4 research outputs found

    Optimizing Membership Function Tuning for Fuzzy Control of Robotic Manipulators Using PID-Driven Data Techniques

    Get PDF
    In this study, a method for optimizing membership function tuning for fuzzy control of robotic manipulators using PID-driven data techniques is presented. Traditional approaches for designing membership functions in fuzzy control systems often rely on the experience and knowledge of the system designer, which can lead to suboptimal performance. By utilizing data collected from a PID control system, the proposed method aims to enhance the precision and controllability of robotic manipulators through improved fuzzy logic control. A Mamdani-type fuzzy logic controller was developed and its performance was simulated in Simulink, demonstrating the effectiveness of the proposed optimization technique. The results indicate that the method can outperform conventional P control systems in terms of overshoot reduction while maintaining comparable transient response specifications. This research highlights the potential of the PID-driven data-based approach for optimizing membership function tuning in fuzzy control systems and offers valuable insights for the development and evaluation of fuzzy logic control in robotic manipulators. Future work may focus on further optimization of the tuning process, evaluation of system robustness under various operating conditions, and exploring the integration of other artificial intelligence techniques for improved control performance

    ํŠน์ • ์ ์˜ ์ถ”์ ์„ ์œ„ํ•œ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด๊ฐ€ ๊ฒฐํ•ฉ๋œ ์ƒˆ๋กœ์šด ๋ฐ˜๋ณตํ•™์Šต์ œ์–ด ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2017. 2. ์ด์ข…๋ฏผ.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ œ์•ฝ์กฐ๊ฑด์ด ์žˆ๋Š” ๋‹ค๋ณ€์ˆ˜ ํšŒ๋ถ„์‹ ๊ณต์ •์˜ ์ œ์–ด๋ฅผ ์œ„ํ•ด ๋ฐ˜๋ณตํ•™์Šต์ œ์–ด(Iterative learning control, ILC)์™€ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด(Model predictive control, MPC)๋ฅผ ๊ฒฐํ•ฉํ•œ ๋ฐ˜๋ณตํ•™์Šต ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด(Iterative learning model predictive control, ILMPC)๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ์ผ๋ฐ˜์ ์ธ ILC๋Š” ๋ชจ๋ธ์˜ ๋ถˆํ™•์‹ค์„ฑ์ด ์žˆ๋”๋ผ๋„ ์ด์ „ ํšŒ๋ถ„์˜ ์ •๋ณด๋ฅผ ์ด์šฉํ•ด ํ•™์Šตํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ถœ๋ ฅ์„ ๊ธฐ์ค€๊ถค์ ์— ์ˆ˜๋ ด์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ธฐ๋ณธ์ ์œผ๋กœ ๊ฐœ๋ฃจํ”„ ์ œ์–ด์ด๊ธฐ ๋•Œ๋ฌธ์— ์‹ค์‹œ๊ฐ„ ์™ธ๋ž€์„ ์ œ๊ฑฐํ•  ์ˆ˜ ์—†๋‹ค. MPC๋Š” ์ด์ „ ํšŒ๋ถ„์˜ ์ •๋ณด๋ฅผ ์ด์šฉํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ๋ชจ๋“  ํšŒ๋ถ„์—์„œ ๋™์ผํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋ฉฐ ๋ชจ๋ธ์˜ ์ •ํ™•๋„์— ํฌ๊ฒŒ ์˜์กดํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ILC์™€ MPC์˜ ๋ชจ๋“  ์žฅ์ ์„ ํฌํ•จํ•˜๋Š” ILMPC๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋งŽ์€ ํšŒ๋ถ„์‹ ๋˜๋Š” ๋ฐ˜๋ณต ๊ณต์ •์—์„œ ์ถœ๋ ฅ์€ ๋ชจ๋“  ์‹œ๊ฐ„์—์„œ์˜ ๊ธฐ์ค€๊ถค์ ์„ ์ถ”์ ํ•  ํ•„์š”๊ฐ€ ์—†๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์›ํ•˜๋Š” ์ ์—๋งŒ ์ˆ˜๋ ดํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ILMPC ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ์›ํ•˜๋Š” ์ ์„ ์ง€๋‚˜๋Š” ๊ธฐ์ค€๊ถค์ ์„ ๋งŒ๋“œ๋Š” ๊ณผ์ •์ด ํ•„์š” ์—†๊ฒŒ ๋œ๋‹ค. ๋˜ํ•œ ๋ณธ ๋…ผ๋ฌธ์€ ์ ๋Œ€์  ์ถ”์ , ๋ฐ˜๋ณต ํ•™์Šต, ์ œ์•ฝ์กฐ๊ฑด, ์‹ค์‹œ๊ฐ„ ์™ธ๋ž€ ์ œ๊ฑฐ ๋“ฑ์˜ ์„ฑ๋Šฅ์„ ๋ณด์ด๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์˜ˆ์ œ๋ฅผ ์ œ๊ณตํ•œ๋‹ค.In this thesis, we study an iterative learning control (ILC) technique combined with model predictive control (MPC), called the iterative learning model predictive control (ILMPC), for constrained multivariable control of batch processes. Although the general ILC makes the outputs converge to reference trajectories under model uncertainty, it uses open-loop control within a batchthus, it cannot reject real-time disturbances. The MPC algorithm shows identical performance for all batches, and it highly depends on model quality because it does not use previous batch information. We integrate the advantages of the two algorithms. In many batch or repetitive processes, the output does not need to track all points of a reference trajectory. We propose a novel ILMPC method which can only consider the desired reference points, not an entire reference trajectory. It does not require to generate a reference trajectory which passes through the specific desired points. Numerical examples are provided to demonstrate the performances of the suggested approach on point-to-point tracking, iterative learning, constraints handling, and real-time disturbance rejection.1. Introduction 1 1.1 Background and Motivation 1 1.2 Literature Review 4 1.2.1 Iterative Learning Control 4 1.2.2 Iterative Learning Control Combined with Model Predictive Control 15 1.2.3 Iterative Learning Control for Point-to-Point Tracking 17 1.3 Major Contributions of This Thesis 18 1.4 Outline of This Thesis 19 2. Iterative Learning Control Combined with Model Predictive Control 22 2.1 Introduction 22 2.2 Prediction Model for Iterative Learning Model Predictive Control 25 2.2.1 Incremental State-Space Model 25 2.2.2 Prediction Model 30 2.3 Iterative Learning Model Predictive Controller 34 2.3.1 Unconstrained ILMPC 34 2.3.2 Constrained ILMPC 35 2.3.3 Convergence Property 37 2.3.4 Extension for Disturbance Model 42 2.4 Numerical Illustrations 44 2.4.1 (Case 1) Unconstrained and Constrained Linear SISO System 45 2.4.2 (Case 2) Constrained Linear MIMO System 49 2.4.3 (Case 3) Nonlinear Batch Reactor 53 2.5 Conclusion 59 3. Iterative Learning Control Combined with Model Predictive Control for Non-Zero Convergence 60 3.1 Iterative Learning Model Predictive Controller for Nonzero Convergence 60 3.2 Convergence Analysis 63 3.2.1 