
Mutual Dimension∗

Adam Case and Jack H. Lutz

Department of Computer Science, Iowa State University
Ames, IA 50011 USA

Abstract
We define the lower and upper mutual dimensions mdim(x : y) and Mdim(x : y) between any
two points x and y in Euclidean space. Intuitively these are the lower and upper densities of
the algorithmic information shared by x and y. We show that these quantities satisfy the main
desiderata for a satisfactory measure of mutual algorithmic information. Our main theorem, the
data processing inequality for mutual dimension, says that, if f : Rm → Rn is computable and
Lipschitz, then the inequalities mdim(f(x) : y) ≤ mdim(x : y) and Mdim(f(x) : y) ≤Mdim(x :
y) hold for all x ∈ Rm and y ∈ Rt. We use this inequality and related inequalities that we prove
in like fashion to establish conditions under which various classes of computable functions on
Euclidean space preserve or otherwise transform mutual dimensions between points.
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1 Introduction

Recent interactions among computability theory, algorithmic information theory, and geo-
metric measure theory have assigned a dimension dim(x) and a strong dimension Dim(x) to
each individual point x in a Euclidean space Rn. These dimensions, which are real numbers
satisfying 0 ≤ dim(x) ≤ Dim(x) ≤ n, have been shown to be geometrically meaningful. For
example, the classical Hausdorff dimension dimH(E) of any set E ⊆ Rn that is a union of
Π0

1 (computably closed) sets is now known [16, 10] to admit the pointwise characterization

dimH(E) = sup
x∈E

dim(x).

More recent investigations of the dimensions of individual points in Euclidean space have
shed light on connectivity [18, 22], self-similar fractals [17, 6], rectifiability of curves [9, 20, 8],
and Brownian motion [11].

In their original formulations [16, 1], dim(x) is cdim({x}) and Dim(x) is cDim({x}),
where cdim and cDim are constructive versions of classical Hausdorff and packing dimensions
[7], respectively. Accordingly, dim(x) and Dim(x) are also called constructive fractal dimen-
sions. It is often most convenient to think of these dimensions in terms of the Kolmogorov
complexity characterization theorems

dim(x) = lim inf
r→∞

Kr(x)
r

, Dim(x) = lim sup
r→∞

Kr(x)
r

, (1.1)
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where Kr(x), the Kolmogorov complexity of x at precision r, is defined later in this introduc-
tion [19, 1, 17]. These characterizations support the intuition that dim(x) and Dim(x) are
the lower and upper densities of algorithmic information in the point x.

In this paper we move the pointwise theory of dimension forward in two ways. We
formulate and investigate the mutual dimensions — intuitively, the lower and upper densities
of shared algorithmic information — between two points in Euclidean space, and we investigate
the conservation of dimensions and mutual dimensions by computable functions on Euclidean
space. We expect this to contribute to both computable analysis — the theory of scientific
computing [3] — and algorithmic information theory.

The analyses of many computational scenarios call for quantitative measures of the degree
to which two objects are correlated. In classical (Shannon) information theory, the most
useful such measure is the mutual information I(X : Y ) between two probability spaces X
and Y [5]. In the algorithmic information theory of finite strings, the (algorithmic) mutual
information I(x : y) between two individual strings x, y ∈ {0, 1}∗ plays an analogous role
[15]. Under modest assumptions, if x and y are drawn from probability spaces X and Y of
strings respectively, then the expected value of I(x : y) is very close to I(X : Y ) [15]. In this
sense algorithmic mutual information is a refinement of Shannon mutual information.

