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Abstract

A Novel Iterative Learning Control
Method Combined with Model
Predictive Control for Tracking

Specific Points

Se-Kyu Oh

School of Chemical and Biological Engineering

The Graduate School

Seoul National University

In this thesis, we study an iterative learning control (ILC) technique

combined with model predictive control (MPC), called the iterative

learning model predictive control (ILMPC), for constrained multi-

variable control of batch processes. Although the general ILC makes

the outputs converge to reference trajectories under model uncer-

tainty, it uses open-loop control within a batch; thus, it cannot reject

real-time disturbances. The MPC algorithm shows identical perfor-

mance for all batches, and it highly depends on model quality because

it does not use previous batch information. We integrate the advan-

tages of the two algorithms. In many batch or repetitive processes, the

output does not need to track all points of a reference trajectory. We

propose a novel ILMPC method which can only consider the desired

reference points, not an entire reference trajectory. It does not require

to generate a reference trajectory which passes through the specific
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desired points. Numerical examples are provided to demonstrate the

performances of the suggested approach on point-to-point tracking,

iterative learning, constraints handling, and real-time disturbance re-

jection.

Keywords: Iterative Learning Control, Model Predictive Control,

Point-to-Point Tracking

Student Number: 2013-30282
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Chapter 1

Introduction

1.1 Background and Motivation

A controller in a continuous process generally aims to converge

an output to a constant set-point. In many cases, the regulation prob-

lem can be solved with the proportional-integral-derivative (PID) con-

troller or the linear model-based controller. The linear model-based

controller uses a linearized process model at an operating point. A

controller in a batch, cyclic, repetitive or iteration process aims to

make the output track a time-varying reference trajectory defined over

a finite time interval. The PID controller only uses the error of the

previous time; thus, it cannot prepare for the future time-varying ref-

erence trajectory. Model predictive control (MPC) has become the ac-

cepted standard for complex constrained multivariable control prob-

lems in the process industry. MPC uses the predictive model to calcu-

late the input trajectory that minimize future output errors. The batch

process dynamics, however, is highly nonlinear because of its wide

operation range; thus, it is difficult to obtain an appropriate linear

model. Although nonlinear MPC (NMPC) is used, perfect tracking is

impossible because of the model-plant mismatch. Despite the above

difficulties, the batch process has an important characteristic of re-
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peating the same task, that is, the information from the previous batch

steps and the previous time steps are available. The conventional con-

trol techniques use the model and the information of the previous time

steps. Thus, a new control technique that can learn from the informa-

tion of the previous batch is needed.

Iterative learning control (ILC) is a control technique that learns

from previous experience such as previous batch, cycle, repetition or

iteration. The basic idea of ILC can be found in [1] and the first re-

search paper on ILC was written by Uchiyama [2]. It was written in

Japanese; therefore, it has not received much attention from control

community. In 1984, Arimoto et al. first introduced ILC in English

[3]. ILC was originally introduced for robot manipulators, which re-

peat the same task from trial and trial. The basic algorithm of ILC is

to use the information from the previous trial to control the current

trial. However, it does not use the information of previous time steps

at the current trial, that is, it is not a real-time feedback controller.

Thus, ILC should be combined with a real-time control technique to

reject real-time disturbances.

Among the advanced process control techniques, MPC is the

most standard advanced real-time control technique. Many ILC tech-

niques combined with MPC, often referred to as iterative learning

model predictive control (ILMPC), have been proposed to handle

real-time disturbances. Most studies of ILMPC use an augmented

state-space model where a state vector consists of the entire error

sequences of a batch, and a prediction horizon is fixed as the entire

batch horizon [4, 5, 6, 7, 8]. In addition, the resulting formulation

of such an algorithm employs linear time-varying (LTV) models in

the state augmentation step, even if a system is linear time-invariant

2



(LTI). Thus, additional calculation burdens for LTI systems are added

in the algorithm. Also, it has a different formulation from general

ILC or MPC; thus, additional modification may be needed to incor-

porate other techniques applicable to general ILC or MPC such as

advanced state estimation theory or point-to-point tracking technique

into the controller. Two-stage approaches have also been proposed

for combining ILC with real-time feedback controller [6, 7, 9]. The

two-stage approaches have difficulties in system analysis and param-

eter tuning and require two optimization steps. In addition, the time-

wise feedback controllers of the approaches are not offset-free con-

trol; thus, offset occurs in the early batches until the batch-wise con-

troller shows convergence. Above all, the two-stage approaches do

not consider constraints. ILC combined with dynamic matrix control

(DMC) for LTI system [10] has been proposed, but the DMC algo-

rithm without an observer cannot handle unknown disturbance and

measurement noise effectively [11].

ILMPC should contain the following all advantages of MPC. (1)

ILMPC should guarantee offset-free control. (2) It should have a sin-

gle optimization step, not two optimization steps for both ILC part

and MPC part separately. (3) It should consider constraints and ensure

that a feasible solution will always be found. (4) Prediction horizon

should be able to be adjusted to reduce the computational load. (5) If

the model is LTI, it should use LTI model directly. (6) The form of

prediction model and algorithm procedure should be similar to those

of MPC.

General control techniques including PID, ILC and MPC should

have an entire reference trajectory or set-points for all control time

steps. If it is important for the output to converge to specific points,

3



an arbitrary reference trajectory passing through those points should

be prepared first. This process adds additional burden. In addition,

if parameters or constraints are modified, it is necessary to find a

new reference trajectory. Tracking an entire reference trajectory is

not always necessary in many applications such as a robotic “pick

and place” task, crane control, rapid thermal process, and chemical

batch reactor [12, 13, 14]. An ILC technique that considers only the

desired reference points is called point-to-point ILC (PTP ILC) and

has been studied recently [15, 16, 17]. Terminal ILC (TILC) has been

also studied for tracking terminal point only [12, 18, 19]. It is a special

case of the PTP ILC problem. These types of PTP ILC algorithms are

open-loop control within a batch; thus, they cannot reject real-time

disturbances. If real-time disturbances should be rejected, the PTP

ILC algorithm needs integrating with a real-time feedback controller.

The main objective of the study is to propose a standard form

of ILMPC that includes all the advantages mentioned above. Then,

we propose a novel ILMPC technique that can track specific points

without generating an arbitrary reference trajectory passing through

the specific points.

1.2 Literature Review

1.2.1 Iterative Learning Control

The basic idea of the ILC is illustrated in Figure 1.1. For sim-

plicity, we consider the LTI system in this section. In classical ILC,

the following postulates are required.

• Every trial (pass, cycle, batch, iteration, repetition) ends in a

4



Plant

Iterative
Learning

Controller

Current Trial’s Input Current Trial’s Output

Desired Output

Next Trial’s Input

𝑢𝑢𝑘𝑘+1 𝑡𝑡 = 𝑓𝑓 𝑢𝑢𝑘𝑘 𝑡𝑡 ,𝑦𝑦𝑘𝑘 𝑡𝑡 + 1 , 𝑟𝑟 𝑡𝑡 + 1

𝑢𝑢𝑘𝑘+1(𝑡𝑡)

𝑢𝑢𝑘𝑘(𝑡𝑡) 𝑦𝑦𝑘𝑘(𝑡𝑡 + 1)

𝑟𝑟(𝑡𝑡 + 1)

Figure 1.1: The basic scheme of iterative learning control

fixed time of duration.