Convergence Analysis for an Input Trajectory 63 3.2.2 Convergence Analysis for an Output Error 65 3.3 Illustrative Example 71 3.4 Conclusions 75 4. Iterative Learning Control Combined with Model Predictive Control for Tracking Specific Points 77 4.1 Introduction 77 4.2 Point-to-Point Iterative Learning Model Predictive Control 79 4.2.1 Extraction Matrix Formulation 79 4.2.2 Constrained PTP ILMPC 82 4.2.3 Iterative Learning Observer 86 4.3 Convergence Analysis 89 4.3.1 Convergence of Input Trajectory 89 4.3.2 Convergence of Error 95 4.4 Numerical Examples 98 4.4.1 Example 1 (Linear SISO System with Disturbance) 98 4.4.2 Example 2 (Linear SISO System) 104 4.4.3 Example 3 (Comparison between the Proposed PTP ILMPC and PTP ILC) 107 4.4.4 Example 4 (Nonlinear Semi-Batch Reactor) 113 4.5 Conclusion 119 5. Stochastic Iterative Learning Control for Batch-varying Reference Trajectory 120 5.1 Introduction 121 5.2 ILC for Batch-Varying Reference Trajectories 123 5.2.1 Convergence Property for ILC with Batch-Varying Reference Trajectories 123 5.2.2 Iterative Learning Identification 126 5.2.3 Deterministic ILC Controller for Batch-Varying Reference Trajectories 129 5.3 ILC for LTI Stochastic System with Batch-Varying Reference Trajectories 132 5.3.1 Approach1: Batch-Domain Kalman Filter-Based Approach 133 5.3.2 Approach2: Time-Domain Kalman Filter-Based Approach 137 5.4 Numerical Examples 141 5.4.1 Example 1 (Random Reference Trajectories 141 5.4.2 Example 2 (Particular Types of Reference Trajectories 149 5.5 Conclusion 151 6. Conclusions and Future Works 156 6.1 Conclusions 156 6.2 Future work 157 Bibliography 158 ์ดˆ๋ก 170Docto

    ์ด๋™๋ธ”๋ก ๋ฐ ์ž”๋ฅ˜ํŽธ์ฐจ ์ œ๊ฑฐ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด ๊ธฐ๋ฒ•์˜ ์ตœ์ ์„ฑ ํ–ฅ์ƒ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€,2020. 2. ์ด์ข…๋ฏผ.Model predictive control (MPC) is a receding horizon control which derives finite-horizon optimal solution for current state on-line by solving an optimal control problem. MPC has had a tremendous impact on both industrial and control research areas. There are several outstanding issues in MPC. MPC has to solve the optimization problem within a sampling period so that the reduction of on-line computational complexity is a one of the main research subject in MPC. Another major issue is model-plant mismatch due to the model based predictive approach so that offset-free tracking schemes by compensating model-plant mismatch or unmeasured disturbance has been developed. In this thesis, we focused on the optimality performance of move blocking which fixes the decision variables over arbitrary time intervals to reduce computational load for on-line optimization in MPC and disturbance estimator approach based offset-free MPC which is the most standardly used method to accomplish offset-free tracking in MPC. We improve the optimality