Our formulation of mutual dimensions in Euclidean space is based on the algorithmic
mutual information I(x : y), but we do not use the seemingly obvious approach of using the
binary expansions of the real coordinates of points in Euclidean space. It has been known
since Turing’s famous correction [23] that binary notation is not a suitable representation for
the arguments and values of computable functions on the reals. (See also [12, 24].) This is
why the characterization theorems (1.1) use Kr(x), the Kolmogorov complexity of a point
x ∈ Rn at precision r, which is the minimum Kolmogorov complexity K(q) — defined in a
standard way [15] using a standard binary string representation of q — for all rational points
q ∈ Qn∩B2−r (x), where B2−r (x) is the open ball of radius 2−r about x. For the same reason
we base our development here on the mutual information Ir(x : y) between points x ∈ Rm
and y ∈ Rn at precision r. This is the minimum value of the algorithmic mutual information
I(p : q) for all rational points p ∈ Qm ∩ B2−r (x) and q ∈ Qn ∩ B2−r (y). Intuitively, while
there are infinitely many pairs of rational points in these balls and many of these pairs
will contain a great deal of “spurious” mutual information (e.g., any finite message can be
encoded into both elements of such a pair), a pair of rational points p and q achieving the
minimum I(p : q) = Ir(x : y) will only share information that their proximities to x and y
force them to share. Sections 2 and 3 below develop the ideas that we have sketched in this
paragraph, along with some elements of the fine-scale geometry of algorithmic information in
Euclidean space that are needed for our results. A modest generalization of Levin’s coding
theorem (Theorem 2.1) is essential for this work.

In analogy with the characterizations (1.1) we define our mutual dimensions as the lower
and upper densities of algorithmic mutual information,

mdim(x : y) = lim inf
r→∞

Ir(x : y)
r

, Mdim(x : y) = lim sup
r→∞

Ir(x : y)
r

, (1.2)

in section 4. We also prove in that section that these quantities satisfy all but one of the
desiderata (e.g., see [2]) for any satisfactory notion of mutual information.

We save the most important desideratum — our main theorem — for section 5. This is
the data processing inequality for mutual dimension (actually two inequalities, one for mdim
and one for Mdim). The data processing inequality of Shannon information theory [5] says
that, for any two probability spaces X and Y and any function f : X → Y ,

I(f(X) : Y ) ≤ I(X : Y ), (1.3)
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118 Mutual Dimension

i.e., the induced probability space f(X) obtained by “processing the information in X

through f” does not share any more information with Y than X shares with Y . The data
processing inequality of algorithmic information theory [15] says that, for any computable
partial function f : {0, 1}∗ → {0, 1}∗, there is a constant cf ∈ N (essentially the number of
bits in a program that computes f) such that, for all strings x ∈ domf and y ∈ {0, 1}∗,

I(f(x) : y) ≤ I(x : y) + cf . (1.4)

That is, modulo the constant cf , f(x) contains no more information about y than x contains
about y.

The data processing inequality for points in Euclidean space is a theorem about functions
f : Rm → Rn that are computable in the sense of computable analysis [3, 12, 24]. Briefly, an
oracle for a point x ∈ Rm is a function gx : N→ Qm such that |gx(r)− x| ≤ 2−r holds for
all r ∈ N. A function f : Rm → Rn is computable if there is an oracle Turing machine M
such that, for every x ∈ Rm and every oracle gx for x, the function r →Mgx(r) is an oracle
for f(x).

Given (1.2), (1.3), and (1.4), it is natural to conjecture that, for every computable function
f : Rm → Rn, the inequalities

mdim(f(x) : y) ≤ mdim(x : y), Mdim(f(x) : y) ≤Mdim(x : y) (1.5)

hold for all x ∈ Rm and y ∈ Rt. However, this is not the case. For a simple example, there
exist computable functions f : R→ R2 that are space-filling, e.g., satisfy [0, 1]2 ⊆ range f