• Repetition of the initial setting is satisfied. That is, the initial

state xk(0) of the objective system can be set to the same point

at the beginning of each iteration.

• Invariance of the system dynamics is ensured throughout the

repetition.

• The output yk(t) is measured in a deterministic way.

In recent ILC studies, the above postulates can be relaxed. Let us

consider the following continuous LTI system:

ẋk(t) = Axk(t) +Buk(t)

yk(t) = Cxk(t)
(1.1)
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where xk(t) is the state, uk(t) is the input, yk(t) is the output, t is the

time index, k is the batch, cycle, repetition or iteration index. That is,

uk(t) is the system input at time t of the k-th batch.

The first learning control scheme, called “Arimoto-type” ILC,

was proposed in 1984 [3, 20].

uk+1(t) = uk(t) + Γėk(t) (1.2)

where ek(t) = r(t) − yk(t) and r(t) is the reference trajectory. Con-

sider the plant (1.1) and the input update law (1.2), the output yk(t) →
r(t) for all t as k → ∞ if the learning gain matrix Γ satisfies the fol-

lowing condition.

∥I − CBΓ∥i < 1 (1.3)

where i is an operator norm and i ∈ {1, 2, · · · , ∞}. Arimoto also

proposed more general PID-type input update law in 1986 [21]. In

this paper, Arimoto referred to this technique as “Iterative Learning

Control”. He used the term “Bettering Operation” in his previous pa-

pers.

uk+1(t) = uk(t) + Φek(t) + Γėk(t) + Ψ

∫ t

0

ek(τ)dτ (1.4)

In industrial application, digital controller are used to control systems

and to store the information obtained in the course of learning pro-

cess. Thus, many ILC studies are based on discrete-time system.

xk(t+ 1) = Axk(t) +Buk(t)

yk(t) = Cxk(t)
(1.5)
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In 1985, Togai and Yamano [22] proposed discrete optimal learning

control algorithm based on state variable technique and they used the

following objective function to obtain optimal learning gain matrix.

min
uk(t)

1

2
eTk (t+ 1)Qek(t+ 1) (1.6)

where Q is an appropriate weighting matrix. The input update law is

uk+1(t) = uk(t) +Gek(t+ 1) (1.7)

and they proposed three types of learning gain matrix. Note that this

paper considers C = I .

1. Steepest Descent

G = −KBT (K : constant) (1.8)

2. Newton-Raphson

G = − ∥ek(t+ 1)∥2

∥BTBek(t+ 1)∥2
BT (1.9)

3. Gauss-Newton

G = −(BTB)−1BT (1.10)

Most model-based ILC algorithms were based on the notion of direct

model inversion [22, 23, 24, 25, 26, 27]. The learning gain matrix

of the algorithms based on direct model inversion is very sensitive

to high-frequency components in ek(t). Tao et al. [28] proposed a

discrete-time ILC algorithm based on the following objective func-

7



tion with an input penalty term to reduce the noise sensitivity [5].

min
uk(t)

1

2

{
ek(t+ 1)TQek(t+ 1) + uk(t)

TRuk(t)
}

(1.11)

Sogo and Adachi [29] also proposed a continuous-time ILC algorithm

based on the similar objective function.

ILC is basically an open-loop control. It is not necessary to ob-

tain the input trajectory of the current batch in real time. Many ILC

studies uses the lifted vector form. Each lifted vector consists of val-

ues of input and output for all time steps. Thus, an input trajectory

for all time steps at the current batch is calculated with a single cal-

culation if the lifted vector is used. Eq. (1.5) can be expressed the

following form.
yk(1)

yk(2)
...

yk(N)

 =


CB 0 · · · 0

CAB CB · · · 0
...

... . . . ...

CAN−1B CAN−2B · · · CB




uk(0)

uk(1)
...

uk(N − 1)



+


CA

CA2

...

CAN

xk(0)
(1.12)

Let us define Eq. (1.12) as follows.

yk = Guk + Fxk(0) (1.13)
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Amann et al. [30, 31, 32] and Lee et al. [33] independently pro-

posed discrete-time ILC algorithms based on the following objective

function with a penalty term on input change.

min
uk

1

2

{
eTk+1Qek+1 +∆uT

kR∆uk

}
(1.14)

where ∆uk = uk − uk−1. Amann et al. and Lee et al. suggested

different solutions.

uk+1 =uk +R−1GTQek (Amann et al. [30])

uk+1 =uk +
(
GTQG+R

)−1
GTQek (Lee et al. [33])

(1.15)

In all of the above control techniques, the error converges to zero.

The following is more general form of the learning control algorithm

[25].

uk+1 = Tuuk +Teek (1.16)

If the plant is yk = Tsuk with zero initial condition, the condition

for convergence is ∥Tu − TeTs∥i < 1. This is much less restrictive

than ∥I − TeTs∥i < 1 in Eq. (1.3). In this case, the error does not

converge to zero. The final error is as follows.

e∗ = lim
k→∞

ek =
(
I−Ts (I−Tu +TeTs)

−1Te

)
r. (1.17)

If Tu = I and the plant matrix is invertible, the error goes to zero as

k → ∞.

Several researchers have considered higher-order ILC (HOILC)

[34, 35, 36, 37, 38]. HOILC uses up to the n-th previous batch, not

just the previous batch. The following is the input update law of

9



HOILC.

uk+1 =Λkuk + Λk−1uk−1 + · · ·+ Λk−nuk−n

+ Γkek + Γk−1ek−1 + · · ·+ Γk−nek−n

(1.18)

Studies on ILC have also been conducted for applications in various

systems. In the early days of ILC research, it was mainly applied to

robot and mechatronic systems [20, 23, 39, 40, 41, 42, 43]. Then,

ILC began to be applied to other systems such as chemical batch pro-

cesses [44, 45, 46, 13, 47, 48, 49, 50, 51, 52, 53], injection molding

processes [54, 55, 56] and semiconductor industry [57, 58, 59, 60, 61,

62, 63, 64, 65, 66, 67, 68, 69]. In many processes, especially in chemi-

cal batch processes, ILC combined with real-time feedback controller

is used because disturbance rejection is an important issue. MPC is

the most accepted standard real-time feedback control technique for

complex constrained multivariable control problem in the process in-

dustry. Thus, Many ILC techniques combined with MPC have been

studied.

Example 1.1

Consider the system and the reference trajectory as shown in Fig.

1.2.

x(t+ 1) =

[
−0.8 −0.2

1 0

]
x(t) +

[
0.5

1

]
u(t)

y(t) =
[
1 0.5

] (1.19)
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Terminal time is 100 and the system has zero initial condition. The

following three models are available.

1st model

x1k(t+ 1) =

[
−0.7 −0.1

0.9 0

]
x1k(t) +

[
0.4

0.9

]
u1k(t)

y1k(t) =
[
0.9 0.4

]
x1k(t)

(1.20)

2nd model

x2k(t+ 1) =

[
−0.8 −0.5

1.3 0

]
x2k(t) +

[
0.5

1

]
u2k(t)

y2k(t) =
[
10 0.5

]
x2k(t)

(1.21)

3rd model

x3k(t+ 1) =

[
−0.7 −0.1

0.9 0

]
x3k(t) +

[
0.4

0.9

]
u3k(t)

y3k(t) =
[
−1 0.4

]
x3k(t)

(1.22)

We use the following control law (Tu = I in Eq. (1.16)).

uk+1 = uk +Ti
eek (1.23)

Convergence condition is ∥I − Ti
eTs∥2 < 1 where Ts is the step

response matrix of the plant (1.19) and Ti
e is the step response ma-

trix of the i-th model. The values of the convergence conditions of

11



the three models are as follows.

