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Abstract
We formulate the conditional Kolmogorov complexity of x given y at precision r, where x and
y are points in Euclidean spaces and r is a natural number. We demonstrate the utility of this
notion in two ways.
1. We prove a point-to-set principle that enables one to use the (relativized, constructive) dimen-

sion of a single point in a set E in a Euclidean space to establish a lower bound on the (classical)
Hausdorff dimension of E. We then use this principle, together with conditional Kolmogorov
complexity in Euclidean spaces, to give a new proof of the known, two-dimensional case of
the Kakeya conjecture. This theorem of geometric measure theory, proved by Davies in 1971,
says that every plane set containing a unit line segment in every direction has Hausdorff
dimension 2.

2. We use conditional Kolmogorov complexity in Euclidean spaces to develop the lower and
upper conditional dimensions dim(x|y) and Dim(x|y) of x given y, where x and y are points
in Euclidean spaces. Intuitively these are the lower and upper asymptotic algorithmic infor-
mation densities of x conditioned on the information in y. We prove that these conditional
dimensions are robust and that they have the correct information-theoretic relationships with
the well-studied dimensions dim(x) and Dim(x) and the mutual dimensions mdim(x : y) and
Mdim(x : y).
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1 Introduction

This paper concerns the fine-scale geometry of algorithmic information in Euclidean spaces.
It shows how new ideas in algorithmic information theory can shed new light on old problems
in geometric measure theory. This introduction explains these new ideas, a general principle
for applying these ideas to classical problems, and an example of such an application. It also
describes a newer concept in algorithmic information theory that arises naturally from this
work.
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Roughly fifteen years after the mid-twentieth century development of the Shannon infor-
mation theory of probability spaces [29], Kolmogorov recognized that Turing’s mathematical
theory of computation could be used to refine the Shannon theory to enable the amount of
information in individual data objects to be quantified [17]. The resulting theory of Kol-
mogorov complexity, or algorithmic information theory, is now a large enterprise with many
applications in computer science, mathematics, and other sciences [20]. Kolmogorov proved
the first version of the fundamental relationship between the Shannon and algorithmic theories
of information in [17], and this relationship was made exquisitely precise by Levin’s coding
theorem [18, 19]. (Solomonoff and Chaitin independently developed Kolmogorov complexity
at around the same time as Kolmogorov with somewhat different motivations [30, 6, 7].)

At the turn of the present century, the first author recognized that Hausdorff’s 1919
theory of fractal dimension [16] is an older theory of information that can also be refined using
Turing’s mathematical theory of computation, thereby enabling the density of information
in individual infinite data objects, such as infinite binary sequences or points in Euclidean
spaces, to be quantified [21, 22]. The resulting theory of effective fractal dimensions is
now an active enterprise with a growing array of applications [11]. The paper [22] proved
a relationship between effective fractal dimensions and Kolmogorov complexity that is as
precise as – and uses – Levin’s coding theorem.

Most of the work on effective fractal dimensions to date has concerned the (constructive)
dimension dim(x) and the dual strong (constructive) dimension Dim(x) [1] of an infinite
data object x, which for purposes of the present paper is a point in a Euclidean space Rn for
some positive integer n.1 The inequalities

0 ≤ dim(x) ≤ Dim(x) ≤ n

hold generally, with, for example, Dim(x) = 0 for points x that are computable and
dim(x) = n for points that are algorithmically random in the sense of Martin-Löf [Mart66].

How can the dimensions of individual points – dimensions that are defined using the
theory of computing – have any bearing on classical problems of geometric measure theory?
The problems that we have in mind here are problems in which one seeks to establish lower
bounds on the classical Hausdorff dimensions dimH(E) (or other fractal dimensions) of sets
E in Euclidean spaces. Such problems involve global properties of sets and make no mention
of algorithms.

