position pi.
ecc cost(ni) shows how far ni is away from the center of the corridor. Such a cost is partic-
ularly useful when the width of the corridor suddenly shrinks at a certain point along the
normative path. As Fig. 6.6 shows, the corridor shrinks dramatically at pb, which becomes
a small entrance to the following section of the corridor. ecc cost(ni) helps rapidly guide the
search to such an entrance.

κori and κecc are the coefficients that transform ori cost(ni) and ecc cost(pi, ni) into a
time cost.

6.2 Goal Zone

The goal zone was defined in Section 5.2.5. The goal zone is the convex area of the goal,
where the heuristic function (Alg. 5.2) returns the Euclidean distance to the goal, so that the
search can eventually reach the real goal configuration. Similarly, in the path corridor-based
local path planning, as long as a new node is inserted into the search tree, the search will
check whether ni lands in the goal zone, i.e. whether or not GVD position χi of ni meets
χi ∈ Xgoal (Section 5.2.5). If that is true, the evaluation of ni will no longer be limited to
the path corridor. In other words, if any node ni during local path planning lands in the
goal zone, ni will be evaluated exactly in the same way as in global path planning. The only
difference is that ni still has to be limited in the active window that includes the dynamic
obstacles. This endues the local path planner with more flexibility, as the search approaches
the neighborhood of the goal.

6.3 Blocked Corridor

In most cases, the robot is capable of avoiding the obstacles inside the path corridor. How-
ever, it happens sometimes [as in Fig. 6.7(a)], the yellow objects are the obstacles blocked
the whole corridor. In such cases, the robot can no longer pass through the path corridor
and the global path needs to be regenerated.

6.3.1 Blocked Corridor Detection

Such a situation can be detected with Alg. 6.2. While the robot is moving in the cor-
ridor, it keeps updating its path position probot based on its current position. pmin is the
furthest path position that the robot currently has reached along normative path Pnorm. If
norm cost[probot] < norm cost[pmin] (line 7), it means the robot is making progress towards
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Algorithm 6.2: Blocked corridor detection

pmin : Furthest path position that the robot currently has reached along normative
path Pnorm

pstart : First path position of normative path Pnorm
probot : Current path position of robot
Φclock: Clock which will be reset to 0 every time pmin is changed
Ωt : Time threshold used to decide whether or not the corridor is blocked

1 Function ret Blocked Corridor Detection(Ωt)
2 pmin ← pstart;
3 reset Φclock;
4 loop
5 update probot;
6 // Whether robot is making progress along nomative path.

7 if norm cost[probot] < norm cost[pmin] then
8 pmin ← probot;
9 reset Φclock;

10 // Whether robot has not made progress for too long.

11 else if Φclock > Ωt then
12 // Corridor is blocked.

13 return blocked;

the goal, the pmin is also updated with probot. Every time pmin is set with a new path position,
clock Φclock will be reset to 0 accordingly. Therefore, if Φclock > Ωt (line 11), it means the
robot has not made any progress for too long. Therefore, the path corridor is then regarded
as blocked. Here, Ωt is a time threshold that used to decide whether the corridor is blocked,
and whether a new global path should be regenerated.

6.3.2 Global Path Reproduction

As long as the corridor is detected as blocked, global path planning will be applied on the
global map combined with the detected dynamic obstacles in the current active window. As
shown in Fig. 6.7(b), the Voronoi-based heuristic would still attract the search towards the
block area at first, resulting in the accumulation of the exploring tree around χblocked on the
GVD (somewhere in front of the dynamic obstacles). As mentioned in Section 5.3.2, this
reduces the clearance value of the GVD section around χblocked and consequently triggers
the regeneration of the cost distribution over the GVD. Since the reduction of the clearance
value increases the cost around χblocked, eventually the Voronoi-based heuristic would guide
the search away from the block area [as in Fig. 6.7(b)] and another path corridor [as in Fig.
6.7(c)] is produced.
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(a) (b)

(c)

Figure 6.7: a) Blocked corridor; b) Inserted break point; c) Regenerated path based on
inserted break point

6.4 Summary

This chapter proposed a path corridor-based local path planning algorithm. Rather than a
fixed global path, the planner extracts normative path Pnorm and a path corridor from the
global path. The path corridor defines the maximum space along the normative path, giving
the robot enough flexibility to deal with the dynamic obstacles. The computation cost is
largely reduced by restricting local path planning inside the path corridor. In such a manner,
the local path can be updated in real time, efficiently avoiding the dynamic obstacles. For
situations where the whole path is blocked by obstacles, the global path will be regenerated
and avoid the blocked spot.
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Part IV

Simulation and Evaluation
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Chapter 7

Evaluation of Experiments

In this chapter several experiments are done to demonstrate the usefulness of the proposed
approaches. The simulation and the algorithms are programmed with C++ and tested on a
computer with an Intel Core Duo(TM)2 CPU P8700 2.53 GHz and 4GB RAM under 64 bit
Windows operating system.

7.1 Evaluation of Voronoi-based Parallel Thinning

Algorithm

As introduced in Section 2.1.2, GVD is the collection of medial lines and precisely defines
the connectivity of the free space. Rather than estimating the heuristic cost from the current
location to the goal with the Euclidean distance, the cost to the goal is measured along the
GVD-based roadmap.

However, as addressed in Section 4.4, the classic parallel thinning algorithm (CPT) [53]
has two drawbacks and cannot produce an accurate GVD. The objective of this experiment
is to show the effectiveness of the proposed Voronoi parallel thinning algorithm (VPT) in
Chapter 4. The experiment shows that the VPT is fully capable of producing an accurate
GVD, by overcoming the drawbacks of the classic thinning algorithm.

7.1.1 Square Effect

1The CPT and VPT algorithms are tested on the same grid map [as Fig. 7.1(a)], which is a
simple blank square area with a few black dot objects.

Fig. 7.1(a)∼7.1(d) show the process of the CPT algorithm. The gray space represents
the unprocessed space. It is observable that the gray space shrinks until a very thin line
is left. However, the thinning process of the CPT shows a very clear square effect caused
by the layout of the grid map. The gray area shrinks in diagonal directions faster than in

1The video of this experiment is available at https://youtu.be/3KPEaPiIhjw

https://youtu.be/3KPEaPiIhjw
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(a) (b) (c) (d)

Figure 7.1: Classic parallel thinning

(a) (b) (c) (d)

Figure 7.2: Voronoi-based parallel thinning

vertical and horizontal directions, the produced GVD is exactly on the medial line between
the obstacles and, therefore, the result of the CPT shown in Fig. 7.1(d) does not represent
the true GVD.

