44,823 research outputs found

    Sovereign Debt and Currency Crises Prediction Models Using Machine Learning Techniques.

    Get PDF
    This research was funded by Cátedra de Economía y Finanzas Sostenibles, Universidad de Málaga, Spain. Partial funding for open access charge: Universidad de MálagaSovereign debt and currencies play an increasingly influential role in the development of any country, given the need to obtain financing and establish international relations. A recurring theme in the literature on financial crises has been the prediction of sovereign debt and currency crises due to their extreme importance in international economic activity. Nevertheless, the limitations of the existing models are related to accuracy and the literature calls for more investigation on the subject and lacks geographic diversity in the samples used. This article presents new models for the prediction of sovereign debt and currency crises, using various computational techniques, which increase their precision. Also, these models present experiences with a wide global sample of the main geographical world zones, such as Africa and the Middle East, Latin America, Asia, Europe, and globally. Our models demonstrate the superiority of computational techniques concerning statistics in terms of the level of precision, which are the best methods for the sovereign debt crisis: fuzzy decision trees, AdaBoost, extreme gradient boosting, and deep learning neural decision trees, and for forecasting the currency crisis: deep learning neural decision trees, extreme gradient boosting, random forests, and deep belief network. Our research has a large and potentially significant impact on the macroeconomic policy adequacy of the countries against the risks arising from financial crises and provides instruments that make it possible to improve the balance in the finance of the countries

    Reinforced Decision Trees

    Full text link
    In order to speed-up classification models when facing a large number of categories, one usual approach consists in organizing the categories in a particular structure, this structure being then used as a way to speed-up the prediction computation. This is for example the case when using error-correcting codes or even hierarchies of categories. But in the majority of approaches, this structure is chosen \textit{by hand}, or during a preliminary step, and not integrated in the learning process. We propose a new model called Reinforced Decision Tree which simultaneously learns how to organize categories in a tree structure and how to classify any input based on this structure. This approach keeps the advantages of existing techniques (low inference complexity) but allows one to build efficient classifiers in one learning step. The learning algorithm is inspired by reinforcement learning and policy-gradient techniques which allows us to integrate the two steps (building the tree, and learning the classifier) in one single algorithm

    Boosting insights in insurance tariff plans with tree-based machine learning methods

    Full text link
    Pricing actuaries typically operate within the framework of generalized linear models (GLMs). With the upswing of data analytics, our study puts focus on machine learning methods to develop full tariff plans built from both the frequency and severity of claims. We adapt the loss functions used in the algorithms such that the specific characteristics of insurance data are carefully incorporated: highly unbalanced count data with excess zeros and varying exposure on the frequency side combined with scarce, but potentially long-tailed data on the severity side. A key requirement is the need for transparent and interpretable pricing models which are easily explainable to all stakeholders. We therefore focus on machine learning with decision trees: starting from simple regression trees, we work towards more advanced ensembles such as random forests and boosted trees. We show how to choose the optimal tuning parameters for these models in an elaborate cross-validation scheme, we present visualization tools to obtain insights from the resulting models and the economic value of these new modeling approaches is evaluated. Boosted trees outperform the classical GLMs, allowing the insurer to form profitable portfolios and to guard against potential adverse risk selection

    Formal Verification of Input-Output Mappings of Tree Ensembles

    Full text link
    Recent advances in machine learning and artificial intelligence are now being considered in safety-critical autonomous systems where software defects may cause severe harm to humans and the environment. Design organizations in these domains are currently unable to provide convincing arguments that their systems are safe to operate when machine learning algorithms are used to implement their software. In this paper, we present an efficient method to extract equivalence classes from decision trees and tree ensembles, and to formally verify that their input-output mappings comply with requirements. The idea is that, given that safety requirements can be traced to desirable properties on system input-output patterns, we can use positive verification outcomes in safety arguments. This paper presents the implementation of the method in the tool VoTE (Verifier of Tree Ensembles), and evaluates its scalability on two case studies presented in current literature. We demonstrate that our method is practical for tree ensembles trained on low-dimensional data with up to 25 decision trees and tree depths of up to 20. Our work also studies the limitations of the method with high-dimensional data and preliminarily investigates the trade-off between large number of trees and time taken for verification
    corecore