The key to bridging this gap is relativization. Specifically, we prove here a point-to-set
principle saying that, in order to prove a lower bound dimH(E) ≥ α, it suffices to show
that, for every A ⊆ N and every ε > 0, there is a point x ∈ E such that dimA(x) ≥ α − ε,
where dimA(x) is the dimension of x relative to the oracle A. We also prove the analogous
point-to-set principle for the classical packing dimension dimP (E) and the relativized strong
dimension DimA(x).

We illustrate the power of the point-to-set principle by using it to give a new proof of a
known theorem in geometric measure theory. A Kakeya set in a Euclidean space Rn is a set
K ⊆ Rn that contains a unit line segment in every direction. Besicovitch [2, 3] proved that
Kakeya sets can have Lebesgue measure 0 and asked whether Kakeya sets in the Euclidean
plane can have dimension less than 2 [9]. The famous Kakeya conjecture asserts a negative
answer to this and to the analogous question in higher dimensions, i.e., states that every

1 These constructive dimensions are Σ0
1 effectivizations of Hausdorff and packing dimensions [13]. Other

effectivizations, e.g., computable dimensions, polynomial time dimensions, and finite-state dimensions,
have been investigated, but only the constructive dimensions are discussed here.
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Kakeya set in a Euclidean space Rn has Hausdorff dimension n.2 This conjecture holds
trivially for n = 1 and was proven by Davies [9] for n = 2. A version of the conjecture in
finite fields has been proven by Dvir [12]. For Euclidean spaces of dimension n ≥ 3, it is an
important open problem with deep connections to other problems in analysis [35, 32].

In this paper we use our point-to-set principle to give a new proof of Davies’s theorem.
This proof does not resemble the classical proof, which is not difficult but relies on Marstrand’s
projection theorem [26] and point-line duality. Instead of analyzing the set K globally, our
proof focuses on the information content of a single, judiciously chosen point in K. Given a
Kakeya set K ⊆ R2 and an oracle A ⊆ N, we first choose a particular line segment L ⊆ K
and a particular point (x,mx+b) ∈ L, where y = mx+b is the equation of the line containing
L.3 We then show that dimA(x,mx+ b) ≥ 2. By our point-to-set principle this implies that
dimH(K) ≥ 2.

Our proof that dimA(x,mx + b) ≥ 2 requires us to formulate a concept of conditional
Kolmogorov complexity in Euclidean spaces. Specifically, for points x ∈ Rm and y ∈ Rn and
natural numbers r, we develop the conditional Kolmogorov complexity Kr(x|y) of x given y

at precision r. This is a “conditional version” of the Kolmogorov complexity Kr(x) of x at
precision r that has been used in several recent papers (e.g., [24, 4, 15]).

In addition to enabling our new proof of Davies’s theorem, conditional Kolmogorov
complexity in Euclidean spaces enables us to fill a gap in effective dimension theory. The
fundamental quantities in Shannon information theory are the entropy (information content)
H(X) of a probability spaceX, the conditional entropy H(X|Y ) of a probability spaceX given
a probability space Y , and the mutual information (shared information) I(X;Y ) between two
probability spaces X and Y [8]. The analogous quantities in Kolmogorov complexity theory
are the Kolmogorov complexity K(u) of a finite data object u, the conditional Kolmogorov
complexity K(u|v) of a finite data object u given a finite data object v, and the algorithmic
mutual information I(u : v) between two finite data objects u and v [20]. The above-described
dimensions dim(x) and Dim(x) of a point x in Euclidean space (or an infinite sequence x
over a finite alphabet) are analogous by limit theorems [27, 1] to K(u) and hence to H(X).
Case and the first author have recently developed and investigated the mutual dimension
mdim(x : y) and the dual strong mutual dimension Mdim(x : y), which are densities of the
algorithmic information shared by points x and y in Euclidean spaces [4] or sequences x and
y over a finite alphabet [5]. These mutual dimensions are analogous to I(u : v) and I(X;Y ).