Fig. 7.2(a)∼7.2(d) show the process of the proposed VPT algorithm. Fig. 7.2(b) and
Fig. 7.2(b) show that the gray space equally shrinks in all directions and shows a circular
effect. Therefore, the VPT eventually produces an accurate and smoothed GVD in Fig.
7.2(d).

7.1.2 Single Cell-connected GVD

As mentioned in Chapter 4, the CPT algorithm produces a GVD with some non-single cell-
connected spots that pose ambiguities when calculating the distance along the GVD. The
ambiguities can result in inaccuracy of the produced Voronoi-based heuristic. Fig. 7.3(a)
is the thinning result without the integration of the supplementary patterns proposed in
Section 4.5.2. The green cells show the locations of the extracted GVD and the non-single
cell-connected spots are marked as red cells.

Fig. 7.3(b) is the result after the integration of supplementary patterns (Section 4.5.2),
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(a) (b)

Figure 7.3: a) Thinning result without supplementary patterns; b) Thinning result with
supplementary patterns

which clearly shows that all non-single cell-connected spots on the GVD disappeared after
the integration. This avoids the ambiguity of measuring the cost along the GVD.

7.2 Evaluation of Voronoi-based Heuristic

In order to demonstrate the usefulness of the Voronoi-based heuristic, it is compared with Eu-
clidean heuristic and informative heuristic in the following sections. As mentioned in Section
2.3.1, the Euclidean heuristic it one of the most classic heuristics. The Euclidean heuristic
is simply the distance between the goal and the current position regardless of the obstacles,
it makes the search easily trapped by the local minimum. The informative heuristic was
introduced in Section 2.3.3, which integrates with the information of obstacles constraints,
however, as it will be shown in the following experiment in Section 7.2.2, the informative
heuristic is still unable to prevent the search from being trapped by the local minimum that
is caused by both obstacle constraints and nonholonomic constraints. Additionally, since the
application of informative heuristic requires a 2D Djistra’s grid map search to be done first,
which result in an extra overhead that increases the computation cost.

7.2.1 Comparison with Euclidean Heuristic

The Voronoi heuristic-based search (VHS) and Euclidean heuristic-based search(EHS) are
applied to three different grid maps: A. without local minima (Fig. 7.4); B. with shallow
local minima (Fig. 7.5); C. with deep local minima (Fig. 7.6); The start and the goal
configuration are shown as red and green arrows, respectively. The start and the goal are
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set far apart and the search has to overcome all obstacles to reach the goal. This experiment
shows how the local minimum can increase the computation cost of the search.

For each scenario, primitive trajectory set-based searches (Chapter 3) are applied with
the EHS and the VHS in a discrete 3D configuration space, Sd = {xi, yi, θi}. The directional
dimension θi is discretized to K = 32 entries as mentioned in Section 3.1.

Map type No local minimum Shallow local minimum Deep local minimum
Grid map size 500× 300 500× 300 500× 300
GVD extraction 138.70 ms 178.75 ms 191.16 ms

Table 7.1: Size of grid map and computation time of VPT-based GVD extraction

Tab. 7.1 shows the size of the grid maps and the computation time of their GVDs with
VPT. As long as the GVD is extracted, the proposed Voronoi-based heuristic can be used
for a multi-query search. Therefore in following sections, the computation time of VPT
is not included in the computation time of the VHS. However, Tab. 7.1 shows that the
computation of the GVD only requires just a few hundreds of milliseconds. This shows
the GVD extraction is very fast, hence, the Voronoi-based heuristic can also be used for a
single-query search where the computation time of VHS comprises the time cost of VPT.

No Local Minimum

Fig. 7.4 is an environment that only consists of convex obstacles, i.e. no local minimum.
Tab. 7.2 shows different aspects of the VHS and the EHS in this scenario. “Computation
time”represents the time cost to produce a feasible path (the computation of VPT is not
included). “Memory Cost”is the measurement of the dynamic objects used to create the
exploring tree during the search. “Path cost”represents the evaluation of the resulting path
as introduced in Section 3.3. The last column of Tab. 7.4 is the percentage of the value of
the “VHS”over the “EHS”, which shows the comparison between them.

VHS EHS VHS/EHS
Computation time 3.75 ms 584.21 ms 0.64%
Memory cost 975 28103 3.47%
Path cost 541.56 538.22 100.62%

Table 7.2: No local minimum

From Tab. 7.2, it is observable that the VHS performs more effective than the EHS
except a little drop back of the path cost. In Fig. 7.4(a), the EHS almost fully searched the
area between the start and the goal. In comparison, the VHS has only searched a few steps
[as in Fig. 7.4(c)], and the produced paths are nevertheless equally optimal [Fig. 7.4(b)
and 7.4(d)]. The same result can also be seen from Tab. 7.2, the path cost of the VHS
is only 0.62 percent more than the EHS, but the computation time and the memory cost
dramatically decreased by 99.36 percent and 96.53 percent respectively.
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(a) Search of EHS (b) Result of EHS

(c) Search of VHS (d) Result of VHS

Figure 7.4: No local minimum

Shallow Local Minima

There are several stick-shaped obstacles in Fig. 7.5 that form many shallow minima. In this
scenario, the strength of the Voronoi-based heuristic becomes more dominant. The EHS has
to search almost the entire space [as in Fig. 7.5(a)], making the EHS very time consuming
and requiring a very high memory cost [as in Tab. 7.3].

On the contrary, the VHS nicely navigates through the obstacles without being trapped
at all. It demonstrates more intelligent behavior (as in Tab. 7.3). The computation time as
well as the memory cost of the VHS are only a very small fraction of the comparatives for
the EHS. Comparing the resulting paths of the two searches, the path cost of the VHS is
32.14 percent more than that of the EHS. However, the result in Fig. 7.5(d) shows that the
quality of the produced path of the VHS is still in an acceptable range.

VHS EHS VHS/EHS
Computation time 29.08 ms 98229.97 ms 0.03%
Memory cost 4867 138550 3.51%
Path cost 768.79 581.78 132.14%

Table 7.3: Shallow local minima
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(a) Search of EHS (b) Result of EHS

(c) Search of VHS (d) Result of VHS

Figure 7.5: Shallow local minima

Deep Local Minimum

The large convex area between the goal and the start (as in Fig. 7.6) forms a deep local
minimum. The deep local minimum can cause serious problems for the EHS since the
search will be trapped in the deep local minimum almost eternally and may easily make the
computation run out of memory. The EHS costs almost 16 minutes (as in Tab. 7.4) whereas
the VHS only costs 110.51 milliseconds or only 0.12 percent of the EHS.

