162 research outputs found

    Backscatter from the Data Plane --- Threats to Stability and Security in Information-Centric Networking

    Full text link
    Information-centric networking proposals attract much attention in the ongoing search for a future communication paradigm of the Internet. Replacing the host-to-host connectivity by a data-oriented publish/subscribe service eases content distribution and authentication by concept, while eliminating threats from unwanted traffic at an end host as are common in today's Internet. However, current approaches to content routing heavily rely on data-driven protocol events and thereby introduce a strong coupling of the control to the data plane in the underlying routing infrastructure. In this paper, threats to the stability and security of the content distribution system are analyzed in theory and practical experiments. We derive relations between state resources and the performance of routers and demonstrate how this coupling can be misused in practice. We discuss new attack vectors present in its current state of development, as well as possibilities and limitations to mitigate them.Comment: 15 page

    Software Grand Exposure: SGX Cache Attacks Are Practical

    Full text link
    Side-channel information leakage is a known limitation of SGX. Researchers have demonstrated that secret-dependent information can be extracted from enclave execution through page-fault access patterns. Consequently, various recent research efforts are actively seeking countermeasures to SGX side-channel attacks. It is widely assumed that SGX may be vulnerable to other side channels, such as cache access pattern monitoring, as well. However, prior to our work, the practicality and the extent of such information leakage was not studied. In this paper we demonstrate that cache-based attacks are indeed a serious threat to the confidentiality of SGX-protected programs. Our goal was to design an attack that is hard to mitigate using known defenses, and therefore we mount our attack without interrupting enclave execution. This approach has major technical challenges, since the existing cache monitoring techniques experience significant noise if the victim process is not interrupted. We designed and implemented novel attack techniques to reduce this noise by leveraging the capabilities of the privileged adversary. Our attacks are able to recover confidential information from SGX enclaves, which we illustrate in two example cases: extraction of an entire RSA-2048 key during RSA decryption, and detection of specific human genome sequences during genomic indexing. We show that our attacks are more effective than previous cache attacks and harder to mitigate than previous SGX side-channel attacks

    Poseidon: Mitigating Interest Flooding DDoS Attacks in Named Data Networking

    Full text link
    Content-Centric Networking (CCN) is an emerging networking paradigm being considered as a possible replacement for the current IP-based host-centric Internet infrastructure. In CCN, named content becomes a first-class entity. CCN focuses on content distribution, which dominates current Internet traffic and is arguably not well served by IP. Named-Data Networking (NDN) is an example of CCN. NDN is also an active research project under the NSF Future Internet Architectures (FIA) program. FIA emphasizes security and privacy from the outset and by design. To be a viable Internet architecture, NDN must be resilient against current and emerging threats. This paper focuses on distributed denial-of-service (DDoS) attacks; in particular we address interest flooding, an attack that exploits key architectural features of NDN. We show that an adversary with limited resources can implement such attack, having a significant impact on network performance. We then introduce Poseidon: a framework for detecting and mitigating interest flooding attacks. Finally, we report on results of extensive simulations assessing proposed countermeasure.Comment: The IEEE Conference on Local Computer Networks (LCN 2013

    ROVER: a DNS-based method to detect and prevent IP hijacks

    Get PDF
    2013 Fall.Includes bibliographical references.The Border Gateway Protocol (BGP) is critical to the global internet infrastructure. Unfortunately BGP routing was designed with limited regard for security. As a result, IP route hijacking has been observed for more than 16 years. Well known incidents include a 2008 hijack of YouTube, loss of connectivity for Australia in February 2012, and an event that partially crippled Google in November 2012. Concern has been escalating as critical national infrastructure is reliant on a secure foundation for the Internet. Disruptions to military, banking, utilities, industry, and commerce can be catastrophic. In this dissertation we propose ROVER (Route Origin VERification System), a novel and practical solution for detecting and preventing origin and sub-prefix hijacks. ROVER exploits the reverse DNS for storing route origin data and provides a fail-safe, best effort approach to authentication. This approach can be used with a variety of operational models including fully dynamic in-line BGP filtering, periodically updated authenticated route filters, and real-time notifications for network operators. Our thesis is that ROVER systems can be deployed by a small number of institutions in an incremental fashion and still effectively thwart origin and sub-prefix IP hijacking despite non-participation by the majority of Autonomous System owners. We then present research results supporting this statement. We evaluate the effectiveness of ROVER using simulations on an Internet scale topology as well as with tests on real operational systems. Analyses include a study of IP hijack propagation patterns, effectiveness of various deployment models, critical mass requirements, and an examination of ROVER resilience and scalability

    Security and Privacy of IP-ICN Coexistence: A Comprehensive Survey

    Full text link
    Internet usage has changed from its first design. Hence, the current Internet must cope with some limitations, including performance degradation, availability of IP addresses, and multiple security and privacy issues. Nevertheless, to unsettle the current Internet's network layer i.e., Internet Protocol with ICN is a challenging, expensive task. It also requires worldwide coordination among Internet Service Providers , backbone, and Autonomous Services. Additionally, history showed that technology changes e.g., from 3G to 4G, from IPv4 to IPv6 are not immediate, and usually, the replacement includes a long coexistence period between the old and new technology. Similarly, we believe that the process of replacement of the current Internet will surely transition through the coexistence of IP and ICN. Although the tremendous amount of security and privacy issues of the current Internet taught us the importance of securely designing the architectures, only a few of the proposed architectures place the security-by-design. Therefore, this article aims to provide the first comprehensive Security and Privacy analysis of the state-of-the-art coexistence architectures. Additionally, it yields a horizontal comparison of security and privacy among three deployment approaches of IP and ICN protocol i.e., overlay, underlay, and hybrid and a vertical comparison among ten considered security and privacy features. As a result of our analysis, emerges that most of the architectures utterly fail to provide several SP features including data and traffic flow confidentiality, availability and communication anonymity. We believe this article draws a picture of the secure combination of current and future protocol stacks during the coexistence phase that the Internet will definitely walk across

    Defending Hash Tables from Subterfuge with Depth Charge

    Full text link
    We consider the problem of defending a hash table against a Byzantine attacker that is trying to degrade the performance of query, insertion and deletion operations. Our defense makes use of resource burning (RB) -- the the verifiable expenditure of network resources -- where the issuer of a request incurs some RB cost. Our algorithm, Depth Charge, charges RB costs for operations based on the depth of the appropriate object in the list that the object hashes to in the table. By appropriately setting the RB costs, our algorithm mitigates the impact of an attacker on the hash table's performance. In particular, in the presence of a significant attack, our algorithm incurs a cost which is asymptotically less that the attacker's cost

    An ANFIS-based cache replacement method for mitigating cache pollution attacks in Named Data Networking

    Get PDF
    Named Data Networking (NDN) is a candidate next-generation Internet architecture designed to overcome the fundamental limitations of the current IP-based Internet, in particular strong security. The ubiquitous in-network caching is a key NDN feature. However, pervasive caching strengthens security problems namely cache pollution attacks including cache poisoning (i.e., introducing malicious content into caches as false-locality) and cache pollution (i.e., ruining the cache locality with new unpopular content as locality-disruption). In this paper, a new cache replacement method based on Adaptive Neuro-Fuzzy Inference System (ANFIS) is presented to mitigate the cache pollution attacks in NDN. The ANFIS structure is built using the input data related to the inherent characteristics of the cached content and the output related to the content type (i.e., healthy, locality-disruption, and false-locality). The proposed method detects both false-locality and locality-disruption attacks as well as a combination of the two on different topologies with high accuracy, and mitigates them efficiently without very much computational cost as compared to the most common policies
    corecore