93,290 research outputs found

    Evaluating GPR polarization effects for imaging fracture channeling and estimating fracture properties

    Get PDF
    This study investigates the polarization properties of GPR signals for imaging flow channeling in a discrete fracture. In particular this study examines if cross-polarized components could be used to image channels in a horizontal fracture. To understand how the polarization of radar waves affects imaging of channelized flow in a horizontal fracture, i) a series of numerical forward models was created with varying fracture aperture, channel orientation, and varying fracture water electrical conductivity, and ii) mulitpolarization field data were used to monitor dipole flow saline tracer tests in a subhorizontal fracture. Numerical modeling demonstrated that the cross-polarized data held useful information about channels but only when the channel is oriented oblique to the E-W wavefield orientation. When the channel is oriented oblique to survey line, summation of the cross-polarized and co-polarized components results in an accurate representation of the total scattered energy from the channel. When the channel is oriented parallel or orthogonal to survey line summation the co-polarized components represent the total scattered energy. In addition to numerical modeling multipolarization, time lapse GPR field data was acquired at the Altona Flat Rock test site in New York State. These surveys were conducted under varying artificial hydraulic gradients, to investigate channeled transport of different concentrations of saline tracer through the fracture and to highlight flow channels between wells. Amplitude analysis of the cross-polarized components reveals flow channeling in an E-W orientation which suggests good well connectivity in that direction. N-S amplitude trends suggest poor hydraulic connectivity. In conclusion, this investigation reveals that cross-polarized components of GPR signals contain useful information for imaging channeled flow in fractured media

    Deterministic Domain Wall Motion Orthogonal To Current Flow Due To Spin Orbit Torque.

    Get PDF
    Spin-polarized electrons can move a ferromagnetic domain wall through the transfer of spin angular momentum when current flows in a magnetic nanowire. Such current induced control of a domain wall is of significant interest due to its potential application for low power ultra high-density data storage. In previous reports, it has been observed that the motion of the domain wall always happens parallel to the current flow - either in the same or opposite direction depending on the specific nature of the interaction. In contrast, here we demonstrate deterministic control of a ferromagnetic domain wall orthogonal to current flow by exploiting the spin orbit torque in a perpendicularly polarized Ta/CoFeB/MgO heterostructure in presence of an in-plane magnetic field. Reversing the polarity of either the current flow or the in-plane field is found to reverse the direction of the domain wall motion. Notably, such orthogonal motion with respect to current flow is not possible from traditional spin transfer torque driven domain wall propagation even in presence of an external magnetic field. Therefore the domain wall motion happens purely due to spin orbit torque. These results represent a completely new degree of freedom in current induced control of a ferromagnetic domain wall

    Shear wave splitting in SE Brazil: an effect of active or fossil upper mantle flow, or both?

    No full text
    International audienceWe investigated the structure of the upper mantle beneath southeastern Brazil using teleseismic shear wave splitting measurements. Measurements were performed on seismic data recorded in the Ribeira and Brasilia Neoproterozoic belts, which wrap around the southern termination of the São Francisco craton and disappear westward under the Paraná basin. In the northern Ribeira belt, dominated by thrust tectonics, the fast shear wave polarization planes trend on average N080°E, whereas in the central domain, dominated by strike-slip tectonics, fast shear waves are polarized parallel to the structural trend (N065°E). Stations located above the main transcurrent fault display large delay times (> 2.5 s). Such values, among the largest in the world, require either an unusually large intrinsic anisotropy frozen within the lithosphere, or a contribution from both the lithospheric and asthenospheric mantle. Within the southern Brasilia belt, fast split shear waves are polarized parallel to the structural trend of the belt, at a high angle from the APM. Although part of our data set strongly favors an origin of anisotropy related to a fabric frozen in the lithospheric mantle since the Neoproterozoic, a contribution of the asthenospheric flow related to the present day plate motion is also required to explain the observed splitting parameters

    Oblique Shocks As The Origin Of Radio To Gamma-ray Variability In AGN

    Full text link
    The `shock in jet' model for cm-waveband blazar variability is revisited, allowing for arbitrary shock orientation with respect to the jet flow direction, and both random and ordered magnetic field. It is shown that oblique shocks can explain events with swings in polarization position angle much less than the 90 deg. associated with transverse structures, while retaining the general characteristics of outbursts, including spectral behavior and level of peak percentage polarization. Models dominated by a force-free, minimum energy magnetic field configuration (essentially helical) display a shallow rise in percentage polarization and frequency dependent swing in polarization position angle not in agreement with the results of single-dish monitoring observations, implying that the field is predominantly random in the quiescent state. Outbursts well-explained by the `shock in jet' model are present during gamma-ray flaring in several sources, supporting the idea that shock events are responsible for activity from the radio to gamma-ray bands.Comment: 19 pages, 8 figures, accepted for publication in Ap