VHS EHS VHS/EHS
Computation time 110.51 ms 95339.28 ms 0.12%
Memory cost 11828 163146 7.25%
Path cost 736.74 624.34 118.00%

Table 7.4: Deep local minimum

From Fig. 7.6(a), it is quite clear how much the EHS can be trapped since the entire
convex area has been fully searched. The computation cost of the EHS directly depends on
the size of the convex area. It is inferable that the larger the convex area, the longer the
EHS will be trapped. The VHS nicely solves this problem. As shown in Fig. 7.6(c), the VHS
immediately found its way under the guidance of the Voronoi-based heuristic and directly
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(a) Search of EHS (b) Result of EHS

(c) Search of VHS (d) Result of VHS

Figure 7.6: Deep local minimum

left the convex area right after the search began, greatly reducing the computation time and
the memory cost with only a minor sacrifice of the path cost.

7.2.2 Comparison with Informative Heuristic

Two experiments are constructed in this section to compare the VHS with the informative
heuristic-based search (IHS) [93] [in Section 2.3.3] under grid maps of two different envi-
ronments. The first experiment is made under the environment shown in Fig. 7.7, which
is a simulated shopping center defined in Appendix A.2, where the robot is expected to
move freely and provides services. The size of the grid map is 750 × 600, and it does not
consist of any nonholonmoic local minimum (NLM) (Section 5.3) as shown in Fig. 7.7. The
NLM is a new type of local minimum formed by the combination of the obstacles and the
nonholonomic constraints defined in Section 5.3.

The second experiment shows the environment, where two open areas are connected
by several narrow corridors with sharp corners in the way as shown in Fig. 7.8 and Fig.
7.9. The sharp corner violates the nonholonomic constraints of the car-like robot and, thus,
forms NLM that make the corresponding corridor no longer traversable. Such scenario
appears often in a supper market or a warehouse where the robot has to navigate through
the narrow corridors that sometimes may violate its nonholonomic constraints.
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The Voronoi-based heuristic shows better results than IHS in both environments. How-
ever, as the test in Section 7.2.2 shows, the strength of Voronoi-based heuristic over infor-
mative heuristic is more dramatic on the grid map with NLM.

No NLM

2The VHS, EHS and IHS [93] are applied to the grid map of a clustered environment (Fig.
7.7), The start and the goal configurations are shown as red and green arrows respectively.
After the GVD is extracted, the proposed Voronoi-based heuristic can be used for a multi-
query search as long as the grid map is not changed. Additionally, the GVD extraction with
VPT is very fast, the computation of VPT on the grid map in Fig. 7.7 only cost 357.90 ms.

EHS IHS VHS
Computation time 11405.86 ms 717.02 ms 76.84 ms
Memory cost 79740 10680 9486
Path cost 133.19 162.93 156.80

Table 7.5: Clustered environment

The local minimum appears quite often in a clustered environment, which can make the
EHS dramatically trapped. This is proven by the result of EHS shown in Fig. 7.7(a) and Fig.
7.7(b). The entire space is almost fully explored [Fig. 7.7(a)]. Since the Euclidean-based
heuristic directly attracts the search to move toward the goal regardless of the obstacles, the
EHS has to explore fully the local minimum between the start and the goal. This result in
both large amount of computation time and memory cost as shown in Tab. 7.2.2.

In contrast, the IHS and VHS [as in Fig. 7.7(c) and Fig. 7.7(e)] directly navigate through
the space to the goal. This is because both the informative heuristic and Voronoi-based
heuristic are generated by following the obstacle constraints. The gray line in Fig. 7.7(e)
and Fig. 7.7(f) are the generated GVD through the application of VPT on the grid map. As
shown in Tab. 7.2.2, the computation time and memory cost of the IHS and the VHS are
dramatically reduced, although their path costs are slightly higher than EHS, which renders
the resulted paths a little less optimal.

It is also observable from Tab. 7.2.2 that the memory costs of the IHS and the VHS
are almost the same, which means the IHS and the VHS explore approximately the same
number of nodes during the search, but the computation time of IHS is 9 times higher than
that of the VHS. As mentioned earlier, the computation of IHS comprises two parts. The
first part is the 2D grid map search that attaches a heuristic value to each cell, while the
second part is the motion primitive-based search [Fig. 7.7(c)] that is guided by the heuristic
value and produces the actual path [Fig. 7.7(d)]. The motion primitive-based search of IHS
costs only 76.77 ms, whereas the 2D grid map search costs 640.25 ms. This makes the total
computation time of IHS up to 717.02 ms.

2The video of this experiment is available at https://youtu.be/D7tg2qSXYTo

https://youtu.be/D7tg2qSXYTo
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(a) Process of the EHS (b) Resulted path of EHS

(c) Process of IHS (d) Resulted path of IHS

(e) Process of VHS (f) Resulted path of VHS

Figure 7.7: Processes and resulted paths of EHS, IHS and VHS under clustered environment
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As mentioned in Section 5.2.2, the VHS also requires a cost distribution along GVD.
However, its computation time is merely about 0.99 ms, as the GVD is a small subset of
the grid map. For multiple queries based on the same grid map, the GVD only needs to be
produced once with VPT. Therefore, the computation time of the VHS for multiple quires
does not include the computation time of VPT. The computation of VPT on the 750× 600
grid map in Fig. 7.7 is 357.90 ms. Thus, for the single-query search of the VHS including
the computation of VPT, its total computation time is merely 434.74 (357.90 + 76.84) ms,
which is even far less than the computation time of the 2D grid map search of the IHS.

With NLM

3In the above experiment, both the Voronoi-based heuristic and informative heuristic guide
the search through obstacles effectively. However, it will be shown in this section, the
informative heuristic only depends on obstacle constraints, which can still make the IHS
trapped by the nonholonomic local minimum (NLM). As introduced in Section 5.3, the
NLM is formed by the combination of the obstacles and the nonholonomic constraints.
The objective of this experiment is to demonstrate how much the NLM can increase the
computation cost of the IHS and how this problem can be solved by the Voronoi-based
heuristic proposed in Section 5.3.2.