∥I−T1
eTs∥2 = 0.5745

∥I−T2
eTs∥2 = 0.9977

∥I−T3
eTs∥2 = 2.7664

(1.24)

If the 1st or 2nd model is used, the output trajectory is convergent

to the reference trajectory as show in Figs. (1.3) and (1.4). If the

3rd model is used, the output trajectory diverges as shown in Fig.

(1.5).

0 10 20 30 40 50 60 70 80 90 100

Time
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Figure 1.2: Reference trajectory
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Figure 1.3: Result with the 1st model
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Figure 1.4: Result with the 2nd model
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Figure 1.5: Result with the 3rd model
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Figure 1.6: Convergence performance with the 1st and 2nd models
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Figure 1.7: Convergence performance with the 3rd model

1.2.2 Iterative Learning Control Combined with Model
Predictive Control

ILC was originally developed for robot manipulator control. Un-

like the robot system, chemical process has overdamped nonlinear

dynamics, significant interactions, large model errors, large distur-

bance and active constraints [4]. For these reasons, ILC has not been

widely applied in the field of chemical process. To overcome these

issues, many papers that propose an ILC combined with MPC have

been published [70, 4, 71, 6, 72, 55, 73, 74, 10, 9, 75]. The first rig-

orous paper for ILC combined with MPC was proposed by Lee et al.

[4, 71] and the technique is called batch MPC (BMPC). BMPC uses
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the following periodically time-varying state-space model.

[
ēk(t+ 1)

ek(t+ 1)

]
=

[
I 0

0 I

][
ēk(t)

ek(t)

]
−

[
G(t)

G(t)

]
∆uk(t)

ek(t) =
[
0 H(t)

] [ēk(t)
ek(t)

] (1.25)

whereG(t) andH(t) are defined as (G is the same as G in Eq. (1.13))

G =
[
G(0) G(1) · · · G(N − 1)

]
(1.26)

H(t) =
[
0 I 0

]
(1.27)

where I of H(t) is located at t-th block column.

Example 1.2

IfN = 4, t = 2 and the system has single-input single-output,G(t)

and H(t) become

G(2) =
[
0 0 CB CAB

]T
H(2) =

[
0 1 0 0

] (1.28)

BMPC uses the above state-space model to create a prediction model

for the objective function. BMPC has been successfully applied to

many systems [6, 7, 8]. However, even if the original system is time-

invariant, BMPC should use time-varying parameters and the formu-

lation of BMPC is somewhat complicate to combine with other tech-

niques.
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Two-stage approach has also been studied to combine ILC with

real-time feedback controller [6, 7, 9]. This technique calculates the

input of the ILC part and the input of the MPC part separately, then

the sum of the two inputs is used as the actual input. It is effective for

non-repetitive disturbances but requires two optimization steps. Also,

constraints were not considered in this approach.

1.2.3 Iterative Learning Control for Point-to-Point Track-
ing

In many repetitive processes, the output does not need to track all

points of a reference trajectory. PTP ILC was proposed by Lucibello

[76] in 1992. TILC, a special case of PTP ILC, aims to track termi-

nal point and has mainly been applied for quality control of systems

which cannot measure the output in real time [77, 12, 13, 78, 19]. PTP

ILC for tracking multiple points has been studied relatively recently

compared to other ILC techniques [15, 79, 80, 81, 14, 16, 17]. For

PTP tracking, there are two main approaches. The first is reference

trajectory update-based approach [15]. In this approach, the reference

trajectory that passes through desired points is updated at each batch,

then the output tracks the updated reference trajectory. The second is

direct tracking approach [16]. In this approach, the output converges

to the desired points without the reference trajectory. All of the above

PTP ILC algorithms are open-loop control within a batch. In order

to apply PTP ILC to various applications, a real-time feedback con-

troller should be integrated.
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1.3 Major Contributions of This Thesis

The major contributions of this thesis are listed in the following:

• The standard form of ILC technique combined with MPC is

proposed. The formulation and algorithm procedure of the pro-

posed ILMPC is similar to conventional MPC; thus, various

techniques for MPC can be applied to the proposed ILMPC

without particular modification. Additional advantages include

the simplicity of the formulation and low entry barriers.

• The case where the error converges to non-zero is studied. Most

existing ILMPC techniques are designed to have an zero error

as k → ∞. However, zero error is not always preferable to

non-zero error. An input trajectory for perfect tracking includ-

ing vertices of a reference trajectory has a non-smooth trajec-

tory. A penalty term for a smooth input trajectory is added to

the objective function of the propose ILMPC and convergence

analysis is performed.

• A novel ILMPC technique for tracking specific points is pro-

posed. The all existing PTP ILC is open-loop control and the

controller cannot reject disturbances. The PTP tracking prob-

lem in the ILMPC form is addressed by introducing an extrac-

tion matrix that extracts only the components related to specific

points. If all the points of the whole operation time are regarded

as specific points, PTP ILMPC becomes the same as ILMPC.

Thus, the proposed PTP ILMPC includes all advantages of the

proposed ILMPC and ILMPC can be seen as a special case of

PTP ILMPC.
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• Adaptive ILC schemes for discrete LTI stochastic system with

batch-varying reference trajectory (BVRT) is proposed. If ref-

erence trajectories change every batch, ILC shows a different

convergence property from that of the identical reference trajec-

tory. This technique is not directly related to ILMPC, but can be

integrated with ILMPC with minor modification. The limitation

of this technique is that only linear system is considered.

1.4 Outline of This Thesis

The remainder of this thesis is organized as follows.

In Chapter 2, we propose a MPC technique combined with ILC

for constrained multivariable control of batch processes. Although the

general ILC makes the outputs converge to reference trajectories un-

der model uncertainty, it uses open-loop control within a batch; thus,

it cannot reject real-time disturbances. The MPC algorithm shows

identical performance for all batches, and it highly depends on model

quality because it does not use previous batch information. We in-

tegrate the advantages of the two algorithms. The proposed ILMPC

formulation is based on general MPC and incorporates an iterative

learning function into MPC. Thus, it is easy to handle various is-

sues for which the general MPC is suitable, such as constraints, time-

varying systems, disturbances, and stochastic characteristics. Simula-

tion examples are provided to show the effectiveness of the proposed

ILMPC.

In Chapter 3, the case in which the output error converges to

non-zero value is studied. The existing ILMPC techniques make the

error converge to zero. However, if the error converges to zero, an
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impractical input trajectory may be calculated. We use a generalized

objective function to independently tune weighting factors of manip-

ulated variable change with respect to both the time index and batch

horizons. If the generalized objective function is used, output error

converges to non-zero values. We provide convergence analysis for

both cases of zero convergence and non-zero convergence.