[4]. For such a function f we can choose x ∈ R such that dim(f(x)) = 2. Letting y = f(x),
we then have

mdim(f(x) : y) = dim(f(x)) = 2 > 1 ≥ Dim(x) ≥Mdim(x : y),

whence both inequalities in (1.5) fail.
The difficulty here is that the above function f is extremely sensitive to its input, and

this enables it to compress a great deal of “sparse” high-precision information about its
input x into “dense” lower-precision information about its output f(x). Many theorems
of mathematical analysis exclude such excessively sensitive functions by assuming a given
function f to be Lipschitz, meaning that there is a real number c > 0 such that, for all x
and x′, |f(x) − f(x′)| ≤ c|x − x′|. This turns out to be exactly what is needed here. In
section 5 we prove prove the data processing inequality for mutual dimension (Theorem 5.1),
which says that the conditions (1.5) hold for every function f : Rm → Rn that is computable
and Lipschitz. In fact, we derive the data processing inequality from the more general
modulus processing lemma (Lemma 5.2). This lemma yields quantitative variants of the
data processing inequality for other classes of functions. For example, we use the modulus
processing lemma to prove that, if f : Rm → Rn is Hölder with exponent α (meaning that
0 < α ≤ 1 and there is a real number c > 0 such that |f(x) − f(x′)| ≤ c|x − x′|α for all
x, x′ ∈ Rm), then the inequalities

mdim(f(x) : y) ≤ 1
α
mdim(x : y), Mdim(f(x) : y) ≤ 1

α
Mdim(x : y) (1.6)

hold for all x ∈ Rm and y ∈ Rt.
In section 5 we also derive reverse data processing inequalities, e.g., giving conditions

under which mdim(x : y) ≤ mdim(f(x) : y). We then use data processing inequalities and
their reverses to explore conditions under which computable functions on Euclidean space
preserve, approximately preserve, or otherwise transform mutual dimensions between points.
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We expect mutual dimensions and the data processing inequalities to be useful for future
research in computable analysis. We also expect the development of mutual dimensions in
Euclidean spaces — highly structured spaces in which it is clear that mdim and Mdim are
the right notions — to guide future explorations of mutual information in more challenging
contexts, including computational complexity and the computational theory of chemical
reaction networks.

2 Kolmogorov Complexity in Euclidean Space

We begin by developing some elements of the fine-scale geometry of algorithm information in
Euclidean space. In this context it is convenient to regard the Kolmogorov complexity of a
set of strings to be the number of bits required to specify some element of the set.

Definition (Shen and Vereshchagin [21]). The Kolmogorov complexity of a set S ⊆ {0, 1}∗
is

K(S) = min{K(x) |x ∈ S}.

Note that S ⊆ T implies K(S) ≥ K(T ). Intuitively, small sets may require “higher resolution”
than large sets.

Similarly, we define the algorithmic probability of a set S ⊆ {0, 1}∗ to be

m(S) =
∑

π∈{0,1}∗

U(π)∈S

2−|π|,

where U is the fixed universal Turing machine used in defining Kolmogorov complexity. For
a single string x ∈ {0, 1}∗, we write m(x) = m({x}).

We need a generalization of Levin’s coding theorem [13, 14] that is applicable to certain
systems of disjoint sets.

Notation. Let B ⊆ N× N× {0, 1}∗ and r, s ∈ N.
1. The (r, s)-block of B is the set Br,s = {x ∈ {0, 1}∗ | (r, s, x) ∈ B}.
2. The rth layer of B is the sequence Br = (Br,t | t ∈ N).

Definition. A layered disjoint system (LDS) is a set B ⊆ N× N× {0, 1}∗ such that, for all
r, s, t ∈ N,

s 6= t⇒ Br,s ∩Br,t = ∅.

Note that this definition only requires the sets within each layer of B to be disjoint.

I Theorem 2.1 (LDS coding theorem). For every computably enumerable layered disjoint
system B there is a constant cB ∈ N such that, for all r, t ∈ N,

K(Br,t) ≤ log 1
m(Br,t)

+K(r) + cB .

If we take Br,t = {st}, where st is the tth element of the standard enumeration of {0, 1}∗,
then Theorem 2.1 tells us that K(x) ≤ log 1

m(x) +O(1), which is Levin’s coding theorem.
Our next objective is to use the LDS coding theorem to obtain useful bounds on the

number of times that the value K(S) is attained or approximated.
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120 Mutual Dimension

Definition. Let S ⊆ {0, 1}∗ and d ∈ N.
1. A d-approximate K-minimizer of S is a string x ∈ S for which K(x) ≤ K(S) + d.
2. A K-minimizer of S is a 0-approximate K-minimizer of S.
We use the LDS coding theorem to prove the following.