Fig. 7.8 shows the result of the IHS. Several corridors lead to the goal. Except for the
bottom-most corridor, all corridors include a sharp turning in the way. The sharp turnings
violate the nonholonomic constraints of the mobile robot making the corridors untraversable.
However, the informative heuristic cost along the upper corridors is lower than that along the
bottommost corridor since the path through the upper corridors is shorter. Therefore, the
informative heuristic keeps attracting the search toward the upper corridors [as in Fig. 7.8(a)
and 7.8(b)]. As the search continues, the exploring tree starts to accumulate and sequentially
search the corridors from the top to the bottom. By the time the search eventually reaches
the bottom corridor that meets the nonholonomic constraints [as in Fig. 7.8(c)], the open
area on the right side has been explored fully, which clearly requires a large amount of
computation cost. Fig. 7.8(d) is the resulting path of the IHS. In a clustered environment,
the NLM appears very often and poses another type of local minimum that can also seriously
trap the search.

Fig. 7.9 illustrates the test of VHS applying the NLM avoidance during the search
(Section 5.3). The detection of the NLM is done with Alg. 6 as proposed in Section 5.3.2. At
first, the Voronoi-based heuristic also tries to attract the search toward the top-most corridor.
However, as long as the search reaches the sharp corner which violates the nonholonomic
constraints and forms an NLM for the search, it can no longer explore forward and, therefore,
immediately starts to accumulate around the NLM [as shown in Fig. 7.9(a)]. As mentioned
in Section 5.3.3, any new creation of the node in the exploring tree will slightly reduce
the clearance value along its neighboring GVD positions (Alg. 5.3, line 6). Observably,

3The video of this experiment is available at https://youtu.be/OnkOSWv4RDQ

https://youtu.be/OnkOSWv4RDQ
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(a) 100000 steps (b) 300000 steps

(c) 782056 steps (d) Resulted path

Figure 7.8: Process and resulted path of IHS under Environment with NLM

VHS IHS VHS/IHS
Computation time 97.86 ms 14239.67 ms 0.69%
Memory cost 10987 74835 14.68%
Path cost 86.27 86.31 99.95%

Table 7.6: Nonholonomic local minimum test

the accumulation of the exploring tree creates nodes intensively around the sharp conner,
thereby dramatically reducing the clearance value along the neighboring GVD sections (Alg.
5.3, line 7). It eventually causes the clearance value of one of the GVD positions to drop to
0 and is thus detected as an NLM (Alg. 5.3, line 7).

As mentioned earlier, the detection of the NLM triggers the regeneration of cost distri-
bution over the GVD (Alg. 2.5, line 27). Since clearance values along the neighboring GVD
section around NLM are dramatically reduced, and very low clearance values will result in
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(a) 8000 steps (b) 37000 steps

(c) 56454 steps (d) Resulted path

Figure 7.9: Process and resulted path of VHS under Environment with NLM

very high costs during cost distribution (Section 5.2.3), this makes the cost along the first
corridor higher than the cost along the second topmost corridor in Fig. 7.8(a). Consequently,
after the regeneration of cost distribution, the Voronoi-based heuristic guides the search to
explore the second topmost corridor [as Fig. 7.9(b)]. A shown in Fig. 7.9(c), the second
and the third topmost corridors each also include an NLM. Therefore, the same process is
repeated until all NLMs are detected, and eventually the search finds its way to the goal
through the bottom-most corridor. Fig. 7.9(d) shows the resulted path of the VHS.

Tab. 7.2.2 shows the computation results of the IHS and VHS. It can be seen that the
IHS requires a very long computation time and a very high memory cost. The produced
paths of the IHS and VHS have nearly the same path cost. However, comparing with the
computation cost of IHS, the computation time and the memory cost of the VHS are reduced
by 99.31 percent and 86.35 percent respectively, since the VHS is able to adaptively modify
the heuristic cost during the search when a NLM is detected.



7.3. EVALUATION OF STEERING RATE COST 101

7.3 Evaluation of Steering Rate Cost

The objective of this experiment (Fig. 7.11) is to evaluate how the steering rate cost can
affect the result of path planning. The cost (proposed in Section 3.3.1) is used to minimize the
variation of steering and increase the smoothness of the produced path. Several experiments
are done by increasingly setting steering rate coefficient κsteer = 0, 0.3, 0.6, 1, 2, 4.
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Figure 7.10: a) Accumulated absolute steering angle; b) Computation time

Fig. 7.11 shows the resulting paths of setting κsteer = 0, 0.6, 1, 4. The gray lines
between the obstacles are the extracted GVD. As κsteer increases, the produced paths also
become increasingly smoother. When κsteer = 0, the produced path in Fig. 7.12(a) is very
bumpy, whereas Fig. 7.12(f) shows a very smoothed path by setting κsteer = 4.

The steering angle applied along the resulting paths is shown in Fig. 7.12 where the
vertical axe represents the steering angle and the horizontal axe is the displacement along
the path. It can be observed that without the integration of the steering rate cost [κsteer = 0
as in Fig. 7.12(a)], the produced path requires the robot to frequently perform large-scale
steering. As mentioned in Section 1.2, this not only costs a great deal of energy but also
damages the steering system. Moreover, it can also be very hard for the controller to maintain
the robot safely on the path. As κsteer increases, the effect of steering rate becomes more
evident [as in Fig. 7.12(b) ∼ 7.12(f)]. In Fig. 7.12(f), especially, where κsteer = 4, the
steering becomes very smooth. Only small amount of steering is required on the way except
at the beginning and the end of the path where the robot has to inevitably apply large-scale
steering to quickly adjust the direction.

The accumulated absolute steering angle is the measurement of the total steering angle
along the whole path. Fig. 7.10(a) shows the accumulated absolute steering angles along
the path with different settings of κsteer. As κsteer increases, the absolute steering angle
dramatically decreases to a very low level. This means the robot can reach the goal only with
a small amount of steering. However, the increase of κsteer also increases the computation
time. The computation time approximately grows linearly with the increase of κsteer [as in
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(a) κsteer = 0 (b) κsteer = 0.6

(c) κsteer = 1 (d) κsteer = 4

Figure 7.11: Produced global paths with different settings of κsteer

Fig. 7.10(b)]. Setting κsteer > 2 still increases the computation cost [as in Fig. 7.10(a)]
despite not decreasing the absolute steering angle further.