What is conspicuously missing from the above account is a notion of conditional dimension.
In this paper we remedy this by using conditional Kolmogorov complexity in Euclidean space
to develop the conditional dimension dim(x|y) of x given y and its dual, the conditional strong
dimension Dim(x|y) of x given y, where x and y are points in Euclidean spaces. We prove
that these conditional dimensions are well behaved and that they have the correct information
theoretic relationships with the previously defined dimensions and mutual dimensions. The
original plan of our proof of Davies’s theorem used conditional dimensions, and we developed
their basic theory to that end. Our final proof of Davies’s theorem does not use them, but
conditional dimensions (like the conditional entropy and conditional Kolmogorov complexity
that motivate them) are very likely to be useful in future investigations.

2 Statements of the Kakeya conjecture vary in the literature. For example, the set is sometimes required
to be compact or Borel, and the dimension used may be Minkowski instead of Hausdorff. Since the
Hausdorff dimension of a set is never greater than its Minkowski dimension, our formulation is at least
as strong as those variations.

3 One might naïvely expect that for independently random m and x, the point (x, mx + b) must be
random. In fact, in every direction there is a line that contains no random point [23].

STACS 2017
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The rest of this paper is organized as follows. Section 2 briefly reviews the dimensions of
points in Euclidean spaces. Section 3 presents the point-to-set principles that enable us to
use dimensions of individual points to prove lower bounds on classical fractal dimensions.
Section 4 develops conditional Kolmogorov complexity in Euclidean spaces. Section 5 uses
the preceding two sections to give our new proof of Davies’s theorem. Section 6 uses Section 4
to develop conditional dimensions in Euclidean spaces.

2 Dimensions of Points in Euclidean Spaces

This section reviews the constructive notions of dimension and mutual dimension in Euclidean
spaces. The presentation here is in terms of Kolmogorov complexity. Briefly, the conditional
Kolmogorov complexity K(w|v) of a string w ∈ {0, 1}∗ given a string v ∈ {0, 1}∗ is the
minimum length |π| of a binary string π for which U(π, v) = w, where U is a fixed universal
self-delimiting Turing machine. The Kolmogorov complexity of w is K(w|λ), where λ is the
empty string. We write U(π) for U(π, λ). When U(π) = w, the string π is called a program
for w. The quantity K(w) is also called the algorithmic information content of w. Routine
coding extends this definition from {0, 1}∗ to other discrete domains, so that the Kolmogorov
complexities of natural numbers, rational numbers, tuples of these, etc., are well defined up to
additive constants. Detailed discussions of self-delimiting Turing machines and Kolmogorov
complexity appear in the books [20, 28, 11] and many papers.

The definition of K(q) for rational points q in Euclidean space is lifted in two steps to
define the dimensions of arbitrary points in Euclidean space. First, for x ∈ Rn and r ∈ N,
the Kolmogorov complexity of x at precision r is

Kr(x) = min{K(q) : q ∈ Qn ∩B2−r (x)} , (2.1)

where B2−r (x) is the open ball with radius 2−r and center x. Second, for x ∈ Rn, the
dimension and strong dimension of x are

dim(x) = lim inf
r→∞

Kr(x)
r

and Dim(x) = lim sup
r→∞

Kr(x)
r

, (2.2)

respectively.4
Intuitively, dim(x) and Dim(x) are the lower and upper asymptotic densities of the

algorithmic information in x. These quantities were first defined in Cantor spaces using
betting strategies called gales and shown to be constructive versions of classical Hausdorff
and packing dimension, respectively [22, 1]. These definitions were explicitly extended to
Euclidean spaces in [24], where the identities (2.2) were proven as a theorem. Here it is
convenient to use these identities as definitions. For x ∈ Rn, it is easy to see that

0 ≤ dim(x) ≤ Dim(x) ≤ n ,

and it is known that, for any two reals 0 ≤ α ≤ β ≤ n, there exist uncountably many points
x ∈ Rn satisfying dim(x) = α and Dim(x) = β [1]. Applications of these dimensions in
Euclidean spaces appear in [24, 14, 25, 10, 15].