In Chapter 4, we propose a point-to-point ILMPC technique which

can only consider the desired reference points, not an entire reference

trajectory. It does not require to generate a reference trajectory which

passes through the desired reference values. The existing ILMPC

techniques aim to track a reference trajectory of repetitive process on

a finite time interval while rejecting real-time disturbances. In many

repetitive processes, however, the output does not need to track all

points of a reference trajectory. In order to guarantee the convergence

of tracking error, the suggested approach requires the error between

measured and estimated outputs go to zero for all time as the number

of iterations goes to infinity. However, neither classical observer nor

Kalman filter guarantees the estimation error converge to zero for all

time points. To overcome this issue, iterative learning observer (ILO)

is applied to the algorithm and it can ensure that the estimation error

go to zero for all time as the number of iterations goes to infinity. Nu-

merical examples are provided to demonstrate the performances of

the suggested approach on point-to-point tracking, iterative learning,

constraints handling, and real-time disturbance rejection.

In Chapter 5, we present adaptive ILC schemes for discrete LTI

stochastic system with BVRT. In this case, if the state noise and mea-

surement noise exist,convergence rate and tracking performance are

degraded because the controller considers the difference arising from
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the noise as tracking error. To deal with such a problem, we pro-

pose two approaches. The first is based on a batch-domain Kalman

filter, which uses the difference between the current output trajec-

tory and the next reference trajectory as a state vector, while the sec-

ond is based on a time-domain Kalman filter. In the second approach,

the system is identified at the end of each batch in an iterative fash-

ion using the observer/Kalman filter identification (OKID). Then, the

stochastic problem is handled using Kalman filter with a steady-state

Kalman gain obtained from the identification. Therefore, the second

approach can track the reference trajectories of discrete LTI stochas-

tic system using only the input–output information. Simulation exam-

ples are provided to show the effectiveness of the proposed schemes.

Finally, Conclusions and possible directions for further work are

given in Section 6.
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Chapter 2

Iterative Learning Control Combined with
Model Predictive Control

In this chapter, we propose a MPC technique combined with ILC

for constrained multivariable control of batch processes. Although the

general ILC makes the outputs converge to reference trajectories un-

der model uncertainty, it uses open-loop control within a batch; thus,

it cannot reject real-time disturbances. The MPC algorithm shows

identical performance for all batches, and it highly depends on model

quality because it does not use previous batch information. We in-

tegrate the advantages of the two algorithms. The proposed ILMPC

formulation is based on general MPC and incorporates an iterative

learning function into MPC. Thus, it is easy to handle various is-

sues for which the general MPC is suitable, such as constraints, time-

varying systems, disturbances, and stochastic characteristics. Simula-

tion examples are provided to show the effectiveness of the proposed

ILMPC.

2.1 Introduction

Iterative learning control (ILC) is an effective control technique

for improving the tracking performance of a batch process under
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model uncertainty. ILC was originally introduced for robot manip-

ulators [3] and has been implemented in many industrial processes,

such as semiconductor manufacturing and chemical batch processes

[12, 52]. In many ILC algorithms, the input sequences for the cur-

rent batch are calculated using the tracking error sequences of the

previous batch. This type of ILC algorithm uses open-loop control

within a batch and cannot handle real-time disturbances. ILC should

be integrated with real-time feedback control to reject real-time dis-

turbances.

Model predictive control (MPC) has become the accepted stan-

dard for complex constrained multivariable control problems in the

process industry. Some studies about ILC formulations combined with

MPC, called iterative learning model predictive control (ILMPC),

have been studied for handling real-time disturbances in batch pro-

cesses. In case of combining ILC with MPC, it should include fun-

damental advantages of MPC as well as real-time feedback function.

The following characteristics of MPC should be included in ILMPC.

1) ILMPC should guarantee offset-free control. 2) It should have a

single optimization step, not two optimization steps for both ILC

part and MPC part separately. 3) It should consider constraints and

ensure that a feasible solution will always be found. 4) Prediction

horizon should be able to be adjusted to reduce the computational

load. 5) If the model is linear time-invariant (LTI), it should use LTI

model directly. However, there are no studies about ILMPC algo-

rithms which contain above all advantages. Most studies of ILMPC

use a state-space model where a state vector consists of the entire

error sequences of a batch, and a prediction horizon is fixed as the

entire batch horizon [5, 6, 7, 8]. Thus, the control calculations may
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not be performed within a sampling interval if a process has output

constraints, a small sample time, long operation time, and many out-

puts. The prediction horizon should be adjusted to reduce the exces-

sive computational load. In addition, the resulting formulation of such

an algorithm employs linear time-varying (LTV) models in the state

augmentation step, even if a system is LTI. Thus, additional calcula-

tion burdens for LTI systems are added in the algorithm. Two-stage

approaches have also been proposed for combining ILC with real-

time feedback [6, 7, 9]. The two-stage approaches have difficulties

in system analysis and parameter tuning and requires two optimiza-

tion steps. In addition, the time-wise feedback controllers of the ap-

proaches are not offset-free control; thus, offset occurs in the early

batches until the batch-wise controller shows convergence. Above all,

the two-stage approaches do not consider constraints. ILC combined

with dynamic matrix control (DMC) for LTI system [10] has been

proposed, but the DMC algorithm without an observer cannot handle

unknown disturbance and measurement noise effectively [11].

In this chapter, we proposed ILMPC which contains fundamen-

tal advantages of MPC. 1) The proposed ILMPC guarantees offset-

free control by introducing incremental state-space model. Therefore,

outputs can track reference trajectories while rejecting disturbances at

the first batch even if this is not perfect tracking. 2) This is one-stage

approach and has single optimization step. 3) It considers constraints

and includes slack variable; thus this algorithm ensures that a feasible

solution will always be found. 4) Prediction and control horizon can

be adjusted to reduce the computational load. 5) If the system is LTI,

this algorithm uses LTI parameters directly. Finally, the formulation

and algorithm procedure of the proposed ILMPC is similar to conven-
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tional MPC; thus various techniques for MPC can be applied for the

proposed ILMPC without particular modification. The reason which

these advantages can be included in the proposed algorithm is that a

prediction model formulated by an input-output model between two

adjacent batches is directly applied to the algorithm in an identical

way as a conventional MPC.

2.2 Prediction Model for Iterative Learning Model Pre-
dictive Control

2.2.1 Incremental State-Space Model

2.2.1.1 Delta input formulation

Fisrt, we consider the following linear discrete time-invariant

system which operates on an interval t ∈ [0, N ]:

x̄k(t+ 1) = Āx̄k(t) + B̄uk(t)

yk(t) = C̄x̄k(t)
(2.1)

where x̄k(t) ∈ Rnx is the state vector; uk(t) ∈ Rnu is the input vector;

yk(t) ∈ Rny is the output vector; t is the time index; k is the batch

index; and the matrices Ā, B̄, and C̄ are real matrices of appropriate

dimensions. An incremental state-space model uses the control incre-

ment instead of the control signal. This model can be written in the

general state-space form with δuk(t) = uk(t)−uk(t−1). The follow-
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ing representation is the augmented incremental state-space model:

[
x̄k(t+ 1)

uk(t)

]
=

A︷ ︸︸ ︷[
Ā B̄

0 I

] xk(t)︷ ︸︸ ︷[
x̄k(t)

uk(t− 1)

]
+

B︷︸︸︷[
B̄

I

]
δuk(t)

yk(t) =
[
C̄ 0

]
︸ ︷︷ ︸

C

[
x̄k(t)

uk(t− 1)

] (2.2)

The characteristic polynomial equation of the augmented model is

ρ(λ) = det

[
λI − Ā −B̄

0 I − λI

]
= (λ− 1)nudet(λI − Ā) = 0 (2.3)

This means that there are nu integrators are embedded in the aug-

mented model. Defining a new state vector as

xk(t) ≜

[
x̄k(t)

uk(t− 1)

]
(2.4)

the incremental model takes the following general form:

xk(t+ 1) = Axk(t) +Bδuk(t)

yk = Cxk
(2.5)

It is called an incremental state-space model [82] or a state-space

model with embedded integrator [83].