7.4 Evaluation of Path Corridor-based Local Planner

The proposed path corridor-based local path planner are tested under two different environ-
ments. The first experiment compares the result of the proposed local planner with that
of path following and obstacle avoidance (SPFOA) [22, 23, 113–116] (Section 2.5). The sec-
ond experiment tests the path corridor-based local path planner under a more sophisticated
environment with dynamic obstacles, which shows the overall performance of the proposed
planner.
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(a) κsteer = 0
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(b) κsteer = 0.3
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(c) κsteer = 0.6
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(d) κsteer = 1
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(e) κsteer = 2
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(f) κsteer = 4

Figure 7.12: Variation of steering angle along path

7.4.1 Comparison with SPFOA

As shown in Fig. 7.14, the light blue line on the ground represents a predefined global
path and the cylinders represent dynamic obstacles on it. The SPFOA-based local planner
[22,23,113–116] has to follow the global path (the light blue line) and avoid dynamic obstacles
(the cylinders) in the way.

As shown in Fig. 7.13(b), the red line shows the result of the SPFOA-based local planner.
It is observable that since the robot tries to avoid obstacles while following the global path,
it has to frequently leave and return to the global path, which results in a very snaky path as
mentioned Section 1.2. The green line is the result of applying the proposed path corridor-
based local planner. As the proposed planner does not required to follow any specific global
path, the result of the path corridor-based planner becomes very smooth and natural.

The results of SPFOA and path corridor-based planner can be also compared in Tab.
7.7. “Traveled Distance”is the length of the resulted path, and “Total Steering”is the total
absolute steering that the robot applies along the path. Tab. 7.7 shows that the proposed
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(a)

(b)

Figure 7.13: Resulted paths of SPFOA and path corridor-based local planner

Traveled Distance (m) Total Steering (rad)
SPFOA 163.08 22.65
Path corridor-based 120.68 4.45

Table 7.7: Results of SPFOA and path corridor-based local planner

planner requires not only less distance to travel, but also less steering. This consequently
reduces time cost and energy cost.

Fig. 7.14(a) shows the variation of the steering angle while the robot approaching the
goal. The red line represents the result of SPFOA, which requires the robot to frequently
apply aggressive (large scale) steering along the way. As it was mentioned in Section 1.2,
aggressive steering not only can cost much energy, but also can seriously damage the steering
system. On the contrary, the result of the path corridor-based planner (green line) shows a
more peaceful steering that allows the robot to move more smoothly. It is also observable
that the green line is still a little unstable, however, this is caused by limited accuracy of
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Figure 7.14: a) Steering angles of applying SPFOA (red line) and path corridor-based planner
(green line) ; b) Accumulated absolute steering angles of SPFOA and path corridor-based
planner)
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(a) (b)

Figure 7.15: a) Car-like robot simulation in virtual environment; b) Start and goal setup

the controller (Appendix A.4) that is unable to precisely follow the produced local path.
However, the topic of the controller is out of the scope of this dissertation.

The accumulated absolute steering angle are shown in Fig. 7.14(a), it is observable
that the absolute steering angle of SPFOA accumulated much faster than that of the path
corridor-based planner. The path corridor-based planner only requires a very small amount
of steering. Fig. 7.14(a) further proves the strength of the proposed approach over SPFOA.

7.4.2 Overall Performance under a Clustered Dynamic
Environment

4This experiment will test the usefulness of corridor-based local path planning in a more
sophisticated environment in Fig. 7.15(a). Fig. 7.15(a) shows the simulated shopping center
introduced in Appendix A.2). Some the simulated human figures are set to randomly move
around. The car-like robot (Appendix A.3) has to avoid all dynamic obstacles while moving
in the path corridor and reach the goal. The start and the goal are set as in Fig. 7.15. Since
this work is concentrate on mobile robot path planning, the location of the robot is directly
provided by the simulator. The localization of the robot is assumed to be done by previous
works [123–125].

Fig. 7.16 shows the active window of path corridor-based local path planning at several
different simulation time points. The white area represents the path corridor that is produced
based on the global path by applying the VHS (Chapter 5). The black objects show the
location of the obstacles and the gray area represents the free space outside the path corridor.
The robot (the green object) moves on the local path inside the path corridor by following
the normative path-based heuristic (Section 6.1.5). The red dots show the locations of the

4The video of this experiment is available at http://youtu.be/mcw-I_2bERA

http://youtu.be/mcw-I_2bERA
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(d) 27s (e) 42s (f) 46s

Figure 7.16: Simulation of path corridor-based path planning
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Figure 7.17: Computation time of corridor-based path planning
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laser scanner points. The laser scanner points inside the path corridor shows the detected
dynamic objects around the robot.

In Fig. 7.16(a) where the robot is initiated from the start point, the local path (shown
as the black curve) is produced inside the path corridor and nicely navigated between the
dynamic obstacles. While moving on the local path, the robot keeps checking whether or not
the local path is still valid. If any dynamic obstacles block the local path or if the controller
fails to maintain the robot on the local path, a new local path will be reproduced. Like
in the following time sections shown in Fig. 7.16(b) ∼ 7.16(e), the local path is frequently
reproduced to adapt to the dynamics of the environment while approaching the goal as shown
in Fig. 7.16(f).

Fig. 7.17 shows the computation time of the local path planner, the horizontal axis is
the simulation time and the vertical axis is the computation time that the planner requires
to reproduce the path. The robot takes about 1 minute to reach the goal. From 50 second
to 60 second, the path is only reproduced five times, but between 30 second and 40 second,
the local path is frequently regenerated (as in Fig. 7.17, ). This happens because the local
path is not reproduced in a fixed time interval, but only when the current path becomes
invalid. Additionally, since the search is required to be done inside the path corridor and
the active window, the computation cost is very low. As shown in Fig. 7.17, the computa-
tion time is mostly under 10 milliseconds—the maximum computation time is merely 24.4
milliseconds—proving that the proposed corridor-based local path planner is fully capable
of on-line computation.
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Chapter 8

Conclusion

This dissertation aims to solve several fundamental path planning problems of car-like robots.
Robot path planning primarily contains two parts: global path planning and local path
planning. Any drawback of these two parts may result in a deterioration in performance
of the mobile robot. For instance, local path planning without the support of global path
planning may get lost in a large environment. Without feedback from the local planner,
global path planning cannot be effectively updated to cope with the environment dynamics.
Therefore those parts are not handled separately in this dissertation, but in a unified form as
the structure of the system shown in Fig. 1.5. As it will be covered in the following sections,
each part is improved for itself and optimized respectively to cope with the other part, to
achieve an efficient mobile robot path planning process.

