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Abstract. We exhibit a polynomial time computable plane curve Γ
that has finite length, does not intersect itself, and is smooth except
at one endpoint, but has the following property. For every computable
parametrization f of Γ and every positive integer m, there is some
positive-length subcurve of Γ that f retraces at least m times. In con-
trast, every computable curve of finite length that does not intersect
itself has a constant-speed (hence non-retracing) parametrization that is
computable relative to the halting problem.

1 Introduction

A curve is a mathematical model of the path of a particle undergoing contin-
uous motion. Specifically, in a Euclidean space Rn, a curve is the range Γ of
a continuous function f : [a, b] → Rn for some a < b. The function f , called
a parametrization of Γ , clearly contains more information than the pointset Γ ,
namely, the precise manner in which the particle “traces” the points f(t) ∈ Γ
as t, which is often considered a time parameter, varies from a to b. When the
particle’s motion is algorithmically governed, the parametrization must be com-
putable (as a function on the reals; see below).

This paper shows that the geometry of a curve Γ may force every computable
parametrization f of Γ to retrace various parts of its path (i.e., “go back and
forth along Γ”) many times, even when Γ is an efficiently computable, smooth,
finite-length curve that does not intersect itself. In fact, our main theorem ex-
hibits a plane curve Γ ⊆ R2 with the following properties.

1. Γ is simple, i.e., it does not intersect itself.
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2. Γ is rectifiable, i.e., it has finite length.
3. Γ is smooth except at one endpoint, i.e., Γ has a tangent at every interior

point and a 1-sided tangent at one endpoint, and these tangents vary con-
tinuously along Γ.

4. Γ is polynomial time computable in the strong sense that there is a polynomial
time computable position function ~s : [0, 1] → R2 such that the velocity
function ~v = ~s′ and the acceleration function ~a = ~v′ are polynomial time
computable; the total distance traversed by ~s is finite; and ~s parametrizes
Γ, i.e., range(~s) = Γ.

5. Γ must be retraced in the sense that every parametrization f : [a, b]→ R2 of
Γ that is computable in any amount of time has the following property. For
every positive integer m, there exist disjoint, closed subintervals I0, . . . , Im
of [a, b] such that the curve Γ0 = f(I0) has positive length and f(Ii) = Γ0

for all 1 ≤ i ≤ m. (Hence f retraces Γ0 at least m times.)

The terms “computable” and “polynomial time computable” in properties
4 and 5 above refer to the “bit-computability” model of computation on re-
als formulated in the 1950s by Grzegorczyk [9] and Lacombe [17], extended to
feasible computability in the 1980s by Ko and Friedman [13] and Kreitz and
Weihrauch [16], and exposited in the recent paper by Braverman and Cook [4]
and the monographs [20,14,22,5]. As will be shown here, condition 4 also implies
that the pointset Γ is polynomial time computable in the sense of Brattka and
Weihrauch [2]. (See also [22,3,4].)

A fundamental and useful theorem of classical analysis states that every sim-
ple, rectifiable curve Γ has a normalized constant-speed parametrization, which
is a one-to-one parametrization f : [0, 1] → Rn of Γ with the property that
f([0, t]) has arclength tL for all 0 ≤ t ≤ 1, where L is the length of Γ . (A simple,
rectifiable curve Γ has exactly two such parametrizations, one in each direction,
and standard terminology calls either of these the normalized constant-speed
parametrization f : [0, 1] → Rn of Γ . The constant-speed parametrization is
also called the parametrization by arclength when it is reformulated as a func-
tion f : [0, L] → Rn that moves with constant speed 1 along Γ .) Since the
constant-speed parametrization does not retrace any part of the curve, our main
theorem implies that this classical theorem is not entirely constructive. Even
when a simple, rectifiable curve has an efficiently computable parametrization,
the constant-speed parametrization need not be computable.

In addition to our main theorem, we prove that every simple, rectifiable curve
Γ in Rn with a computable parametrization has the following two properties.

