22 research outputs found

    Distributed Learning from Interactions in Social Networks

    Get PDF
    We consider a network scenario in which agents can evaluate each other according to a score graph that models some interactions. The goal is to design a distributed protocol, run by the agents, that allows them to learn their unknown state among a finite set of possible values. We propose a Bayesian framework in which scores and states are associated to probabilistic events with unknown parameters and hyperparameters, respectively. We show that each agent can learn its state by means of a local Bayesian classifier and a (centralized) Maximum-Likelihood (ML) estimator of parameter-hyperparameter that combines plain ML and Empirical Bayes approaches. By using tools from graphical models, which allow us to gain insight on conditional dependencies of scores and states, we provide a relaxed probabilistic model that ultimately leads to a parameter-hyperparameter estimator amenable to distributed computation. To highlight the appropriateness of the proposed relaxation, we demonstrate the distributed estimators on a social interaction set-up for user profiling.Comment: This submission is a shorter work (for conference publication) of a more comprehensive paper, already submitted as arXiv:1706.04081 (under review for journal publication). In this short submission only one social set-up is considered and only one of the relaxed estimators is proposed. Moreover, the exhaustive analysis, carried out in the longer manuscript, is completely missing in this versio

    Quantifying and minimizing risk of conflict in social networks

    Get PDF
    Controversy, disagreement, conflict, polarization and opinion divergence in social networks have been the subject of much recent research. In particular, researchers have addressed the question of how such concepts can be quantified given people’s prior opinions, and how they can be optimized by influencing the opinion of a small number of people or by editing the network’s connectivity. Here, rather than optimizing such concepts given a specific set of prior opinions, we study whether they can be optimized in the average case and in the worst case over all sets of prior opinions. In particular, we derive the worst-case and average-case conflict risk of networks, and we propose algorithms for optimizing these. For some measures of conflict, these are non-convex optimization problems with many local minima. We provide a theoretical and empirical analysis of the nature of some of these local minima, and show how they are related to existing organizational structures. Empirical results show how a small number of edits quickly decreases its conflict risk, both average-case and worst-case. Furthermore, it shows that minimizing average-case conflict risk often does not reduce worst-case conflict risk. Minimizing worst-case conflict risk on the other hand, while computationally more challenging, is generally effective at minimizing both worst-case as well as average-case conflict risk
    corecore