4 We note that Kr(x) = K(x � r) + o(r), where x � r is the binary expansion of x, truncated r bits to the
right of the binary point. However, it has been known since Turing’s famous correction [33] that binary
notation is not a suitable representation for the arguments and values of computable functions on the
reals. (See also [34].) Hence, in order to make our definitions useful for further work in computable
analysis, we formulate complexities and dimensions in terms of rational approximations, both here and
later.



J. H. Lutz and N. Lutz 53:5

3 From Points to Sets

The central message of this paper is a useful point-to-set principle by which the existence of
a single high-dimensional point in a set E ⊆ Rn implies that the set E has high dimension.

To formulate this principle we use relativization. All the algorithmic information concepts
in Sections 2 and 6 above can be relativized to an arbitrary oracle A ⊆ N by giving the
Turing machine in their definitions oracle access to A. Relativized Kolmogorov complexity
KA
r (x) and relativized dimensions dimA(x) and DimA(x) are thus well defined. Moreover,

the results of Section 2 hold relative to any oracle A.
We first establish the point-to-set principle for Hausdorff dimension. Let E ⊆ Rn. For

δ > 0, define Uδ(E) to be the collection of all countable covers of E by sets of positive
diameter at most δ. That is, for every cover {Ui}i∈N ∈ Uδ(E), we have E ⊆

⋃
i∈N Ui and

|Ui| ∈ (0, δ] for all i ∈ N, where for X ∈ Rn, |X| = supp,q∈X |p− q|. For s ≥ 0, define

Hs
δ (E) = inf

{∑
i∈N
|Ui|s : {Ui}i∈N ∈ Uδ(E)

}
.

Then the s-dimensional Hausdorff outer measure of E is

Hs(E) = lim
δ→0+

Hs
δ (E) ,

and the Hausdorff dimension of E is

dimH(E) = inf {s > 0 : Hs(E) = 0} .

More details may be found in standard texts, e.g., [31, 13].

I Theorem 1. (Point-to-set principle for Hausdorff dimension) For every set E ⊆ Rn,

dimH(E) = min
A⊆N

sup
x∈E

dimA(x) .

Three things should be noted about this principle. First, while the left-hand side is the
classical Hausdorff dimension, which is a global property of E that does not involve the theory
of computing, the right-hand side is a pointwise property of the set that makes essential use
of relativized algorithmic information theory. Second, as the proof shows, the right-hand side
is a minimum, not merely an infimum. Third, and most crucially, this principle implies that,
in order to prove a lower bound dimH(E) ≥ α, it suffices to show that, for every A ⊆ N and
every ε > 0, there is a point x ∈ E such that dimA(x) ≥ α− ε.5

For the (≥) direction of this principle, we construct the minimizing oracle A. The oracle
encodes, for a carefully chosen sequence of increasingly refined covers for E, the approximate
locations and diameters of all cover elements. Using this oracle, a point x ∈ Rn can be
approximated by specifying an appropriately small cover element that it belongs to, which
requires an amount of information that depends on the number of similarly-sized cover
elements. We use the definition of Hausdorff dimension to bound that number. The (≤)
direction can be shown using results from [24], but in the interest of self-containment we
prove it directly.

5 The ε here is useful in general but is not needed in some cases, including our proof of Theorem 5 below.

STACS 2017
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Proof of Theorem 1. Let E ⊆ Rn, and let d = dimH(E). For every s > d we have
Hs(E) = 0, so there is a sequence {{U t,si }i∈N}t∈N of countable covers of E such that∣∣U t,si ∣∣ ≤ 2−t for every i, t ∈ N, and for every sufficiently large t we have∑

i∈N

∣∣U t,si ∣∣s < 1 . (3.1)

Let D = N3×(Q∩(d,∞)). Our oracle A encodes functions fA : D → Qn and gA : D → Q
such that for every (i, t, r, s) ∈ D, we have

fA(i, t, r, s) ∈ B2−r−1(u)

for some u ∈ U t,si and∣∣∣gA(i, t, r, s)−
∣∣U t,si ∣∣∣∣∣ < 2−r−4 . (3.2)