I. The length of Γ is lower semicomputable.
II. The constant-speed parametrization of Γ is computable relative to the

length of Γ .

These two things are not hard to prove if the computable parametrization
is one-to-one, (in fact, they follow from results of Müller and Zhao [19] in this
case) but our results hold even when the computable parametrization retraces
portions of the curve many times.

Taken together, I and II have the following two consequences.
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1. The curve Γ of our main theorem has a finite length that is lower semi-
computable but not computable. (The existence of polynomial-time com-
putable curves with this property was first proven by Ko [15].)

2. Every simple, rectifiable curve Γ in Rn with a computable parametriza-
tion has a constant-speed parametrization that is ∆0

2-computable, i.e., com-
putable relative to the halting problem. Hence, the existence of a constant-
speed parametrization, while not entirely constructive, is constructive rela-
tive to the halting problem.

2 Length, Computability, and Complexity of Curves

In this section we summarize basic terminology and facts about curves. As we use
the terms here, a curve is the range Γ of a continuous function f : [a, b]→ Rn for
some a < b. The function f is called a parametrization of Γ . Each curve clearly
has infinitely many parametrizations.

A curve is simple if it has a parametrization that is one-to-one, i.e., the curve
“does not intersect itself”. The length of a simple curve Γ is defined as follows.

Let f : [a, b]
1−1→ Rn be a one-to-one parametrization of Γ . For each disection ~t

of [a, b], i.e., each tuple ~t = (t0, . . . , tm) with a = t0 < t1 < . . . < tm = b, define
the f -~t-approximate length of Γ to be

Lf~t (Γ ) =

m−1∑
i=0

|f(ti+1)− f(ti)|.

Then the length of Γ is
L(Γ ) = sup

~t

Lf~t (Γ ),

where the supremum is taken over all dissections ~t of [a, b]. It is easy to show
that L(Γ ) does not depend on the choice of the one-to-one parametrization f ,
i.e. that the length is an intrinsic property of the pointset Γ .

In sections 4 and 5 of this paper we use a more general notion of length,
namely, the 1-dimensional Hausdorff measure H1(Γ ), which is defined for every
set Γ ⊆ Rn. We refer the reader to [7] for the definition of H1(Γ ). It is well
known that H1(Γ ) = L(Γ ) holds for every simple curve Γ .

A curve Γ is rectifiable, or has finite length if L(Γ ) < ∞. In sections 4 and
5 we use the notation RC for the set of all rectifiable simple curves.
Definition. Let f : [a, b]→ Rn be continuous.

1. For m ∈ Z+, f has m-fold retracing if there exist disjoint, closed subintervals
I0, . . . , Im of [a, b] such that the curve Γ0 = f(I0) has positive length and
f(Ii) = Γ0 for all 1 ≤ i ≤ m.

2. f is non-retracing if f does not have 1-fold retracing.
3. f has bounded retracing if there exists m ∈ Z+ such that f does not have
m-fold retracing.

4. f has unbounded retracing if f does not have bounded retracing, i.e., if f has
m-fold retracing for all m ∈ Z+.
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We now review the notions of computability and complexity of a real-valued
function. An oracle for a real number t is any function Ot : N → Q with the
property that |Ot(s)− t| ≤ 2−s holds for all s ∈ N. A function f : [a, b]→ Rn is
computable if there is an oracle Turing machine M with the following property.
For every t ∈ [a, b] and every precision parameter r ∈ N, if M is given r as
input and any oracle Ot for t as its oracle, then M outputs a rational point
MOt(r) ∈ Qn such that |MOt(r) − f(t)| ≤ 2−r. A function f : [a, b] → Rn is
computable in polynomial time if there is an oracle machine M that does this in
time polynomial in r+ l, where l is the maximum length of the query responses
provided by the oracle.