I Theorem 2.2. For every computably enumerable layered disjoint system B there is a
constant cB ∈ N such that, for all r, t, d ∈ N, the block Br,t has at most 2d+K(r)+cB d-
approximate K-minimizers.

We now lift our terminology and notation to Euclidean space Rn. In this context, a
layered disjoint system is a set B ⊆ N× N× Rn such that, for all r, s, t ∈ N,

s 6= t⇒ Br,s ∩Br,t = ∅.

We lift our Kolmogorov complexity notation and terminology to Rn in two steps:
1. Lifting to Qn: Each rational point q ∈ Qn is encoded as a string x ∈ {0, 1}∗ in a natural

way. We then write K(q) for K(x). In this manner, K(S), m(S), K-minimizers, and
d-approximate K-minimizers are all defined for sets S ⊆ Qn.

2. Lifting to Rn. For S ⊆ Rn, we define K(S) = K(S ∩ Qn) and m(S) = m(S ∩ Qn).
Similarly, a K-minimizer for S is a K-minimizer for S ∩Qn, etc.

For each r ∈ N and each m = (m1, . . . ,mn) ∈ Zn, let

Q(r)
m = [m1 · 2−r, (m+ 1) · 2−r)× · · · × [mn · 2−r, (mn + 1) · 2−r)

be the r-dyadic cube at m. Note that each Q(r)
m is “half-open, half-closed” in such a way that,

for each r ∈ N, the family

Q(r) = {Q(r)
m |m ∈ Zn}

is a partition of Rn. It follows that (modulo trivial encoding) the collection

Q = {Q(r)
m | r ∈ N and m ∈ Zn}

of all dyadic cubes is a layered disjoint system whose rth layer is Q(r). Moreover, the set

{(r,m, q) ∈ N× Zn ×Qn | q ∈ Q(r)
m }

is decidable, so Theorem 2.2 has the following useful consequence.

I Corollary 2.3. There is a constant c ∈ N such that, for all r, d ∈ N, no r-dyadic cube has
more than 2d+K(r)+c d-approximate K-minimizers. In particular, no r-dyadic cube has more
than 2K(r)+c K-minimizers.

The Kolmogorov complexity of an arbitrary point in Euclidean space depends on both
the point and a precision parameter.

Definition. Let x ∈ Rn and r ∈ N. The Kolmogorov complexity of x at precision r is

Kr(x) = K(B2−r (x)).

That is, Kr(x) is the number of bits required to specify some rational point in the open
ball B2−r (x). Note that, for each q ∈ Qn, Kr(q)↗ K(q) as r →∞.

A careful analysis of the relationship between cubes and balls enables us to derive the
following from Corollary 2.3.

I Theorem 2.4. There is a constant c ∈ N such that, for all r, d ∈ N, no open ball of radius
2−r has more than 2d+2K(r)+c d-approximate K-minimizers. In particular, no open ball of
radius 2−r has more than 22K(r)+c K-minimizers.
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3 Mutual Information in Euclidean Space

This section develops the mutual dimensions of points in Euclidean space at a given precision.
As in section 2 we assume that rational points q ∈ Qn are encoded as binary strings in some
natural way. Mutual information between rational points is then defined from conditional
Kolmogorov complexity in the standard way [15] as follows.

Definition. Let p ∈ Qm, r ∈ Qn, s ∈ Qt.
1. The mutual information between p and q is

I(p : q) = K(q)−K(q | p).

2. The mutual information between p and q given s is

I(p : q|s) = K(q | s)−K(q | p, s).

The following properties of mutual information are well known [15].

I Theorem 3.1. Let p ∈ Qm and q ∈ Qn.
1. I(p,K(p) : q) = K(p) +K(q)−K(p, q) +O(1).
2. I(p,K(p) : q) = I(q,K(q) : p) +O(1).
3. I(p : q) ≤ min {K(p),K(q)}+O(1).