Proposition 2.1. [84] The augmented system (2.2) is observable if
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and only if (C̄, Ā) is observable and

[
Ā− I B̄

C̄ 0

]
has full column rank. (2.6)

Proof From the Hautus observability condition, system (2.2) is ob-

servable if and only if
Ā− λI B̄

0 I − λI

C̄ 0

 has full column rank ∀λ. (2.7)

From the Hautus condition, the first set of columns is linearly inde-

pendent if and only if (C̄, Ā) is observable. The second set of rows

is linearly independent because of the identity matrix except possi-

bly for λ = 1. Thus, for the augmented system, the Hautus condition

needs to be checked for λ = 1 only. ■

Remark 2.1. Observability of the augmented system (2.2) is lost if

the number of inputs is more than the number of outputs or B̄ has not

full column rank.

2.2.1.2 Velocity form

The delta input formulation has the disadvantage of losing ob-

servability if the number of inputs is more than the number of outputs.

The alternative formulation, velocity form [83], is always observable

if the original state-space model is observable. First, taking a differ-

ence operation on both sides of the state equation of the original state
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space model (2.1), we obtain that

x̄k(t+ 1)− x̄k(t) = Ā (x̄k(t)− x̄k(t− 1)) + B̄ (uk(t)− uk(t− 1))

(2.8)

Let us denote the difference of the state variable by

δx̄k(t+ 1) = x̄k(t+ 1)− x̄k(t) (2.9)

and the difference of the control variable by

δuk(t) = uk(t)− uk(t− 1) (2.10)

The difference of the state-space model is as follows.

δx̄k(t+ 1) = Āδx̄k(t) + B̄δuk(t) (2.11)

The next step is to connect δx̄k(t) to the output yk(t). A new state

vector is chosen to be

xk(t) =

[
δx̄k(t)

yk(t)

]
(2.12)

Note that

yk(t+ 1)− yk(t) = C̄δxk(t+ 1)

= C̄Āδx̄k(t) + C̄B̄δuk(t)
(2.13)
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These lead to the following augmented state-space model:

[
δx̄k(t+ 1)

yk(t+ 1)

]
=

A︷ ︸︸ ︷[
Ā 0

C̄Ā I

] xk(t)︷ ︸︸ ︷[
δx̄k(t)

yk(t)

]
+

B︷ ︸︸ ︷[
B̄

C̄B̄

]
δuk(t)

yk(t) =
[
0 I

]
︸ ︷︷ ︸

C

[
δx̄k(t)

yk(t)

] (2.14)

The characteristic polynomial equation of the augmented model is

ρ(λ) = det

[
λI − Ā 0

−C̄Ā I − λI

]
= (λ−1)nydet(λI−Ā) = 0 (2.15)

This means that there are ny integrators are embedded in the aug-

mented model.

Proposition 2.2. The augmented system (2.14) is observable if and

only if (C̄, Ā) is observable and


Ā− I 0

C̄Ā 0

0 I

 has full column rank. (2.16)

Proof From the Hautus observability condition, system (2.14) is ob-

servable if and only if
Ā− λI 0

C̄Ā I − λI

0 I

 has full column rank ∀λ. (2.17)
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From the Hautus condition, the first set of columns is linearly inde-

pendent if and only if (C̄, Ā) is observable. The second set of rows

is linearly independent because of the identity matrix except possi-

bly for λ = 1. Thus, for the augmented system, the Hautus condition

needs to be checked for λ = 1 only. ■

2.2.2 Prediction Model

The system (2.5) can be rewritten as a lifted system because finite

time intervals [0, N ] are considered in ILMPC:

ŷk = Gmδuk + Fmxk(0) (2.18)

where Gm ∈ R(nyN)×(nuN) and Fm ∈ R(nyN)×nx are defined as

Gm ≜


CB 0 · · · 0

CAB CB · · · 0
...

... . . . ...

CAN−1B CAN−2B · · · CB

 , Fm ≜


CA

CA2

...

CAN


(2.19)

and the vectors ŷk ∈ RnyN and uk ∈ RnuN are defined as

ŷk ≜
[
ŷk(1)

T ŷk(2)
T · · · ŷk(N)T

]T
(2.20)

δuk ≜
[
δuk(0)

T δuk(1)
T · · · δuk(N − 1)T

]T
(2.21)

The input-output relationship between two adjacent batches is

ŷk = yk−1 +Gm∆δuk + Fm∆xk(0) (2.22)
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where ˆ(hat) means predicted value, δ is a time-increment operator

and ∆ is a batch-increment operator. That is,

∆δuk(t) = {uk(t)− uk(t− 1)} − {uk−1(t)− uk−1(t− 1)}

∆xk(0) =xk(0)− xk−1(0)
(2.23)

Then, the following representation can be obtained using ek = r−yk

where r is the reference trajectory.

êk = ek−1 −Gm∆δuk − Fm∆xk(0) (2.24)

The basic assumption of ILC is an identical initialization condition

(xk(0) = xk−1(0)); thus, ∆xk(0) is zero [3, 25]. However, we do

not remove the initial state term because it is used for deriving free

response term including estimated current states which are necessary

for real-time feedback. At time t of the kth batch, future predictions

up to a prediction horizon p are formulated in terms of future control

movements up to a control horizon m, previous control movements,

and initial state. In the ILMPC algorithm, both horizons should not

exceed remaining time points. Therefore, the concept of shrinking

horizons [85] is used. Both horizons are updated as

p =

p0 , if p0 ≤ N − t

N − t , otherwise

m =

m0 , if m0 ≤ N − t

N − t , otherwise

(2.25)

31



where p0 is the initial prediction horizon and m0 is the initial control

horizon.
êk(t+ 1)

êk(t+ 2)
...

êk(t+ p)

 =


ek−1(t+ 1)

ek−1(t+ 2)
...

ek−1(t+ p)


Forced response︷ ︸︸ ︷

−


CB 0 · · · 0

CAB CB · · · 0
...

... . . . ...

CAp−1B CAp−2B · · · CAp−mB




∆δuk(t)

∆δuk(t+ 1)
...

∆δuk(t+m− 1)



−


CAtB CAt−1B · · · CAB

CAt+1B CAtB · · · CA2B
...

... . . . ...

CAt+p−1B CAt+p−2B · · · CApB




∆δuk(0)

∆δuk(1)

· · ·
∆δuk(t− 1)


︸ ︷︷ ︸

Free response

−


CAt+1

CAt+2

...

CAt+p

∆xk(0)

︸ ︷︷ ︸
Free response

(2.26)

In the equation, free response term can be simplified and represented

in terms of current states. The following is the example of the first
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row of the free response vector.