An oracle for a function f : [a, b]→ Rn is any function Of : ([a, b]∩Q)×N→
Qn with the property that |Of (q, r)− f(q)| ≤ 2−r holds for all q ∈ [a, b]∩Q and
r ∈ N. A decision problem A is Turing reducible to a function f : [a, b] → Rn,
and we write A ≤T f , if there is an oracle Turing machine M such that, for
every oracle Of for f , MOf decides A. It is easy to see that, if f is computable,
then A ≤T f if and only if A is decidable.

A curve is computable if it has a parametrization f : [a, b] → Rn, where
a, b ∈ Q and f is computable. A curve is computable in polynomial time if it
has a parametrization that is computable in polynomial time.

3 An Efficiently Computable Curve That Must Be
Retraced

This section presents our main theorem, which is the existence of a smooth, rec-
tifiable, simple plane curve Γ that is parametrizable in polynomial time but not
computably parametrizable in any amount of time without unbounded retrac-
ing. Intuitively, our curve Γ has, for each n ∈ N, a section of the form illustrated
in Figure 3.1. The height h(n) is positive, and the halting problem K is encoded
into the width w(n). Oversimplifying a bit, w(n) is 2−(n+τ(n)), where τ(n) is the
number of steps executed by the nth Turing machine on input n. Thus w(n) is 0
if n ∈ K, and w(n) is so small as to be “indistinguishable” from 0 if n /∈ K. The
smallness of w(n) implies that we can efficiently compute a parametrization that
is retracing when w(n) is 0. However, as we show in Lemma 3.12, a nonretrac-
ing parametrization must have a vertical component that distinguishes the case
w(n) = 0 from the case w(n) > 0, and hence must solve the halting problem. It
follows that no nonretracing parametrization is computable.

We now give a precise construction of the curve Γ, followed by a brief discus-
sion of how the construction achieves the intuition that we have just described.
The rest of the section is devoted to proving that Γ has the desired properties.

Construction 3.1 (1) For each a, b ∈ R with a < b, define the functions
ϕa,b, ξa,b : [a, b]→ R by

ϕa,b(t) =
b− a

4
sin

2π(t− a)

b− a
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Fig. 3.1. Schematic view of the nth section of Γ
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and

ξa,b(t) =

{
−ϕa, a+b

2
(t) if a ≤ t ≤ a+b

2

ϕ a+b
2 ,b(t) if a+b

2 ≤ t ≤ b.

(2) For each a, b ∈ R with a < b and each positive integer n, define the function
ψa,b,n : [a, b]→ R by

ψa,b,n(t) =

{
ϕa,d0(t) if a ≤ t ≤ d0
ξdi−1,di(t) if di−1 ≤ t ≤ di,

where

di =
a+ 5b

6
+ i

b− a
6n

for 0 ≤ i ≤ n. (See Figure 3.2.)
(3) Fix a standard enumeration M1,M2, . . . of (deterministic) Turing machines

that take positive integer inputs. For each positive integer n, let τ(n) denote
the number of steps executed by Mn on input n. It is well known that the
diagonal halting problem

K =
{
n ∈ Z+ | τ(n) <∞

}
is undecidable.

(4) Define the horizontal and vertical acceleration functions ax, ay : [0, 1] → R
as follows. For each n ∈ N, let

tn =

∫ n

0

e−xdx = 1− e−n,

noting that t0 = 0 and that tn converges monotonically to 1 as n→∞. Also,
for each n ∈ Z+, let

t−n =
tn−1 + 4tn

5
, t+n =

6tn − tn−1
5

,

noting that these are symmetric about tn and that t+n ≤ t−n+1.

(i) For 0 ≤ t ≤ 1, let

ax(t) =

{
−2−(n+τ(n))ξt−n ,t+n (t) if t−n ≤ t < t+n
0 if no such n exists,

where 2−∞ = 0.
(ii) For 0 ≤ t < 1, let

ay(t) = ψtn−1,tn,n(t),

where n is the unique positive integer such that tn−1 ≤ t < tn.
(iii) Let ay(1) = 0.



