13 research outputs found

    Lines Missing Every Random Point

    Full text link
    We prove that there is, in every direction in Euclidean space, a line that misses every computably random point. We also prove that there exist, in every direction in Euclidean space, arbitrarily long line segments missing every double exponential time random point.Comment: Added a section: "Betting in Doubly Exponential Time.

    Mutual Dimension

    Get PDF
    We define the lower and upper mutual dimensions mdim(x:y)mdim(x:y) and Mdim(x:y)Mdim(x:y) between any two points xx and yy in Euclidean space. Intuitively these are the lower and upper densities of the algorithmic information shared by xx and yy. We show that these quantities satisfy the main desiderata for a satisfactory measure of mutual algorithmic information. Our main theorem, the data processing inequality for mutual dimension, says that, if f:RmRnf:\mathbb{R}^m \rightarrow \mathbb{R}^n is computable and Lipschitz, then the inequalities mdim(f(x):y)mdim(x:y)mdim(f(x):y) \leq mdim(x:y) and Mdim(f(x):y)Mdim(x:y)Mdim(f(x):y) \leq Mdim(x:y) hold for all xRmx \in \mathbb{R}^m and yRty \in \mathbb{R}^t. We use this inequality and related inequalities that we prove in like fashion to establish conditions under which various classes of computable functions on Euclidean space preserve or otherwise transform mutual dimensions between points.Comment: This article is 29 pages and has been submitted to ACM Transactions on Computation Theory. A preliminary version of part of this material was reported at the 2013 Symposium on Theoretical Aspects of Computer Science in Kiel, German

    Curves That Must Be Retraced

    Get PDF
    We exhibit a polynomial time computable plane curve bfGamma{bf Gamma} that has finite length, does not intersect itself, and is smooth except at one endpoint, but has the following property. For every computable parametrization ff of bfGamma{bfGamma} and every positive integer mm, there is some positive-length subcurve of bfGamma{bfGamma} that ff retraces at least mm times. In contrast, every computable curve of finite length that does not intersect itself has a constant-speed (hence non-retracing) parametrization that is computable relative to the halting problem

    Algorithmic Information, Plane Kakeya Sets, and Conditional Dimension

    Get PDF
    We formulate the conditional Kolmogorov complexity of x given y at precision r, where x and y are points in Euclidean spaces and r is a natural number. We demonstrate the utility of this notion in two ways. 1. We prove a point-to-set principle that enables one to use the (relativized, constructive) dimension of a single point in a set E in a Euclidean space to establish a lower bound on the (classical) Hausdorff dimension of E. We then use this principle, together with conditional Kolmogorov complexity in Euclidean spaces, to give a new proof of the known, two-dimensional case of the Kakeya conjecture. This theorem of geometric measure theory, proved by Davies in 1971, says that every plane set containing a unit line segment in every direction has Hausdorff dimension 2. 2. We use conditional Kolmogorov complexity in Euclidean spaces to develop the lower and upper conditional dimensions dim(x|y) and Dim(x|y) of x given y, where x and y are points in Euclidean spaces. Intuitively these are the lower and upper asymptotic algorithmic information densities of x conditioned on the information in y. We prove that these conditional dimensions are robust and that they have the correct information-theoretic relationships with the well-studied dimensions dim(x) and Dim(x) and the mutual dimensions mdim(x:y) and Mdim(x:y)

    The power of backtracking and the confinement of length

    Get PDF
    We show that there is a point on a computable arc that does not belong to any computable rectifiable curve. We also show that there is a point on a computable rectifiable curve with computable length that does not belong to any computable arc

    Point-Separable Classes of Simple Computable Planar Curves

    Full text link
    In mathematics curves are typically defined as the images of continuous real functions (parametrizations) defined on a closed interval. They can also be defined as connected one-dimensional compact subsets of points. For simple curves of finite lengths, parametrizations can be further required to be injective or even length-normalized. All of these four approaches to curves are classically equivalent. In this paper we investigate four different versions of computable curves based on these four approaches. It turns out that they are all different, and hence, we get four different classes of computable curves. More interestingly, these four classes are even point-separable in the sense that the sets of points covered by computable curves of different versions are also different. However, if we consider only computable curves of computable lengths, then all four versions of computable curves become equivalent. This shows that the definition of computable curves is robust, at least for those of computable lengths. In addition, we show that the class of computable curves of computable lengths is point-separable from the other four classes of computable curves
    corecore