research

Distributed Learning from Interactions in Social Networks

Abstract

We consider a network scenario in which agents can evaluate each other according to a score graph that models some interactions. The goal is to design a distributed protocol, run by the agents, that allows them to learn their unknown state among a finite set of possible values. We propose a Bayesian framework in which scores and states are associated to probabilistic events with unknown parameters and hyperparameters, respectively. We show that each agent can learn its state by means of a local Bayesian classifier and a (centralized) Maximum-Likelihood (ML) estimator of parameter-hyperparameter that combines plain ML and Empirical Bayes approaches. By using tools from graphical models, which allow us to gain insight on conditional dependencies of scores and states, we provide a relaxed probabilistic model that ultimately leads to a parameter-hyperparameter estimator amenable to distributed computation. To highlight the appropriateness of the proposed relaxation, we demonstrate the distributed estimators on a social interaction set-up for user profiling.Comment: This submission is a shorter work (for conference publication) of a more comprehensive paper, already submitted as arXiv:1706.04081 (under review for journal publication). In this short submission only one social set-up is considered and only one of the relaxed estimators is proposed. Moreover, the exhaustive analysis, carried out in the longer manuscript, is completely missing in this versio

    Similar works