(Each of the properties 1 and 2 above is sometimes called symmetry of mutual information.)
Mutual information between points in Euclidean space at a given precision is now defined

as follows.

Definition. The mutual information of x ∈ Rn and y ∈ Rt at precision r ∈ N is

Ir(x : y) = min{I(qx : qy) | qx ∈ B2−r (x) ∩Qn and qy ∈ B2−r (y) ∩Qt}.

As noted in the introduction, the role of the minimum in the above definition is to
eliminate “spurious” information that points qx ∈ B2−r ∩Qn and qy ∈ B2−r (y) ∩Qt might
share for reasons not forced by their proximities to x and y, respectively.

Notation. We also use the quantity

Jr(x : y) = min{I(qx : qy) | px is a K-minimizer of B2−r (x) and
py is a K–minimizer of B2−r (y)}.

Although Jr(x : y), having two “layers of minimization”, is somewhat more involved than
Ir(x : y), one can imagine using it as the definition of mutual information. Using Theorem
2.4 (and hence the LDS coding theorem), we prove the useful fact that Jr(x : y) does not
differ greatly from Ir(x : y).

I Theorem 3.2. For all x ∈ Rn and y ∈ Rt,

Ir(x : y) = Jr(x : y) + o(r)

as r →∞.

Using this we establish the following useful properties of Ir(x : y).

I Theorem 3.3. For all x ∈ Rn and y ∈ Rt, the following hold as r →∞.
1. Ir(x : y) = Kr(x) +Kr(y)−Kr(x, y) + o(r).
2. Ir(x : y) ≤ min{Kr(x),Kr(y)}+ o(r).
3. If x and y are independently random, then Ir(x : y) = o(r).
4. Ir(x : y) = Ir(y : x) + o(r).
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122 Mutual Dimension

4 Mutual Dimension in Euclidean Space

We now define mutual dimensions between points in Euclidean space(s).

Definition. The lower and upper mutual dimensions between x ∈ Rn and y ∈ Rt are

mdim(x : y) = lim inf
r→∞

Ir(x : y)
r

and

Mdim(x : y) = lim sup
r→∞

Ir(x : y)
r

,

respectively.

With the exception of the data processing inequality, which we prove in section 5, the
following theorem says that the mutual dimensionsmdim andMdim have the basic properties
that any mutual information measure should have. (See, for example, [2].)

I Theorem 4.1. For all x ∈ Rn and y ∈ Rt, the following hold.
1. mdim(x : y) ≥ dim(x) + dim(y)−Dim(x, y).
2. Mdim(x : y) ≤ Dim(x) +Dim(y)− dim(x, y).
3. mdim(x : y) ≤ min{dim(x), dim(y)}, Mdim(x : y) ≤ min{Dim(x), Dim(y)}.
4. 0 ≤ mdim(x : y) ≤Mdim(x : y) ≤ min{n, t}.
5. If x and y are independently random, then Mdim(x : y) = 0.
6. mdim(x : y) = mdim(y : x), Mdim(x : y) = Mdim(y : x).

5 Data Processing Inequalities and Applications

Our objectives in this section are to prove data processing inequalities for lower and upper
mutual dimensions in Euclidean space and to use these inequalities to investigate how certain
functions on Euclidean space preserve or predictably transform mutual dimensions.

The following result is our main theorem. The meaning and necessity of the Lipschitz
hypothesis are explained in the introduction.

I Theorem 5.1 (data processing inequality). If f : Rn → Rt is computable and Lipschitz,
then, for all x ∈ Rn and y ∈ Rt,

mdim(f(x) : y) ≤ mdim(x : y)

and

Mdim(f(x) : y) ≤Mdim(x : y).

We in fact prove a stronger result.