performance of move blocked MPC in two ways. The first scheme provides a superior base sequence by linearly interpolating complementary base sequences, and the second scheme provides a proper time-varying blocking structure with semi-explicit approach. Moreover, we improve the optimality performance of offset-free MPC by exploiting learned model-plant mismatch compensating signal from estimated disturbance data. With the proposed schemes, we efficiently improve the optimality performance while guaranteeing the recursive feasibility and closed-loop stability.๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด๋Š” ํ˜„์žฌ ์‹œ์Šคํ…œ ์ƒํƒœ์— ๋Œ€ํ•œ ์œ ํ•œ ๊ตฌ๊ฐ„ ์ตœ์ ํ•ด๋ฅผ ๋„์ถœํ•˜๋Š” ์˜จ๋ผ์ธ ์ด๋™ ๊ตฌ๊ฐ„ ์ œ์–ด ๋ฐฉ์‹์ด๋‹ค. ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด๋Š” ํ”ผ๋“œ๋ฐฑ์„ ํ†ตํ•œ ๊ณต์ • ๋™ํŠน์„ฑ๊ณผ ์ œ์•ฝ ์กฐ๊ฑด์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ฐ˜์˜ํ•˜๋Š” ์žฅ์ ์œผ๋กœ ์ธํ•ด ์‚ฐ์—… ๋ฐ ์ œ์–ด ์—ฐ๊ตฌ ๋ถ„์•ผ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์ณค๋‹ค. ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด์—๋Š” ๋ช‡ ๊ฐ€์ง€ ํ•ด๊ฒฐ๋˜์–ด์•ผ ํ•  ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด์—์„œ๋Š” ์ƒ˜ํ”Œ๋ง ๊ธฐ๊ฐ„ ๋‚ด์— ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ํ’€์–ด๋‚ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์˜จ๋ผ์ธ ๊ณ„์‚ฐ ๋ณต์žก์„ฑ์˜ ๊ฐ์†Œ๊ฐ€ ์ฃผ์š” ์—ฐ๊ตฌ ์ฃผ์ œ ์ค‘ ํ•˜๋‚˜๋กœ ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๋˜ ๋‹ค๋ฅธ ์ฃผ์š” ๋ฌธ์ œ๋Š” ๋ชจ๋ธ์— ๊ธฐ๋ฐ˜ํ•œ ์˜ˆ์ธก์„ ์ด์šฉํ•˜๋Š” ์ ‘๊ทผ ๋ฐฉ์‹์œผ๋กœ ์ธํ•ด ๋ชจ๋ธ-ํ”Œ๋žœํŠธ ๋ถˆ์ผ์น˜๋กœ ์ธํ•œ ์˜ค์ฐจ๋ฅผ ํ•ด๊ฒฐํ•ด์•ผ ํ•œ๋‹ค๋Š” ์ ์ด๋ฉฐ, ๋ชจ๋ธ ํ”Œ๋žœํŠธ ๋ถˆ์ผ์น˜ ๋˜๋Š” ์ธก์ •๋˜์ง€ ์•Š์€ ์™ธ๋ž€์„ ๋ณด์ƒํ•˜์—ฌ ์ž”๋ฅ˜ํŽธ์ฐจ ์—†์ด ์ฐธ์กฐ์‹ ํ˜ธ๋ฅผ ์ถ”์ ํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด์—์„œ์˜ ์˜จ๋ผ์ธ ์ตœ์ ํ™”๋ฅผ ์œ„ํ•œ ๊ณ„์‚ฐ ๋ถ€ํ•˜๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ์ž„์˜์˜ ์‹œ๊ฐ„ ๊ฐ„๊ฒฉ์— ๊ฑธ์ณ ๊ฒฐ์ • ๋ณ€์ˆ˜๋ฅผ ๊ณ ์ •์‹œํ‚ค๋Š” ์ด๋™ ๋ธ”๋ก ์ „๋žต์˜ ์ตœ์ ์„ฑ ํ–ฅ์ƒ์— ์ค‘์ ์„ ๋‘์—ˆ์œผ๋ฉฐ, ๋˜ํ•œ ์ž”๋ฅ˜ํŽธ์ฐจ๋ฅผ ์ œ๊ฑฐํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ€์žฅ ํ‘œ์ค€์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ์™ธ๋ž€ ์ถ”์ •๊ธฐ๋ฅผ ์ด์šฉํ•œ ์ž”๋ฅ˜ํŽธ์ฐจ-์ œ๊ฑฐ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด ๊ธฐ๋ฒ•์˜ ์ตœ์ ์„ฑ ํ–ฅ์ƒ์— ์ค‘์ ์„ ๋‘์—ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋™ ๋ธ”๋ก ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด์˜ ์ตœ์  ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๋‘ ๊ฐ€์ง€ ์ „๋žต์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ „๋žต์€ ์ด๋™ ๋ธ”๋ก ์ „๋žต์—์„œ ์ผ๋ฐ˜์ ์œผ๋กœ ๊ณ ์ •๋œ ์ฑ„๋กœ ์‚ฌ์šฉ๋˜๋Š” ๊ธฐ๋ฐ˜ ์‹œํ€€์Šค๋ฅผ ์ƒํ˜ธ ๋ณด์™„์ ์ธ ๋‘ ๊ธฐ๋ฐ˜ ์‹œํ€€์Šค์˜ ์„ ํ˜• ๋ณด๊ฐ„์œผ๋กœ ๋Œ€์ฒดํ•จ์œผ๋กœ์จ ๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ๊ธฐ๋ฐ˜ ์‹œํ€€์Šค๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ๋‘ ๋ฒˆ์งธ ์ „๋žต์€ ์ค€-๋ช…์‹œ์  ์ ‘๊ทผ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ํ˜„์žฌ ์‹œ์Šคํ…œ ์ƒํƒœ์— ์ ์ ˆํ•œ ์‹œ๋ณ€ ๋ธ”๋ก ๊ตฌ์กฐ๋ฅผ ์˜จ๋ผ์ธ์—์„œ ์ œ๊ณตํ•œ๋‹ค. ๋˜ํ•œ, ์ž”๋ฅ˜ํŽธ์ฐจ-์ œ๊ฑฐ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด ๊ธฐ๋ฒ•์˜ ์ตœ์  ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ถ”์ • ์™ธ๋ž€ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ํ•™์Šต๋œ ๋ชจ๋ธ-ํ”Œ๋žœํŠธ ๋ถˆ์ผ์น˜ ๋ณด์ƒ ์‹ ํ˜ธ๋ฅผ ์˜จ๋ผ์ธ์—์„œ ์ด์šฉํ•˜๋Š” ์ „๋žต์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ์„ธ ๊ฐ€์ง€ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด์˜ ๋ฐ˜๋ณต์  ์‹คํ˜„๊ฐ€๋Šฅ์„ฑ๊ณผ ํ์‡„-๋ฃจํ”„ ์•ˆ์ •์„ฑ์„ ๋ณด์žฅํ•˜๋ฉด์„œ ์ตœ์  ์„ฑ๋Šฅ์„ ํšจ์œจ์ ์œผ๋กœ ๊ฐœ์„  ํ•˜์˜€๋‹ค.1. Introduction 1 2. Move-blocked model predictive control with linear interpolation of base sequences 5 2.1 Introduction 5 2.2 Preliminaries 9 2.2.1 MPC formulation 9 2.2.2 Move blocking 12 2.2.3 Move blocked MPC (MBMPC) 15 2.3 Move blocking schemes 16 2.3.1 Previous solution based offset blocking 17 2.3.2 LQR solution based offset blocking 18 2.4 Interpolated solution based move blocking 20 2.4.1 Interpolated solution based MBMPC 20 2.4.2 QP formulation 26 2.5 Numerical examples 29 2.5.1 Example 1 (Feasible region) 30 2.5.2 Example 2 (Performance in regulation problem) 33 2.5.3 Example 3 (Performance in tracking problem) 36 3. Move-blocked model predictive control with time-varying blocking structure by semi-explicit approach 43 3.1 Introduction 43 3.2 Problem formulation 46 3.3 Move blocked MPC 48 3.3.1 Move blocking scheme 48 3.3.2 Implementation of move blocking 51 3.4 Semi-explicit approach for move blocked MPC 53 3.4.1 Off-line generation of critical region 56 3.4.2 On-line MPC scheme with critical region search 60 3.4.3 Property of semi-explicit move blocked MPC 62 3.5 Numerical examples 70 3.5.1 Example 1 (Regulation problem) 71 3.5.2 Example 2 (Tracking problem) 77 4. Model-plant mismatch learning offset-free model predictive control 83 4.1 Introduction 83 4.2 Offset-free MPC: Disturbance estimator approach 86 4.2.1 Preliminaries 86 4.2.2 Disturbance estimator and controller design 87 4.2.3 Offset-free tracking condition 89 4.3 Model-plant mismatch learning offset-free MPC 91 4.3.1 Model-plant mismatch learning 92 4.3.2 Application of learned model-plant mismatch 97 4.3.3 Robust asymptotic stability of model-plant mismatch learning offset-free MPC 102 4.4 Numerical example 117 4.4.1 System with random set-point 120 4.4.2 Transformed system 125 4.4.3 System with multiple random set-points 128 5. Concluding remarks 134 5.1 Move-blocked model predictive control with linear interpolation of base sequences 134 5.2 Move-blocked model predictive control with time-varying blocking structure by semi-explicit approach 135 5.3 Model-plant mismatch learning offset-free model predictive control 136 5.4 Conclusions 138 5.5 Future work 139 Bibliography 145Docto
    corecore