8.1 Achievements

The following sections list the evaluations of the achievements concerning the problems that
are expected to be solved within this work. The same section titles are used here for a clear
connection with the problems that are listed in the problem statement of the first chapter.

8.1.1 Nonholonomic Constraints

The nonholonomic constraints of the car-like robot are one of the problems that are expected
to be solved in this work. The primitive trajectory set is proposed to comply with the
nonholonomic constraints of the robot. As the experiments in Section 7.2 and Section 7.3
show, the primitive trajectory set is in a very simple form but, nevertheless, capable of
producing various types of maneuvers that do not violate the nonholonomic constraints. As
shown by the result in Section 7.3, steering rate and steering frequency are minimized by
integrating the steering rate cost in the path cost. This effectively avoids the aggressive
steering addressed in Section 1.2 and allows the robot to achieve the goal with very peaceful
steering. However, the experiment also shows that reducing the steering rate requires more
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computation time. Therefore, a lower steering rate does not necessarily mean a better
performance. For real-time local path planning, especially, where the computation must be
done in a critical, short time-span, the steering rate cost and the computation time need to
be balanced to meet the real-time requirement.

8.1.2 Roadmap

The second problem that needs to be solved is the local minimum, which traps the search and
consequently increases the computation time of path planning. As mentioned in Section 1.3,
this problem is a consequence of the Euclidean-based heuristic that pulls the search directly
towards the goal ignoring the geometric information of the environment. In order to provide
a more accurate heuristic estimate, we measure the cost from the current position to the
goal along the GVD-based roadmap. The GVD-based roadmap could be considered as the
collection of medial lines between the obstacles that connects all the traversable subspaces
of the environment. It accurately reflects the geometry of the environment. An improved
parallel thinning algorithm is proposed to extract the GVD from the gridmap in Chapter
4. As the experiment in Section 7.1 shows, the proposed thinning algorithm accurately
extracts the GVD based on a given gridmap. The produced GVD is always single cell-
connected (Section 4.4.2), which increases the accuracy of the cost measured along the GVD
and forms a solid foundation for later path planning processes.

8.1.3 Local Minimum of Search-based Path Planning

Several experiments under different environments in Section 7.2 have shown a clear advantage
of the proposed Voronoi-based heuristic over the Euclidean-based heuristic. The Voronoi-
based heuristic shows the exact behavior as expected in Section 1.3, which guides the search
efficiently away from the local minima and, as a result, saves both computation time and
memory space. As long as the GVD is extracted from the gridmap, it can be used for multiple
queries. Moreover, as Tab. 7.1 shows, the computation time of GVD extraction is very fast.
This allows the computation of a single query can also be done within an acceptable time
span.

However, providing a more accurate heuristic does not solve the problem of the local
minimum once and for all. The GVD only reflects the geometry of the environment, i.e. it
only follows the obstacle constraints. As mentioned in Section 5.3, the GVD sometimes goes
through narrow corridors that violate the nonholonomics of the car-like robot. Consequently,
the search could navigate into corridors that the car-like robot is not capable of. When this
happens, the search could still be trapped and form another type of local minimum (NLM)
that is newly defined in Section 5.3, which is caused by the obstacle and the nonholonomic
constraints. The NLM is the most important challenge of car-like robot path planning
that is different from the path planning on other mobile robot platforms. Therefore, another
approach is proposed in Section 5.3 to solve this problem, which is able to detect the existence
of the NLMs and to navigate the search away from them. As the experiment in Section 7.2.2
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shows, the search follows the guidance of the Voronoi-based heuristic, and as soon as it
touches the location of the NLM, the search stops and starts to try other possible corridors.
The result shows that the proposed approaches can effectively prevent the search from being
trapped in the NLM.

8.1.4 Integration of Global and Local Path Planning

Rather than applying the global path directly, the corridor-based local planner transforms
the global path into a sequence of corridor sections that define the maximum space along
the global path. This is also the major difference of the proposed local path planner from
the general approaches introduced in Section 2.5. The experiments in Section 7.4 show the
strength of the proposed approach. The corridor-based local planner largely promotes the
flexibility of the mobile robot to deal with dynamic obstacles.

Meanwhile, similar to the proposed global path planning, local path planning is guided
by the normative path-based heuristic that helps the search navigate through the path
corridor. Therefore, the search can effectively move towards the direction led by the global
path. This makes the local planner more goal-oriented thus promoting the effectiveness of
the search and, consequently, reducing the computation time. The local path is not required
to stay with the global path. This preserves both flexibility and effectiveness, and makes the
proposed local path planning fully capable of real-time applications.

8.2 Summary

In conclusion, the primary contribution of this work is a new type of heuristic. The proposed
heuristic can be combined with various existing search-based path planning algorithms so
that the search can smoothly navigate through the space, avoid all kinds of local minima
and reach the goal sooner. The proposed approaches have been demonstrated in a simu-
lated environment. The results have shown that the approaches provide high efficiency and
reliability, and are highly suitable for real-time applications.

8.3 Future Work

The global path planning algorithm (Chapter 5) is based on a global map created in advance.
However, for a real-world application, sometimes the environment is only partially known
or even unknown. Therefore, future research should focus on how to incrementally create
and update the GVD in real time. Thus, when the environment is partially changed, the
Voronoi-based heuristic can also be partially updated immediately. Local path planning
(Chapter 6) produces the path based on the situation of the current moment. However, for
an environment that includes faster moving dynamic obstacles, the produced path can easily
become invalid, necessitating frequent updates of the path. This may lead to unstable results
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of the local planner. Therefore, predicting the future movement of the dynamic obstacles
and producing the path accordingly are also required.
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Appendix A

Simulation and Robot Modeling

Voronoi based Thinning chapter 4- ( )

Global Path Planning chapter 5( )

Local Path Planning chapter 6( )

Global Grid Map

Local Grid Map

Start

Goal

GVD

Global Path

Local Path

System Environment

Motion Primitive Set chapter 3( )

Car like Robot-

Figure A.1: New Voronoi-based path planning process: simulation and robot modeling

The algorithms are tested under robotic simulator V-REP [126]. The cost of testing
the algorithms on a real vehicle is very high since the researchers can be distracted by the
construction of the hardware of the experimental platform. Moreover, owing to security
issues, the experiments require not only a special place where everything is secured but also
a great deal of effort to guarantee that no accident happens. The development of a virtual
environment provides an alternative way to test the approaches risk-fee. This work makes
use of V-REP, which provides various objects with different physical properties and general
sensors like proximity, vision and force sensors. It also provides different types of joints that
can be used to create the mechanical movements of a robot.