Definition. A modulus (of uniform continuity) for a function f : Rn → Rk is a nondecreasing
function m : N→ N such that, for all x, y ∈ Rn and r ∈ N,

|x− y| ≤ 2−m(r) ⇒ |f(x)− f(y)| ≤ 2−r.
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I Lemma 5.2 (modulus processing lemma). If f : Rn → Rk is a computable and uniformly
continuous function, and m is a computable modulus for f , then for all x ∈ Rn and y ∈ Rt,

mdim(f(x) : y) ≤ mdim(x : y)
(

lim sup
r→∞

m(r + 1)
r

)
and

Mdim(f(x) : y) ≤Mdim(x : y)
(

lim sup
r→∞

m(r + 1)
r

)
.

Theorem 5.1 follows immediately from Lemma 5.2 and the following.

I Observation 5.3. If a function f : Rn → Rk is Lipschitz, then there exists s ∈ N such
that m(r) = r + s is a modulus for f .

In similar fashion, we can derive the following fact from the modulus processing lemma.
(Recall the definition of Hölder functions given in the introduction.)

I Corollary 5.4. If f : Rn → Rk is computable and Hölder with exponent α, then, for all
x ∈ Rn and y ∈ Rt,

mdim(f(x) : y) ≤ 1
α
mdim(x : y)

and

Mdim(f(x) : y) ≤ 1
α
Mdim(x : y).

We next develop reverse versions of the above inequalities.

Notation. Let n ∈ Z+.
1. [n] = {1, · · · , n}.
2. For S ⊆ [n], x ∈ R|S|, y ∈ Rn−|S|, the string

x ∗S y ∈ Rn

is obtained by placing the components of x into the positions in S (in order) and the
components of y into the positions in [n] \ S (in order).

Definition. Let f : Rn → Rk.
1. f is co-Lipschitz if there is a real number c > 0 such that for all x, y ∈ Rn,

|f(x)− f(y)| ≥ c|x− y|.

2. f is bi-Lipschitz if f is both Lipschitz and co-Lipschitz.
3. For S ⊆ [n], f is S-co-Lipschitz if there is a real number c > 0 such that, for all u, v ∈ R|S|

and y ∈ Rn−|S|,

|f(u ∗S y)− f(v ∗S y)| ≥ c|u− v|.

4. For i ∈ [n], f is co-Lipschitz in its ith argument if f is {i}-co-Lipschitz.

Note that f is [n]-co-Lipschitz if and only if f is co-Lipschitz.
Example. The function f : Rn → R defined by

f(x1, · · · , xn) = x1 + · · ·+ xn

is S-co-Lipschitz if and only if |S| ≤ 1. In particular, if n ≥ 2, then f is co-Lipschitz in every
argument, but f is not co-Lipschitz.

We next relate co-Lipschitz conditions to moduli.
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124 Mutual Dimension

Definition. Let f : Rn → Rk.
1. An inverse modulus for f is a nondecreasing function m : N → N such that, for all

x, y ∈ Rn and r ∈ N,

|f(x)− f(y)| ≤ 2−m(r) ⇒ |x− y| ≤ 2−r.

2. Let S ⊆ [n]. An S-inverse modulus for f is a nondecreasing function m : N → N such
that, for all u, v ∈ R|S|, all y ∈ Rn−|S|, and all r ∈ N,

|f(u ∗S y)− f(v ∗S y)| ≤ 2−m(r) ⇒ |u− v| ≤ 2−r.

3. Let i ∈ [n]. An inverse modulus for f in its ith argument is an {i}-inverse modulus for f .

I Observation 5.5. Let f : Rn → Rk and S ⊆ [n].
1. If f is S-co-Lipschitz, then there is a positive constant t ∈ N such that m′(r) = r + t is

an S-inverse modulus of f .
2. If f is co-Lipschitz, then there is a positive constant t ∈ N such that m′(r) = r + t is an

inverse modulus of f .

I Lemma 5.6 (reverse modulus processing lemma). If f : Rn → Rk is a uniformly continuous
function and m′ is a computable S-inverse modulus for f , then, for all S ⊆ [n], x ∈ R|S|,
y ∈ Rt, and z ∈ Rn−|S|,

mdim(x : y) ≤ mdim((f(x ∗S z), z) : y)
(

lim sup
r→∞

m′(r + 1)
r

)
and

Mdim(x : y) ≤Mdim((f(x ∗S z), z) : y)
(

lim sup
r→∞

m′(r + 1)
r

)
.