− CAtB∆δuk(0)− CAt−1B∆δuk(1) · · · − CAB∆δuk(t− 1)

− CAt+1∆xk(0)

=− CAt (A∆xk(0) +B∆δuk(0))− CAt−1B∆δuk(1) · · ·

− CAB∆δuk(t− 1)

=− CAt∆xk(1)− CAt−1B∆δuk(1) · · · − CAB∆δuk(t− 1)

...

=− CA∆xk(t)
(2.27)

As a result, prediction model is represented as follows:

êpk(t+ 1|t) = epk−1(t+ 1)−G∆δum
k (t)− F∆x̂k(t|t) (2.28)

G ≜


CB 0 · · · 0

CAB CB · · · 0
...

... . . . ...

CAp−1B CAp−2B · · · CAp−mB

 , F ≜


CA

CA2

...

CAp


(2.29)

êpk(t+ 1|t) ≜
[
êk(t+ 1|t)T êk(t+ 2|t)T · · · êk(t+ p|t)T

]T
epk−1(t+ 1) ≜

[
ek−1(t+ 1)T ek−1(t+ 2)T · · · ek−1(t+ p)T

]T
∆δum

k (t) ≜
[
∆δuk(t)

T ∆δuk(t+ 1)T · · · ∆δuk(t+m− 1)T
]T

(2.30)

We assume that all the states are not measurable; hence, we use state

estimates ∆x̂k(t|t) instead of ∆xk(t).
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2.3 Iterative Learning Model Predictive Controller

2.3.1 Unconstrained ILMPC

We can design the ILMPC controller with the following objective

function.

min
∆δum

k (t)
J =

1

2

{
êpk(t+ 1|t)TQêpk(t+ 1|t) + ∆δum

k (t)
TR∆δum

k (t)
}

(2.31)

Substituting Eq. (2.28) into the objective function (2.31) with

∂J/∂∆δum
k (t) = 0 yields

δum
k (t) = δum

k−1(t) + H̄
(
epk−1(t+ 1)− F∆x̂k(t|t)

)
H̄ =

(
GTQG+R

)−1
GTQ

(2.32)

Among the optimal control actions, only the first control action is

implemented as the current control law. The following is the ILMPC

control law for unconstrained processes.

δuk(t) = δuk−1(t) +H
(
epk−1(t+ 1)− F∆x̂k(t|t)

)
H =

m block matrices︷ ︸︸ ︷[
I 0 0 · · · 0

]
H̄

(2.33)

where H is called the learning gain matrix and ∆x̂k(t|t) = x̂k(t|t)−
xk−1(t) can be estimated using Kalman filter.

∆x̂k(t|t− 1) = A∆x̂k(t− 1|t− 1) +B∆δuk(t− 1)

∆x̂k(t|t) = ∆x̂k(t|t− 1) +K (∆yk(t)− C∆x̂k(t|t− 1))
(2.34)
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where K is a steady-state Kalman gain.

2.3.2 Constrained ILMPC

In many control applications, constraints are imposed on pro-

cesses for safety and smooth operations. In ILMPC controller, con-

straints are composed of upper and lower limits on the input values

(um
min ≤ um

k (t) ≤ um
max), the rate of input change with respect to the

time index (δum
min ≤ δuk(t) ≤ δum

max), the rate of input change with

respect to the batch index (∆um
min ≤ ∆um

k (t) ≤ ∆um
max), and output

values (yp
min−ε

p
k(t+1) ≤ ŷp

k(t+1|t) ≤ yp
max+ε

p
k(t+1)). εpk(t+1),

called slack variable, is defined such that it is non-zero only if a con-

straint is violated, and ensures that a feasible solution will always be

found. This is referred to as constraint softening [86, 87]. Each con-

straint should be expressed with respect to ∆δum
k (t) as follows:

• Input values

um
k (t) = Imuk(t− 1) + ILδu

m
k−1(t) + IL∆δu

m
k (t) (2.35)

• The rate of input change with respect to the time index

δum
k (t) = δum

k−1(t) + ∆δum
k (t) (2.36)

• The rate of input change with respect to the batch index

∆um
k (t) = Im∆uk(t− 1) + IL∆δu

m
k (t) (2.37)
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• Output values

ŷp
k(t+ 1|t) = yp

k−1(t+ 1) +G∆δum
k (t) + F∆x̂k(t|t) (2.38)

where

Im ≜


I

I
...

I

 , IL ≜


I 0 · · · 0

I I · · · 0
...

... . . . 0

I I · · · I

 (2.39)

The following is a cost function incorporating the slack variable and

omitting constant terms.

min
∆δum

k (t), εpk(t+1)

1

2
∆δum

k (t)
T
(
GTQG+R

)
∆δum

k (t)

+
(
GTQF∆x̂k(t|t)−GTQepk−1(t+ 1)

)T
∆δum

k (t)

+
1

2
εpk(t+ 1)TSεpk(t+ 1)

(2.40)

The cost function can be rewritten by combining ∆δum
k (t) and

εpk(t + 1) into one vector. The following is a standard quadratic pro-

gramming (QP) problem for constrained ILMPC.

min
∆δum

k (t), εpk(t+1)

1

2

[
∆δum

k (t)

εpk(t+ 1)

]T [
GTQG+R 0

0 S

][
∆δum

k (t)

εpk(t+ 1)

]

+

[
GTQ

(
F∆x̂k(t|t)− epk−1(t+ 1)

)
0

]T [
∆δum

k (t)

εpk(t+ 1)

]
(2.41)
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subject to

E

[
∆δum

k (t)

εpk(t+ 1)

]
≤ Mk(t) (2.42)

where

E ≜



−IL 0

IL 0

−I 0

I 0

−IL 0

IL 0

−G −I

G −I

0 −I



, Mk(t) ≜



−um
min + Imuk(t− 1) + ILδu

m
k−1(t)

um
max − Imuk(t− 1)− ILδu

m
k−1(t)

−δum
min + δum

k−1(t)

δum
max − δum

k−1(t)

−∆um
min + Im∆uk(t− 1)

∆um
max − Im∆uk(t− 1)

−yp
min + yp

k−1(t+ 1) + F∆x̂(t|t)
yp
max − yp

k−1(t+ 1)− F∆x̂(t|t)
0


(2.43)

The optimization problem can be solved by appropriate QP solver.

The first input in the optimal sequence is then sent into the plant.

2.3.3 Convergence Property

We will provide sufficient conditions for asymptotic stability and

monotonic convergence of errors along the batch direction. First, we

derive the estimated state in terms of input and output using the
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steady-state Kalman gain.

∆x̂k(t|t) =∆x̂k(t|t− 1) +K (∆yk(t)−∆x̂k(t|t− 1))

=A∆x̂k(t− 1|t− 1) +B∆δuk(t− 1)

+K
(
∆yk(t)− CA∆x̂k(t− 1|t− 1)

− CB∆δuk(t− 1)
)

=AK∆x̂k(t− 1|t− 1) +BK∆δuk(t− 1) +K∆yk(t)
(2.44)

where AK ≜ A−KCA and BK ≜ B−KCB. The recursive formu-

lation can be represented in terms of ∆δuk(t) and ∆yk(t) as follows:

∆x̂(t|t) =
t−1∑
i=0

Ai
KBK∆δuk(t−1−i)+

t−1∑
i=0

Ai
KK∆yk(t−i) (2.45)

Then, we should derive ∆δuk(t) using input update law (2.33) and

∆x̂k(t|t) of Eq. (2.45). We assume that tracking errors after the termi-

nal pointN are zero, ek(N+1) = ek(N+2) = · · · = ek(N+p−1) =

0, in order to use an identical learning gain matrix in all input updates.