We will show, for every x ∈ E and rational s > d, that dimA(x) ≤ s.
Fix x ∈ E and s ∈ Q ∩ (d,∞). If for any i0, t0 ∈ N we have x ∈ U t0,si0

and
∣∣U t0,si0

∣∣ = 0,
then U t0,si0

= {x}, so fA(i0, t0, r, s) ∈ B2−r (x) for every r ∈ N. In this case, let M be a prefix
Turing machine with oracle access to A such that, whenever U(ι) = i ∈ N, U(τ) = t ∈ N,
U(ρ) = r ∈ N, and U(σ) = q ∈ Q ∩ (d,∞),

M(ιτρσ) = fA(i, t, r, q) .

Now for any r ∈ N, let ι, τ , ρ, and σ be witnesses to K(i0), K(t0), K(r), and K(s),
respectively. Since i0, t0, and s are all constant in r and |ρ| = o(r), we have |ιτρσ| = o(r).
Thus KA

r (x) = o(r), and dimA(x) = 0. Hence assume that every cover element containing x
has positive diameter.

Fix sufficiently large t, and let U t,six be some cover element containing x. Let M ′ be a
self-delimiting Turing machine with oracle access to A such that whenever U(κ) = k ∈ N,
U(τ) = ` ∈ N, U(ρ) = r ∈ N, and U(σ) = q ∈ Q ∩ (d,∞),

M ′(κτρσ) = fA(p, `, r, q) ,

where p is the kth index i such that gA(i, t, r, q) ≥ 2−r−3.
Now fix r ≥ t− 1 such that∣∣U t,six ∣∣ ∈ [2−r−2, 2−r−1) .

Notice that gA(ix, t, r, s) ≥ 2−r−3. Hence there is some k such that, letting κ, τ , ρ, and σ be
witnesses to K(k), K(t), K(r), and K(s), respectively,

M ′(κτρσ) ∈ B2−r−1(u) ,

for some u ∈ U t,six . Because
∣∣U t,six ∣∣ < 2−r−1 and x ∈ U t,six , we have

M ′(κτρσ) ∈ B2−r (x) .

Thus

KA
r (x) ≤ K(k) +K(t) +K(s) +K(r) + c ,

where c is a machine constant for M ′. Since s is constant in r and t < r, this expression is
K(k) + o(r) ≤ log(k) + o(r). By (3.1), there are fewer than 2(r+4)s indices i ∈ N such that∣∣U t,si ∣∣ ≥ 2−r−4 ,
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hence by (3.2) there are fewer than 2(r+4)s indices i ∈ N such that gA(i, t, r, s) ≥ 2−r−3, so
log(k) < (r + 4)s. Therefore KA

r (x) ≤ rs+ o(r).
There are infinitely many such r, which can be seen by replacing t above with r + 2. We

have shown

dimA(x) = lim inf
r→∞

KA
r (x)
r

≤ s ,

for every rational s > d, hence dimA(x) ≤ d. It follows that

min
A⊆N

sup
x∈E

dimA(x) ≤ d .

For the other direction, assume for contradiction that there is some oracle A and d′ < d

such that

sup
x∈E

dimA(x) = d′ .

Then for every x ∈ E, dimA(x) ≤ d′. Let s ∈ (d′, d). For every r ∈ N, define the sets

Br =
{
B2−r (q) : q ∈ Q and KA(q) ≤ rs

}
and

Wr =
∞⋃
k=r
Bk .

There are at most 2ks+1 balls in each Bk, so for every r ∈ N and s′ ∈ (s, d),

∑
W∈Wr

|W |s
′

=
∞∑
k=r

∑
W∈Bk

|W |s
′

≤
∞∑
k=r

2ks+1(21−k)s
′

= 21+s′ ·
∞∑
k=r

2(s−s′)k ,

which approaches 0 as r → ∞. As every Wr is a cover for E, we have Hs′(E) = 0, so
dimH(E) ≤ s′ < d, a contradiction. J

The packing dimension dimP (E) of a set E ⊆ Rn, defined in standard texts, e.g., [13],
is a dual of Hausdorff dimension satisfying dimP (E) ≥ dimH(E), with equality for very
“regular” sets E. We also have the following.