By Observation 5.5 and Lemma 5.6, we have the following.

I Theorem 5.7 (reverse data processing inequality). If S ⊆ [n] and f : Rn → Rk is computable
and S-co-Lipschitz, then, for all x ∈ R|S|, y ∈ Rt, and z ∈ Rn−|S|,

mdim(x : y) ≤ mdim((f(x ∗S z), z) : y)

and

Mdim(x : y) ≤Mdim((f(x ∗S z), z) : y).

Definition. Let f : Rn → Rk and 0 < α ≤ 1.
1. f is co-Hölder with exponent α if there is a real number c > 0 such that for all x, y ∈ Rn,

|x− y| ≤ c|f(x)− f(y)|α.

2. For S ⊆ [n], f is S-co-Hölder with exponent α if there is a real number c > 0 such that,
for all u, v ∈ R|S| and y ∈ Rn−|S|,

|u− v| ≤ c|f(u ∗S y)− f(v ∗S y)|α.

I Corollary 5.8. If S ⊆ [n] and f : Rn → Rk is computable and S-co-Hölder with exponent
α, then, for all x ∈ R|S|, y ∈ Rt, and z ∈ Rn−|S|,

mdim(x : y) ≤ 1
α
mdim((f(x ∗S z), z) : y)

and

Mdim(x : y) ≤ 1
α
Mdim((f(x ∗S z), z) : y).
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The rest of this section is devoted to applications of the data processing inequalities and
their reverses.

I Theorem 5.9 (mutual dimension conservation inequality). If f : Rn → Rk and g : Rt → Rl
are computable and Lipschitz, then, for all x ∈ Rn and y ∈ Rt,

mdim(f(x) : g(y)) ≤ mdim(x : y)

and

Mdim(f(x) : g(y)) ≤Mdim(x : y).

I Theorem 5.10 (reverse mutual dimension conservation inequality). Let S1 ⊆ [n] and S2 ⊆ [t].
If f : Rn → Rk is computable and S1-co-Lipschitz, and g : Rt → Rl is computable and S2-co-
Lipschitz, then, for all x ∈ R|S1|, y ∈ R|S2|, w ∈ Rn−|S1|, and z ∈ Rt−|S2|,

mdim(x : y) ≤ mdim((f(x ∗S w), w) : (g(y ∗S z), z))

and

Mdim(x : y) ≤Mdim((f(x ∗S w), w) : (g(y ∗S z), z))

I Corollary 5.11 (preservation of mutual dimension). If f : Rn → Rk and g : Rt → Rl are
computable and bi-Lipschitz, then, for all x ∈ Rn and y ∈ Rt,

mdim(f(x) : g(y)) = mdim(x : y)

and

Mdim(f(x) : g(y)) = Mdim(x : y).

I Corollary 5.12. If f : Rn → Rk and g : Rt → Rl are computable and Hölder with exponents
α and β, respectively, then, for all x ∈ Rn and y ∈ Rt,

mdim(f(x) : g(y)) ≤ 1
αβ

mdim(x : y)

and

Mdim(f(x) : g(y)) ≤ 1
αβ

Mdim(x : y).

I Corollary 5.13. Let S1 ⊆ [n] and S2 ⊆ [t]. If f : Rn → Rk is computable and S1-co-Hölder
with exponent α, and g : Rt → Rl is computable and S2-co-Hölder with exponent β, then, for
all x ∈ R|S1|, y ∈ R|S2|, w ∈ Rn−|S1|, and z ∈ Rt−|S2|,

mdim(x : y) ≤ 1
αβ

mdim((f(x ∗S w), w) : (g(y ∗S z), z))

and

Mdim(x : y) ≤ 1
αβ

Mdim((f(x ∗S w), w) : (g(y ∗S z), z)).
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