The input update law (2.33) can be rearranged as follows:

∆δuk(t) = Hepk−1(t+ 1)−HF∆x̂k(t|t) (2.46)

First, we define H ≜
[
H1 H2 · · · Hp

]
, where Hi, i = 1, · · · , p

is the ith block column of the learning gain matrix. In Eq. (2.45),

∆yk(t) = −∆ek(t) because definition of tracking error is ek(t) ≜

r(t)−yk(t). The input sequences can be represented in terms of track-
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ing errors using the above relationships and definitions.

∆δuk(0) = Hepk−1(1)−HF∆x̂(0|0)

= H1ek−1(1) +H2ek−1(2) + · · ·+Hpek−1(p)

∆δuk(1) = Hepk−1(2)−HF∆x̂(1|1)

= Hepk−1(2)−HFBK∆δuk(0) +HFK∆ek(1)

...

∆δuk(N − 1) = Hepk−1(N)−HF
N−2∑
i=0

Ai
KBK∆δuk(N − 2− i)

+HF
N−2∑
i=0

Ai
KK∆ek(N − 1)

(2.47)

These equations for a sequence of time steps can be written as
∆δuk(0)

∆δuk(1)
...

∆δuk(N − 1)

 =


H1 H2 · · · Hp 0 · · · 0

0 H1 H2 · · · Hp · · · 0
...

...
... . . . . . . . . . ...

0 0 0 0 0 0 H1




ek−1(1)

ek−1(2)
...

ek−1(N)



−


0 0 · · · 0

HFBK 0 · · · 0
...

... . . . ...

HFAN−2
K BK HFAN−3

K BK · · · 0




∆δuk(0)

∆δuk(1)
...

∆δuk(N − 1)



+


0 0 · · · 0

HFK 0 . . . 0
...

... . . . ...

HFAN−2
K K HFAN−3

K K · · · 0




∆ek(1)

∆ek(2)
...

∆ek(N)


(2.48)
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The equation can be rearranged as follows:

Hu∆δuk = Hfek−1 +Hbek (2.49)

where

Hu ≜


I 0 · · · 0

HFBK I · · · 0
...

... . . . ...

HFAN−2
K BK HFAN−3

K BK · · · I



Hf ≜


H1 H2 · · · 0

−HFK H1 . . . 0
...

... . . . ...

−HFAN−2
K K −HFAN−3

K K · · · H1



Hb ≜


0 0 · · · 0

HFK 0 . . . 0
...

... . . . ...

HFAN−2
K K HFAN−3

K K · · · 0



(2.50)

Remark 2.2. [Properties of block triangular matrices]

• A triangular matrix is invertible if and only if its diagonal en-

tries are all non zero.

• The product of lower triangular matrices is lower triangular.

• The inverse of an invertible lower triangular matrix is lower

triangular.

• Eigenvalues of a block triangular matrix are identical to the

eigenvalues of diagonal blocks.
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• Let A, B, and C be n × m, m × m, and m × n block lower

triangular matrices, respectively. If all the block diagonals of

any of A, B, or C are zero block, then all the block diagonals

of ABC are zero block. Thus, I + ABC is invertible.

According to Remark 2.2, Hu is invertible. Thus, the relationship

between input and tracking errors can be written as

∆δuk = H−1
u Hfek−1 +H−1

u Hbek (2.51)

Then, we use plant dynamics equation to obtain a relationship be-

tween errors of two adjacent batches. The system has the same ini-

tial condition for all batches. Therefore, xk(0) = xk−1(0), that is,

∆xk(0) = 0.

ek = ek−1 −Gp∆δuk +������: 0
F∆xk(0) (2.52)

where Gp is the plant matrix. Substituting Eq. (2.51) into Eq. (2.52)

yields

(
I+GpH

−1
u Hb

)
ek =

(
I−GpH

−1
u Hf

)
ek−1 (2.53)

where Gp, H−1
u , and Hb are lower block triangular matrices; all the

block diagonals of Hb are zero block. Thus, I+GpH
−1
u Hb is invert-

ible according to Remark 2.2. From Eq. (2.53), the error propagation

is expressed as

ek = Φek−1 (2.54)

where

Φ ≜
(
I+GpH

−1
u Hb

)−1 (
I−GpH

−1
u Hf

)
(2.55)

41



Theorem 2.1. [88] Consider the linear system (2.5) and the ILMPC

controller (2.33). The system converges asymptotically to zero as k →
∞ if ρ(Φ) < 1, where ρ(·) is a spectral radius.

Theorem 2.2. [88] Consider the linear system (2.5) and the ILMPC

controller (2.33). The system converges monotonically to zero as k →
∞ if ∥Φ∥i < 1, where i is norm topology (1, 2, or ∞).

2.3.4 Extension for Disturbance Model

The proposed ILMPC is easy to extend to the general state-space

model including measured disturbance model because its formulation

is similar to MPC. In general, unmeasured disturbance model is in-

cluded in the state-space model for offset-free control. The incremen-

tal state-space model which is used in the propose algorithm guaran-

tees offset-free control [89]. Thus, unmeasured disturbance model is

not considered in the proposed method. The following general model

is considered.

x̄k(t+ 1) = Āx̄k(t) + B̄uk(t) + B̄ddk(t) + Γ̄wx
k(t)

uk(t) = uk(t− 1) + δuk(t) + wu
k(t)

yk(t) = C̄x̄k(t) + nk(t)

(2.56)

where dk(t) is measured disturbance, wx
k(t) is state noise, nk(t) is

measurement noise, and wu
k(t) is white noise which is added for solv-
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ability of the Riccati equation with the following covariance matrices:

E
[
wx

k(t) {wx
k(t)}

T
]
= Qx

E
[
wu

k(t) {wu
k(t)}

T
]
= Qu

E
[
nk(t) {nk(t)}T

]
= Rn

(2.57)

The general model can be written in the following augmented state-

space:

[
x̄k(t+ 1)

uk(t)

]
=

[
Ā B̄

0 I

][
x̄k(t)

uk(t− 1)

]
+

[
B̄

I

]
δuk(t)

+

[
B̄d

0

]
dk(t) +

[
Γ̄ 0

0 I

][
wx

k(t)

wu
k(t)

]

yk(t) =
[
C̄ 0

] [ x̄k(t)

uk(t− 1)

]
+ nk(t)

(2.58)

xk(t+ 1) = Axk(t) +Bδuk(t) +Bddk(t) + Γwk(t)

yk(t) = Cxk(t) + nk(t)
(2.59)

In the augmented state-space model, deterministic parts are used for

prediction model and stochastic parts are used for state estimation.

The following prediction model can be obtained by the same proce-

dure as described in Section 2.2.