Curves That Must Be Retraced 155

(5) Define the horizontal and vertical velocity and position functions vx, vy, sx, sy :
[0, 1]→ R by

vx(t) =

∫ t

0

ax(θ)dθ, vy(t) =

∫ t

0

ay(θ)dθ,

sx(t) =

∫ t

0

vx(θ)dθ, sy(t) =

∫ t

0

vy(θ)dθ.

(6) Define the vector acceleration, velocity, and position functions ~a,~v,~s : [0, 1]→
R2 by

~a(t) = (ax(t), ay(t)),

~v(t) = (vx(t), vy(t)),

~s(t) = (sx(t), sy(t)).

(7) Let Γ = range(~s).

Intuitively, a particle at rest at time t = a and moving with acceleration given
by the function ϕa,b moves forward, with velocity increasing to a maximum
at time t = a+b

2 and then decreasing back to 0 at time t = b. The vertical
acceleration function ay, together with the initial conditions vy(0) = sy(0) = 0
implied by (5), thus causes a particle to move generally upward (i.e., sy(t0) <
sy(t1) < · · · ), coming to momentary rests at times t1, t2, t3, . . . . Between two
consecutive such stopping times tn−1 and tn, the particle’s vertical acceleration
is controlled by the function ψtn−1,tn,n. This function causes the particle’s vertical
motion to do the following between times tn−1 and tn.

(i) From time tn−1 to time tn−1+5tn
6 , move upward from elevation sy(tn−1) to

elevation sy(tn).

(ii) From time tn−1+5tn
6 to time tn, make n round trips to a lower elevation

s ∈ (sy(tn−1), sy(tn)).

In the meantime, the horizontal acceleration function ax, together with the initial
conditions vx(0) = sx(0) = 0 implied by (5), ensure that the particle remains
on or near the y-axis. The deviations from the y-axis are simply described: The
particle moves to the right from time tn−1+4tn

5 through the completion of the n
round trips described in (ii) above and then moves to the y-axis between times tn
and 6tn−tn−1

5 . The amount of lateral motion here is regulated by the coefficient

2−(n+τ(n)). If τ(n) = ∞, then there is no lateral motion, and the n round trips
in (ii) are retracings of the particle’s path. If τ(n) < ∞, then these n round
trips are “forward” motion along a curvy part of Γ. In fact, Γ contains points
of arbitrarily high curvature, but the particle’s motion is kinematically realistic
in the sense that the acceleration vector ~a(t) is polynomial time computable,
hence continuous and bounded on the interval [0, 1]. Figure 3.3 illustrates the
path of the particle from time tn−1 to tn+1 with n = 1 and hypothetical (model
dependent!) values τ(1) = 1 and τ(2) = 2.

The rest of this section is devoted to proving the following theorem concerning
the curve Γ.



156 Xiaoyang Gu, Jack H. Lutz, and Elvira Mayordomo

y

x

Fig. 3.3. Example of ~s(t) from t0 to t2

Theorem 3.2. (main theorem). Let ~a,~v,~s, and Γ be as in Construction 3.1.

1. The functions ~a,~v, and ~s are Lipschitz and computable in polynomial time,
hence continuous and bounded.

2. The total length, including retracings, of the parametrization ~s of Γ is finite
and computable in polynomial time.

3. The curve Γ is simple, rectifiable, and smooth except at one endpoint.
4. Every computable parametrization f : [a, b] → R2 of Γ has unbounded re-

tracing.

For the remainder of this section, we use the notation of Construction 3.1.
The following two observations facilitate our analysis of the curve Γ. The

proofs are routine calculations.

Observation 3.3 For all n ∈ Z+, if we write

d
(n)
i =

tn−1 + 5tn
6

+ i
tn − tn−1

6n

and

e
(n)
i = d

(n)
i +

tn − tn−1
12n

for all 0 ≤ i < n, then

tn−1 < t−n < d
(n)
0 < e

(n)
0 < d

(n)
1 < e

(n)
1 < · · · < d

(n)
n−1 < e

(n)
n−1 < tn < t+n < t−n+1.