I Theorem 2. (Point-to-set principle for packing dimension) For every set E ⊆ Rn,

dimP (E) = min
A⊆N

sup
x∈E

DimA(x) .

4 Conditional Kolmogorov Complexity in Euclidean Spaces

We now develop the conditional Kolmogorov complexity in Euclidean spaces.

STACS 2017
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For x ∈ Rm, q ∈ Qn, and r ∈ N, the conditional Kolmogorov complexity of x at precision
r given q is

K̂r(x|q) = min {K(p|q) : p ∈ Qm ∩B2−r (x)} . (4.1)

For x ∈ Rm, y ∈ Rn, and r, s ∈ N, the conditional Kolmogorov complexity of x at precision r
given y at precision s is

Kr,s(x|y) = max
{
K̂r(x|q) : q ∈ Qn ∩B2−s(y)

}
. (4.2)

Intuitively, the maximizing argument q is the point near y that is least helpful in the task
of approximating x. Note that Kr,s(x|y) is finite, because K̂r(x|q) ≤ Kr(x) + O(1). For
x ∈ Rm, y ∈ Rn, and r ∈ N, the conditional Kolmogorov complexity of x given y at precision
r is

Kr(x|y) = Kr,r(x|y) . (4.3)

I Theorem 3 (Chain rule for Kr). For all x ∈ Rm and y ∈ Rn,

Kr(x, y) = Kr(x|y) +Kr(y) + o(r) .

We also consider the Kolmogorov complexity of x ∈ Rm at precision r relative to y ∈ Rn.
Let Ky

r (x) denote KAy
r (x), where Ay ⊆ N encodes the binary expansions of y’s coordinates.

The following lemma reflects the intuition that oracle access to y is at least as useful as any
bounded-precision estimate for y.

I Lemma 4. For each m,n ∈ N there is a constant c ∈ N such that, for all x ∈ Rm, y ∈ Rn,
and r, s ∈ N,

Ky
r (x) ≤ Kr,s(x|y) +K(s) + c .

In particular, Ky
r (x) ≤ Kr(x|y) +K(r) + c.

5 Kakeya Sets in the Plane

This section uses the results of the preceding two sections to give a new proof of the following
classical theorem. Recall that a Kakeya set in Rn is a set containing a unit line segment in
every direction.

I Theorem 5 (Davies [9]). Every Kakeya set in R2 has Hausdorff dimension 2.

Our new proof of Theorem 5 uses a relativized version of the following lemma.

I Lemma 6. Let m ∈ [0, 1] and b ∈ R. Then for almost every x ∈ [0, 1],

lim inf
r→∞

Kr(m, b, x)−Kr(b|m)
r

≤ dim(x,mx+ b) . (5.1)

Proof. We build a program that takes as input a precision level r, an approximation p of x,
an approximation q of mx+ b, a program π that will approximate b given an approximation
for m, and a natural number h. In parallel, the program considers each multiple of 2−r in
[0,1] as a possible approximate value u for the slope m, and it checks whether each such
u is consistent with the program’s inputs. If u is close to m, then π(u) will be close to b,
so up + π(u) will be close to mx + b. Any u that satisfies this condition is considered a
“candidate” for approximating m.
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Some of these candidates may be “false positives,” in that there can be values of u that
are far from m but for which up+ π(u) is still close to mx+ b. Thus the program is also
given an input h so that it can choose the correct candidate; it selects the hth candidate that
arises in its execution. We will show that this h is often not large enough to significantly
affect the total input length.