The car-like robot platform (shown as the highlighted box in Fig. A.1) is a vehicle that
executes the result of path planning. The vehicle and the environment dynamics affect the
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stability of the controller and the path planner. In order to prove that the system in Fig.
A.1 is fully capable of dealing with real-time dynamics, the proposed approaches are tested
on a car-like robot, “Manta”. In order to integrate more dynamics to the simulation, several
approaches to model a car-like robot are proposed, and will be covered later in this chapter.

A.1 Modeling Elements

Joints and pure, simple shapes are the basic elements constructing the dynamics and move-
ments under V-REP.

A.1.1 Joint Types

V-REP includes three types of joints (as in Fig. A.2): a revolute joint defining a 1DOF
rotational movements between objects; a prismatic joint simulating a 1DOF translational
movements between objects; and a spherical joint used to describe a 3DOF rotational move-
ments between objects. In the following sections, the revolute joint is used to create the
wheel joints, differential, etc., the prismatic joint is used to create suspensions, and the
spherical joint is used as part of the steering mechanism.

(a) Prismatic joint (b) Revolute joint (c) Spherical joint

Figure A.2: Joint types in V-REP

A.1.2 Shapes

Generally speaking, there are two types of shapes under V-REP: pure simple shapes; and
simple random shapes. Pure simple shapes (plane, disc, cuboid, cylinder or sphere as in Fig.

(a) Plane (b) Disc (c) Cuboid (d) Sphere (e) Cylinder

Figure A.3: Pure simple shape

A.3) are the basic units to create the dynamic object. A pure simple shape is best suited for
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dynamics and collision response calculation. A simple random shape is used to create the
visualized model that can be detected by light-based sensors, or the proximity sensor.

A.2 Simulated Shopping Center

A simulated shopping center is created to test how the algorithms work in a relatively large,
dynamic environment. As Fig. A.4(a) shows, there are buildings, and some narrow corridors
that normally appear in a residential area. There are also some humanoid models moving
around randomly. They are only detectable with proximity sensors. Fig. A.4(b) is the global
grid map of the simulated environment, where the car-like robot is expected to move around
and provide services.

(a) (b)

Figure A.4: a) Simulated Shopping Center; b) Global map of Simulated Shopping Center
(750× 600)

A.3 Simulated Car-like Robot

Fig. A.5(a) shows car-like robot Manta created under V-REP. Manta is a rear-wheel drive
vehicle and is created with general vehicle parts, such as suspension, steering, differential and
brakes. Manta is also attached with two motors to motivate steering and linear movements,
respectively. A 2D laser scanner and an inertial measurement unit (IMU) are also on board.
Fig. A.5(b) shows the body of Manta overlaid with the joints set. There are about 70 joints
and each joint can be seen at its corresponding location. Fig. A.5(c) shows the underlying
dynamic model of Manta constructed by pure shapes. Manta has been integrated into the
model library of V-REP and is available to all interested researchers.
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(a) (b) (c)

Figure A.5: a) Full view of Manta; b) Manta’s joints set; c) Manta’s underlying dynamic
model

A.3.1 Suspension

A suspension is used to absorb shocks between the ground and the body of the vehicle, which
relatively isolates the body of the vehicle from the unevenness of the ground, and improves
both the comfort factor and stability. Manta employs the independent suspension allowing
each wheel to move vertically independently from each other.

(a) (b)

Figure A.6: Manta’s suspension system: a) Front view of Manta’s suspension; b) Back view
of Manta’s suspension

A.3.2 Ackermann steering

As mentioned in Chapter 3, when the vehicle turns into a corner, the Ackermann steering
mechanism produces different steering angles for both front wheels—the inside and outside
wheels move on the orbits of different radii. The steering system on Manta is implemented
mechanically and motivated by a motor in the center of the front wheels (as in Fig. A.7).
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The steering angle is limited under αmax = 1/6π (30◦) and the maximum steering rate is set
as ωmax = 7/18π s−1 (70◦ s−1).

(a) (b)

Figure A.7: Manta’s steering system

A.3.3 Differential

As Fig. A.8 shows, the cornering angular velocity of inside and outside wheels ω are always
the same, but the cornering radius Rin and Rout are different. Therefore, the linear velocity of
the outside wheel (vout = ωRout) is always faster than that of the inside wheel (vin = ωRin).
This requires different rolling velocities of both wheels. However, if both wheels are directly
connected to the motor, their rolling velocities will always be the same. This poses a conflict
between the wheels and the ground, seriously affecting the stability when the vehicle turns.
The differential solved such conflict and allows the vehicle to turn peacefully.

Figure A.8: Velocities of inside and outside wheels while cornering

[127, 128] mentioned the ideal conventional differential as (A.1), (A.2) and (A.3). ndiff
is the gear ratio of the differential. In this case, ndiff = 1. Tin and Tout are the torques
acting on the inside and outside wheels and ωin and ωout are the associated rolling angular
velocities of the inside and outside wheels, respectively. ωmotor is the input rolling angular
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velocity, and Tmotor is the torque generated by the motor. It can be seen that Tin and Tout
are always the same, but ωin and ωout are independent of each other.

ωmotor = ndiff
(ωin + ωout)

2
(A.1)

Tin = Tout (A.2)

Tmotor = ndiff (Tin + Tout) (A.3)

(a) (b) (c)

Figure A.9: a) Original differential; b) Substitutive differential; c) Substitutive differential
test

The real differential employs gear transmission to implement the differential mechanism.
However, gear transmissions cannot be implemented under V-REP directly. Therefore, a
substitutive differential is proposed in this section. Gear transmission of the differential is
simply a mechanism that transmits angular velocity and torque to a different direction (as
in Fig. A.9). Such a mechanism can be replaced with several universal joints that are also
able to transmit angular velocity and torque to a different direction.

Fig. A.10 shows the test without the differential, whereas Fig. A.11 is the test using the
substitutive differential implemented with universal joints in which the outputs of both rear
wheels are shown in blue and pink lines, respectively. In both tests, robot Manta runs with
the same sinusoidal steering input under the same linear velocity [as in Fig. A.9(c)].

In Fig. A.10, the result shows the test without the differential—both rear wheels are
connected directly to the motor. The rolling angular velocities [Fig. A.10(a)] and torques
[Fig. A.10(b)] of both rear wheels are very unstable because of the conflict between the
inside wheel and the outside wheel. As a result, the torques acting on both wheels reach
very high level making the vehicle very unstable and significantly disturbing the dynamics
of the system.