Observation 3.4 For all a, b ∈ R with a < b,∫ b

a

∫ t

a

ϕa,b(θ)dθdt =
(b− a)3

8π
.
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We now proceed with a quantitative analysis of the geometry of Γ. We begin
with the horizontal component of ~s.

Lemma 3.5 1. For all t ∈ [0, 1]−
⋃
n∈K(t−n , t

+
n ), vx(t) = sx(t) = 0.

2. For all n ∈ K and t ∈ (t−n , tn) , vx(t) > 0.

3. For all n ∈ K and t ∈ (tn, t
+
n ), vx(t) < 0.

4. For all n ∈ Z+, sx(tn) = (e−1)3
1000πe3n 2−(n+τ(n)).

5. sx(1) = 0.

The following lemma analyzes the vertical component of ~s. We use the nota-

tion of Observation 3.3, with the additional proviso that d
(n)
n = tn.

Lemma 3.6 1. For all n ∈ Z+ and t ∈ (tn−1, d
(n)
0 ), vy(t) > 0.

2. For all n ∈ Z+, 0 ≤ i < n, and t ∈ (d
(n)
i , e

(n)
i ), vy(t) < 0.

3. For all n ∈ Z+, 0 ≤ i < n, and t ∈ (e
(n)
i , d

(n)
i+1), vy(t) > 0.

4. For all n ∈ Z+, 0 ≤ i < n, and t ∈ {e(n)i , d
(n)
i , tn}, vy(t) = 0.

5. For all n ∈ Z+ and 0 ≤ i ≤ n, sy(d
(n)
i ) = sy(d

(n)
0 ).

6. For all n ∈ Z+ and 0 ≤ i < n, sy(e
(n)
i ) = sy(e

(n)
0 ).

7. For all n ∈ N, sy(tn) = 53(e−1)3
63·8π

∑n
i=1

1
e3i .

8. For all n ∈ Z+, sy(e
(n)
0 ) = sy(tn)− (e−1)3

123n38πe3n .

9. sy(1) = 53(e−1)3
63·8π(e3−1) .

By Lemmas 3.5 and 3.6, we see that ~s parametrizes a curve from ~s(0) = (0, 0)

to ~s(1) = (0, 53(e−1)3
638π(e3−1) ).

It is clear from Observation 3.3 and Lemmas 3.5 and 3.6 that the curve Γ
does not intersect itself. We thus have the following.

Corollary 3.7 Γ is a simple curve from ~s(0) = (0, 0) to ~s(1) = (0, 53(e−1)3
638π(e3−1) ).

Lemma 3.8 The functions ~a,~v, and ~s are Lipschitz, hence continuous, on [0, 1].

Since every Lipschitz parametrization has finite total length [1], and since the
length of a curve cannot exceed the total length of any of its parametrizations,
we immediately have the following.

Corollary 3.9 The total length, including retracings, of the parametrization ~s
is finite. Hence the curve Γ is rectifiable.

Lemma 3.10 The curve Γ is smooth except at the endpoint ~s(1).

Lemma 3.11 The functions ~a,~v, and ~s are computable in polynomial time. The
total length including retracings, of ~s is computable in polynomial time.
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Definition. A modulus of uniform continuity for a function f : [a, b]→ Rn is a
function h : N× N such that, for all s, t ∈ [a, b] and r ∈ N,

|s− t| ≤ 2−h(r) =⇒ |f(s)− f(t)| ≤ 2−r.

It is well known (e.g., see [14]) that every computable function f : [a, b] → Rn
has a modulus of uniform continuity that is computable.

Lemma 3.12 Let f : [a, b] → R2 be a parametrization of Γ. If f has bounded
retracing and a computable modulus of uniform continuity, then K ≤T fy, where
fy is the vertical component of f .