    Current distribution inside Py/Cu lateral spin-valve device

    Full text link
    We have investigated experimentally the non-local voltage signal (NLVS) in the lateral permalloy (Py)/Cu/Py spin valve devices with different width of Cu stripes. We found that NLVS strongly depends on the distribution of the spin-polarized current inside Cu strip in the vicinity of the Py-detector. To explain these data we have developed a diffusion model describing spatial (3D) distribution of the spin-polarized current in the device. The results of our calculations show that NLVS is decreased by factor of 10 due to spin flip-scattering occurring at Py/Cu interface. The interface resistivity on Py/Cu interface is also present, but its contribution to reduction of NLVS is minor. We also found that most of the spin-polarized current is injected within the region 30 nm from Py-injector/Cu interface. In the area at Py-detector/Cu interface, the spin-polarized current is found to flow mainly close on the injector side, with 1/e exponential decay in the magnitude within the distance 80 nm.Comment: 10 pages, 14 figure

    Magnetic Field Structure from Synchrotron Polarization

    Full text link
    Total magnetic fields in spiral galaxies, as observed through their total synchrotron emission, are strongest (up to \simeq 30\mu G) in the spiral arms. The degree of radio polarization is low; the field in the arms must be mostly turbulent or tangled. Polarized synchrotron emission shows that the resolved regular fields are generally strongest in the interarm regions (up to \simeq 15\mu G), sometimes forming 'magnetic arms' parallel to the optical arms. The field structure is spiral in almost every galaxy, even in flocculent and bright irregular types which lack spiral arms. The observed large-scale patterns of Faraday rotation in several massive spiral galaxies reveal coherent regular fields, as predicted by dynamo models. However, in most galaxies observed so far no simple patterns of Faraday rotation could be found. Either many dynamo modes are superimposed and cannot be resolved by present-day telescopes, or most of the apparently regular field is in fact anisotropic random, with frequent reversals, due to shearing and compressing gas flows. In galaxies with massive bars, the polarization pattern follows the gas flow. However, around strong shocks in bars, the compression of the regular field is much lower than that of the gas; the regular field decouples from the cold gas and is strong enough to affect the flow of the diffuse warm gas. -- The average strength of the total magnetic field in the Milky Way is 6\mu G near the sun and increases to 20-40\mu G in the Galactic center region. The Galactic field is mostly parallel to the plane, except in the center region. Rotation measure data from pulsars indicate several field reversals, unlike external galaxies, but some reversals could be due to distortions of the nearby field.Comment: 18 pages, 9 figures. To be published in "Polarisation 2005" (Proc. of the conference held in Paris, 12-15 Sept. 2005), eds. F. Boulanger and M.A. Miville-Deschenes, EAS Publications Series; Two small typos corrected, one reference added and three updated 23/06/200

    Optical and Radio Polarimetry of the M87 Jet at 0.2" Resolution

    Full text link
    We discuss optical (HST/WFPC2 F555W) and radio (15 GHz VLA) polarimetry observations of the M87 jet taken during 1994-1995. Many knot regions are very highly polarized (∼40−50\sim 40-50%, approaching the theoretical maximum for optically thin synchrotron radiation), suggesting highly ordered magnetic fields. High degrees of polarization are also observed in interknot regions. While the optical and radio polarization maps share many similarities, we observe significant differences between the radio and optical polarized structures, particularly for bright knots in the inner jet, giving us important insight into the jet's radial structure. Unlike in the radio, the optical magnetic field position angle becomes perpendicular to the jet at the upstream ends of knots HST-1, D, E and F. Moreover, the optical polarization decreases markedly at the position of the flux maxima in these knots. In contrast, the magnetic field position angle observed in the radio remains parallel to the jet in most of these regions, and the decreases in radio polarization are smaller. More minor differences are seen in other jet regions. Many of the differences between optical and radio polarimetry results can be explained in terms of a model whereby shocks occur in the jet interior, where higher-energy electrons are concentrated and dominate both polarized and unpolarized emissions in the optical, while the radio maps show strong contributions from lower-energy electrons in regions with {\bf B} parallel, near the jet surface.Comment: 28 pages, 7 figures; accepted for publication in AJ (May 1999
    • …
    corecore