Fig. A.11 is the result of using the substitutive differential. It can be seen in Fig. A.11(a)
that the movements of both wheels become more peaceful with the substitutive differential.
The torques shown in Fig. A.11(b) are evenly distributed between both wheels and stay at a
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(a)

(b)

Figure A.10: Test without deferential: a) Rolling angular velocities of rear wheels; b) Torques
acted on the rear wheels
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(a)

(b)

Figure A.11: Test with substitutive deferential: a) Rolling angular velocities of rear wheels;
b) Torques act on rear wheels
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very low level. With the help of the substitutive differential, the movements of both wheels
become independent relative to each other, and the conflict between them disappears. The
rolling angular velocities of both wheels vary alternately as the wheels alternate to be the
inside and outside wheels as shown in Fig. A.11(a). The result shows that the substitutive
differential serves in the same way of a real differential defined by (A.1), (A.2) and (A.3).

A.3.4 Wheels

Fig. A.12(a) is the visualized tire model. Fig. A.12(b) is a general underlying cylinder tire
model. However, since such a cylinder tire model is a rigid object, it prevents itself from
tilting sideways as the force acts horizontally. This affects the dynamic performance of the
vehicle since the flexibility of the wheels is constrained when the vehicle steers.

(a) (b) (c)

Figure A.12: a) Tire view; 2) Cylinder tire model; 3) Improved tire model

The improved underlying tire model in Fig. A.12(c) consists of a sequence of very thin
discs with varied radius Ri defined by (A.4), where Rwheel is the radius of the wheel. di is
the lateral distance between the ith disc and the center of tire. The improved tire model
forms a circular surface, and allows the tires to tilt sideways more flexibly.

Ri =
√
R2
wheel − d2i (A.4)

Fig. A.13 is the test of applying different tire models. Manta runs on a circular path with
both wheel models and this generates a centrifugal force applied on the wheels horizontally.
The green arrow shows the reference direction perpendicular to the ground, whereas the red
arrow is the central line attached to Manta’s body. Compared with the simple cylinder tire
model [Fig. A.13(b)], Manta with the improved tire model [Fig. A.13(c)] preserves more
dynamics.

A.3.5 Sensors

As mentioned above, Manta is also attached with a 2D, 360◦ laser scanner as shown in Fig.
A.14. Since this work plans to concentrate on the path planning problem, it is assumed
that the localization of the robot has been done by other processes. Therefore, the accurate
position and orientation are directly provided by the simulator.
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(a) (b) (c)

Figure A.13: Tire model test

(a) (b)

Figure A.14: a) Virtual environment with dynamic objects; b) Laserscan points

A.4 Controller

In order to execute the result of the global and local path planning proposed in the previous
chapters, a controller needs to be used to move the car-like robot on the path. Pure pursuit
[129] is one of the widely used path following controllers, and is simple and easy to apply.
Pure pursuit is based on the kinematic model of a car-like robot. The object with two
connected rectangles [as in Fig. A.15(a)] represents a simplified bicycle model of the car-like
robot mentioned in Section 2 [Fig. 2.10(a)], where the black curve with an arrow is the path
that the robot is supposed to follow. G is the reference point on the path, with distance ld
to center O of the rear wheels. ϕ is the angle between GO and the orientation of the vehicle.
With steering angle α calculated based on (A.5),

α = tan−1(
2Lsin(ϕ)

ld
) (A.5)

the vehicle moves towards reference point G along the dashed curve, where R is the radius of
the curve. If ld is too small, the system becomes very sensitive to the error since the controller
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applies a large input to rectify the error, which can make the vehicle oscillate along the path.
With a large value of ld, the system is much more stable. However, it becomes less sensitive
and may generate a large error. [130] suggests setting ld = κpurev, where v is the current
linear velocity of the robot and κpure is the coefficient to tune the effect of v.

(a) (b)

Figure A.15: a) Pure pursuit; b) Stanley method

The Stanley method [131] is another controller applied to the autonomous vehicle Stanley
that won the DARPA Grand Challenge. Unlike pure pursuit, the reference point of this
method is based on the center of the front wheels [as in Fig. A.15(b),]. The Stanley method
consists of two terms [as in (A.6)].

α = θe + tan−1(
κstande
vfront

) (A.6)

The first term represents angle θe between the orientation of the vehicle and the reference
direction of point A (shown as the arrowed red line) on the path, where point A is the
reference point of the front wheel on the path. Distance error de between the vehicle and the
reference point is then transformed into the second term of (A.6), where vfront is the moving
velocity of the front wheel (shown as the arrowed green line). The combination of both
terms reduces both the orientation and the position error, where κstan is used to tune the
effect of the position error. However, Stanley is more suitable for a forward drive, because
its backward drive produces a relatively large error.

The kinematic controller [132] is based on the chained form described in [133, 134]; this
method can track the path with a very small error under a low velocity. However, its
robustness worsens as the speed increases. This feature makes it more useful for parking
or navigating through winding narrow corridors, where precise control over the vehicle is
required.
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The controllers are based on the assumption that there is no lateral movement of the
wheels. For low to medium speed, this assumption holds since the lateral displacement is
small enough to be ignored. However, as the speed increases, the kinematic model can no
longer be applied. In such case, the dynamic model considering the lateral displacement of
the wheels should be used [135–138]. However, for most off-road environments, the vehicle
is not expected to move at very high speeds. Furthermore, as long as the position error goes
beyond the threshold, it can be rectified by regenerating a new path based on the current
state of the vehicle. Therefore, a controller of very high accuracy is not really necessary. In
this work, pure pursuit is applied as the path following controller for its simplicity in the
forward and backward drives.

A.5 Summary

A simulated vehicle and an environment under simulator V-REP have been created to test
the proposed approaches of this work. The simulation environment may not be realistic
enough and some of physical parts of the vehicle are simplified. For instance, the friction is
only implemented with the simple coulomb friction model [139]. However, the simulated car-
like robot still gives a very good performance and greatly decreases the cost of the experiment
compared to a real robotic platform.
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tonomous mobile robot exploration. In The 6th IEEE International Conference on
Intelligent Data Acquisition and Advanced Computing Systems: Technology and Ap-
plications, IDAACS’2011, volume 1, pages 299–304, 2011.

[29] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. Cambridge, Mass: MIT
Press, 2005.
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