4 Lower Semicomputability of Length

In this section we prove that every computable curve Γ has a lower semicom-
putable length. Our proof is somewhat involved, because our result holds even
if every computable parametrization of Γ is retracing.

Construction 4.1 Let f : [0, 1] → Rn be a computable function. Given an
oracle Turing machine M that computes f and a computable modulus m : N→
N of the uniform continuity of f , the (M,m)-cautious polygonal approximator
of range(f) is the function πM,m : N → {polygonal paths} computed by the
following algorithm.

input r ∈ N;
S := {}; // S may be a multi-set
for i:=0 to 2m(r) do

ai := i2−m(r);
use M to compute xi with
|xi − f(ai)| ≤ 2−(r+m(r)+1);

add xi to S;
output a longest path inside a minimum spanning tree of S.

Definition. Let (X, d) be a metric space. Let Γ ⊆ X and ε > 0. Let

Γ (ε) =

{
p ∈ X

∣∣∣∣ inf
p′∈Γ

d(p, p′) ≤ ε
}

be the Minkowski sausage of Γ with radius ε.
Let dH : P(X)× P(X)→ R be such that for all Γ1, Γ2 ∈ P(X)

dH(Γ1, Γ2) = inf {ε | Γ1 ⊆ Γ2(ε) and Γ2 ⊆ Γ1(ε)} .

Note that dH is the Hausdorff distance function.
Let K(X) be the set of nonempty compact subsets of X. Then (K(X), dH) is

a metric space [6].
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Theorem 4.2. (Frink [8], Michael [18]). Let (X, d) be a compact metric space.
Then (K(X), dH) is a compact metric space.

Definition. Let RC be the set of all simple rectifiable curves in Rn.

Theorem 4.3. ([21] page 55). Let Γ ∈ RC. Let {Γn}n∈N ⊆ RC be a sequence of
rectifiable curves such that lim

n→∞
dH(Γn, Γ ) = 0. Then H1(Γ ) ≤ lim inf

n→∞
H1(Γn).

This theorem has the following consequence.

Theorem 4.4. Let Γ ∈ RC. For all ε > 0, there exists δ > 0 such that for all
Γ ′ ∈ RC, if dH(Γ, Γ ′) < δ, then H1(Γ ′) > H1(Γ )− ε.

Theorem 4.5. Let Γ ∈ RC such that Γ = γ([0, 1]), where γ is a continuous
function. (Note that γ may not be one-one.) Let S(a) = {γ(ai) | ai ∈ a} for all
dissection a. Let {an}n∈N be a sequence of dissections of Γ such that

lim
n→∞

mesh(an) = 0.

Then
lim
n→∞

H1(LMST (an)) = H1(Γ ),

where LMST (a) is the longest path inside the Minimum Euclidean Spanning
Tree of S(a).

This result implies that when the sampling density is high, the number of
leaves in the minimum spanning tree is asymptotically smaller than the total
number of nodes.

We now have the machinery to prove the main result of this section.

Theorem 4.6. Let γ : [0, 1]→ Rn be computable such that Γ = γ([0, 1]) ∈ RC.
Then H1(Γ ) is lower semicomputable.

5 ∆0
2-Computability of the Constant-Speed

Parametrization

In this section we prove that every computable curve Γ has a constant speed
parametrization that is ∆0

2-computable.

Theorem 5.1. Let Γ = γ∗([0, 1]) ∈ RC. (γ∗ may not be one-one.) Let l =
H1(Γ ) and Ol be an oracle such that for all n ∈ N, |Ol(n)− l| ≤ 2−n. Let f be a
computation of γ∗ with modulus m. Let γ be the constant speed parametrization
of Γ . Then γ is computable with oracle Ol.

Corollary 5.2 Let Γ be a curve with the property described in property 5 of
Theorem 3.2. Then the length of Γ – H1(Γ ) is not computable.

Acknowledgment. We thank anonymous referees for their valuable com-
ments.
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