Formally, let M be a Turing machine that runs the following algorithm on input ρπση
whenever U(ρ) = r ∈ N, U(η) = h ∈ N, and U(σ) = (p, q) ∈ Q2:

candidate := 0
for i = 0, 1, . . . , 2r, in parallel:
ui := 2−ri
vi := U(π, ui)
do atomically:

if vi ∈ R and |uip+ vi − q| < 22−r, then candidate := candidate+ 1
if candidate = h, then return (ui, vi, p) and halt

Fix m ∈ [0, 1] and b ∈ R. For each r ∈ N, let mr = 2−rbm · 2rc, and fix πr testifying to the
value of K̂r(b|mr) and σr testifying to the value of Kr(x,mx+ b).

The proof is completed by the four following claims. Intuitively, Claim 7 says that no
point in B2−r (m) gives much less information about b than mr does. Claim 8 states that
there is always some value of h that causes this machine to return the desired output. Claim 9
says that for almost every x, this value does not grow too quickly with r, and Claim 10 says
that (5.1) holds for every such x.

I Claim 7. For every r ∈ N, Kr(b|m) = K̂r(b|mr) + o(r).

I Claim 8. For each x ∈ [0, 1] and r ∈ N, there exists an h ∈ N such that

M(ρπrσrη) ∈ B21−r (m, b, x) ,

where U(ρ) = r and U(η) = h.

For every x ∈ [0, 1] and r ∈ N, define h(x, r) to be the minimal h satisfying the conditions of
Claim 8.

I Claim 9. For almost every x ∈ [0, 1], log(h(x, r)) = o(r).

I Claim 10. For every x ∈ [0, 1], if log(h(x, r)) = o(r), then

lim inf
r→∞

Kr(m, b, x)−Kr(b|m)
r

≤ dim(x,mx+ b) .

The lemma follows immediately from Claims 9 and 10. J

Proof of Theorem 5. Let K be a Kakeya set in R2. By Theorem 1, there exists an oracle
A such that dimH(K) = supp∈K dimA(p).

Let m ∈ [0, 1] such that dimA(m) = 1; such an m exists by Theorem 4.5 of [22]. K
contains a unit line segment L of slope m. Let (x0, y0) be the left endpoint of such a segment.
Let q ∈ Q ∩ [x0, x0 + 1/8], and let L′ be the unit segment of slope m whose left endpoint is
(x0 − q, y0). Let b = y1 + qm, the y-intercept of L′.

By a relativized version of Lemma 6, there is some x ∈ [0, 1/2] such that dimA,m,b(x) = 1
and

lim inf
r→∞

KA
r (m, b, x)−KA

r (b|m)
r

≤ dimA(x,mx+ b) .
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(This holds because almost every x ∈ [0, 1/2] is algorithmically random relative to (A,m, b)
and hence satisfies dimA,m,b(x) = 1.) Fix such an x, and notice that (x,mx+ b) ∈ L′. Now
applying a relativized version of Theorem 3,

dimA(x,mx+ b) ≥ lim inf
r→∞

KA
r (m, b, x)−KA

r (b|m)
r

= lim inf
r→∞

KA
r (m, b, x)−KA

r (b,m) +KA
r (m)

r

= lim inf
r→∞

KA
r (x|b,m) +KA

r (m)
r

≥ lim inf
r→∞

KA
r (x|b,m)

r
+ lim inf

r→∞

KA
r (m)
r

.

By Lemma 4, KA
r (x|b,m) ≥ KA,b,m

r (x) + o(r), so we have

dimA(x,mx+ b) ≥ lim inf
r→∞

KA,b,m
r (x)
r

+ lim inf
r→∞

KA
r (m)
r

= dimA,b,m(x) + dimA(m) ,

which is 2 by our choices of m and x. Since

dimA(x,mx+ b) = dimA(x+ q,mx+ b) ,

there exists a point (x+ q,mx+ b) ∈ K such that dimA(x+ q,mx+ b) ≥ 2. By Theorem 1,
the point-to-set principle for Hausdorff dimension, this completes the proof. J

It is natural to ask what prevents us from extending this proof to higher-dimensional
Euclidean spaces. The point of failure in a direct extension would be Claim 9 in the proof
of Lemma 6. Speaking informally, the problem is that the total number of candidates may
grow as 2(n−1)r, meaning that log(h(x, r)) could be Ω((n− 2)r) for every x.

6 Conditional Dimensions in Euclidean Spaces

The results of Section 4, which were used in the proof of Theorem 5, also enable us to give
robust formulations of conditional dimensions.

For x ∈ Rm and y ∈ Rn, the lower and upper conditional dimensions of x given y are

dim(x|y) = lim inf
r→∞

Kr(x|y)
r

and Dim(x|y) = lim sup
r→∞

Kr(x|y)
r

, (6.1)

respectively.
The use of the same precision bound r for both x and y in (4.3) makes the definitions (6.1)

appear arbitrary and “brittle.” The following theorem shows that this is not the case.

I Theorem 11. Let s : N→ N. If |s(r)− r| = o(r), then, for all x ∈ Rm and y ∈ Rn,

dim(x|y) = lim inf
r→∞

Kr,s(r)(x|y)
r

,

and

Dim(x|y) = lim sup
r→∞

Kr,s(r)(x|y)
r

.



J. H. Lutz and N. Lutz 53:11

The rest of this section is devoted to showing that our conditional dimensions have the
correct information theoretic relationships with the previously developed dimensions and
mutual dimensions.

Mutual dimensions were developed very recently, and Kolmogorov complexity was the
starting point. The mutual (algorithmic) information between two strings u, v ∈ {0, 1}∗ is

I(u : v) = K(v)−K(v|u) .

Again, routine coding extends K(u|v) and I(u : v) to other discrete domains. Discussions
of K(u|v), I(u : v), and the correspondence of K(u), K(u|v), and I(u : v) with Shannon
entropy, Shannon conditional entropy, and Shannon mutual information appear in [20].

In parallel with (2.1) and (2.2), Case and J. H. Lutz [4] lifted the definition of I(p : q) for
rational points p and q in Euclidean spaces in two steps to define the mutual dimensions
between two arbitrary points in (possibly distinct) Euclidean spaces. First, for x ∈ Rm,
y ∈ Rn, and r ∈ N, the mutual information between x and y at precision r is

Ir(x : y) = min {I(p : q) : p ∈ B2−r (x) ∩Qm and q ∈ B2−r (y) ∩Qn} , (6.2)

where B2−r (x) and B2−r (y) are the open balls of radius 2−r about x and y in their respective
Euclidean spaces. Second, for x ∈ Rm and y ∈ Rn, the lower and upper mutual dimensions
between x and y are

mdim(x : y) = lim inf
r→∞

Ir(x : y)
r

and Mdim(x : y) = lim sup
r→∞

Ir(x : y)
r

, (6.3)

respectively. Useful properties of these mutual dimensions, especially including data process-
ing inequalities, appear in [4].

I Lemma 12. For all x ∈ Rm and y ∈ Rn,

Ir(x : y) = Kr(x)−Kr(x|y) + o(r) .

The following bounds on mutual dimension follow from Lemma 12.

I Theorem 13. For all x ∈ Rm and y ∈ Rn, the following hold.
1. mdim(x : y) ≥ dim(x)−Dim(x|y).
2. Mdim(x : y) ≤ Dim(x)− dim(x|y).

Our final theorem is easily derived from Theorem 3.

I Theorem 14 (Chain rule for dimension). For all x ∈ Rm and y ∈ Rn,

dim(x) + dim(y|x) ≤ dim(x, y)
≤ dim(x) + Dim(y|x)
≤ Dim(x, y)
≤ Dim(x) + Dim(y|x) .

7 Conclusion

This paper shows a new way in which theoretical computer science can be used to answer
questions that may appear unrelated to computation. We are hopeful that our new proof
of Davies’s theorem will open the way for using constructive fractal dimensions to make
new progress in geometric measure theory, and that conditional dimensions will be a useful
component of the information theoretic apparatus for studying dimension.
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