êpk(t+ 1|t) = epk−1(t+ 1)−G∆δum
k (t)−Gd∆dpd

k (t)− F∆x̂k(t|t)
(2.60)
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where

Gd ≜


CBd 0 · · · 0

CABd CBd · · · 0
...

... . . . ...

CAp−1Bd CAp−2Bd · · · CAp−pdBd

 (2.61)

∆dpd
k (t) ≜

[
∆dk(t)

T ∆dk(t+ 1)T · · · ∆dk(t+ pd − 1)T
]T

(2.62)

and pd is a disturbance horizon. If future disturbance cannot be fore-

casted, pd should be 1 or the current measured disturbance dk(t) is

used for future disturbance, that is, dk(t) = dk(t + 1) = · · · =

dk(t + pd − 1). The steady-state Kalman gain can be computed by

the following algebraic Riccati equation.

P = APAT − APC
(
CPCT +Rn

)−1
CPAT + Γ

[
Qx 0

0 Qu

]
ΓT

K = PCT
(
CPCT +Rn

)−1

(2.63)

2.4 Numerical Illustrations

We provide three cases (unconstrained and constrained linear

SISO system, constrained linear MIMO system, and nonlinear batch

reactor) to show the effectiveness of the proposed algorithm. It is as-

sumed that all the disturbances are unmeasurable; furthermore, un-

measured disturbance models are not used to design the ILMPC con-

troller for all the cases.
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2.4.1 (Case 1) Unconstrained and Constrained Linear
SISO System
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Figure 2.1: (Case 1) Repetitive disturbance input (d1k) for all batches and
non-repetitive disturbance input (d2k) for the 11th batch.

The proposed algorithm is evaluated using the following plant

transfer function.

yp(s) =
0.8

(5s+ 1)(3s+ 1)
u(s)+

0.2

2s+ 1
d1(s)+

0.2

3s+ 1
d2(s) (2.64)

where d1(s) is repetitive disturbance input for all batches and d2(s) is

non-repetitive disturbance input which is entered at the 11th batch as

shown in Fig. 2.1. The proposed ILMPC controller is designed using

the following model transfer function.

ym(s) =
1.2

(6s+ 1)(2s+ 1)
u(s) (2.65)

Terminal time is 40 with sampling interval of 0.25. For designing the
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Figure 2.2: (Case 1) The results of the proposed ILMPC algorithm under
model discrepancy and repetitive disturbance input.

controller, we used the following parameters.

p = 80, m = 10,

Q = I, R = 0.1I, S = 0,

Qx = 0.1I, Qu = Rn = 0.0001.

(2.66)
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Figure 2.3: (Case 1) The performance of the proposed ILMPC algorithm for
non-repetitive disturbance at the 11th batch.

If the existing ILC technique combined with MPC where a state vec-

tor consists of the entire error sequences of a batch is used, the pre-

diction horizon p is fixed as 100. The proposed technique can reduce

the prediction horizon if the computational time is insufficient. In Fig.

2.2, the output of the 1st batch shows oscillation because of repetitive

disturbance d1k(t). However, the output tracks the reference trajectory
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Figure 2.4: (Case 1) Log scale convergence performance for the linear SISO
system.

while rejecting the repetitive disturbance at the 1st batch because of

the offset-free control. Although there are the effects of repetitive dis-

turbance and plant-model mismatch, the tracking error is decreased

as shown in Fig. 2.2 and Fig. 2.4. Non-repetitive disturbance input is

entered at the 11th batch. In Fig. 2.3, the disturbance effect is rejected

in time horizon and the output converges to the reference trajectory

in the batch direction. Fig. 2.4 shows that the proposed algorithm can

reject the repetitive and non-repetitive disturbances in both time and

batch horizons under model uncertainty.

Fig. 2.2 shows the large overshoot at the 1th batch. Output con-

straint is used to eliminate the large overshoot. The following input

and output constraints are applied to the ILMPC controller.

− 1.5 ≤ uk(t) ≤ 1.5, − 0.05 ≤ yk(t) ≤ 1.05 (2.67)

We used the same parameters as Eq. (2.66) and S = 100. The penalty,
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Figure 2.5: (Case 1) The results of the proposed ILMPC algorithm under the
input and output constraints.

S, should be large enough for constraint violation. The large over-

shoot can be eliminated as shown in Fig. 2.5.

2.4.2 (Case 2) Constrained Linear MIMO System

The main advantage of MPC is that it is able to handle multivari-

able systems with constraints. In this case, we consider the following
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constraints and MIMO system.

− 15 ≤ ui,k ≤ 15, and − 5 ≤ δui,k ≤ 5, i = 1, 2 (2.68)

yp(s) =

[
1.9

240s2+31s+1
1.4

130s2+23s+1

1.2
180s2+28s+1

2.3
96s2+20s+1

]
u(s) +

[
3

200s2+30s+1

3
200s2+30s+1

]
d(s)

(2.69)

ym(s) =

[
2.3

300s2+35s+1
1.7

110s2+21s+1

1.7
225s2+30s+1

2.8
117s2+22s+1

]
(2.70)

where ui,k is the ith input at the kth batch. Terminal time is 100 with

the sampling interval of 1. The following parameters are used.

p = 60, m = 8,

Q = I, R = 0.005I, S = 0,

Qx = Qu = 0.01I, Rn = 0.0001I

(2.71)

The non-repetitive disturbance in Fig. 2.6 is entered at the 11th batch.

Fig. 2.7 shows the efficacy of the proposed algorithm for the con-

strained MIMO system. The disturbance at the 11th batch is rejected

along the time direction. After two batches later, non-repetitive dis-

turbance effect vanishes as shows in Fig. 2.8. In Fig. 2.7, the output

cannot converge to the reference trajectory around time 5 to 10. This

is because the upper bounds of the inputs. Except for this time peri-

ods, the outputs converge to the reference trajectories although there

are constrains on the input movements.
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Figure 2.6: (Case 2) Non-repetitive disturbance input for the 11th batch.
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Figure 2.8: (Case 2) Log scale convergence performance for the constrained
linear MIMO system.

2.4.3 (Case 3) Nonlinear Batch Reactor

We consider the temperature control of a nonlinear batch reac-

tor where a second-order exothermic reaction A → B occurs [5]. It

is assumed that the temperature of a cooling jacket (Tj) is directly

manipulated.

dT

dt
= − UA

MCp

(T − Tj)−
∆HV

MCp

k0e
E/RTC2

A

dCA

dt
= −k0eE/RTC2

A

(2.72)
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The following values were used for the parameters:

UA

MCp

= 0.09 (l/min)

∆HV

MCp

= −1.64 (K l/mol)

k0 = 2.53× 1019 (l/mol min)

E/R = 13, 550 (K)

T (0) = 25 (◦C)

CA(0) = 0.9 (mol/l)

(2.73)

For system identification, a step test was performed with the size of 26
◦C and the sampling interval of 1. We obtained the following discrete-

time model using the least squares method with step input and step

response, assuming that the system is second-order.

ym(t) =
0.0436z + 0.0425

z2 − 0.9153z + 0.0013
u(t) (2.74)

We use the following parameters for controller design.

p = 80, m = 6,

Q = I, R = 0.1I, S = 0,

Qx = Qu = 0.01I, Rn = 0.0001

(2.75)

In this case, a repetitive disturbance is entered from the 8th batch and a

non-repetitive disturbance is entered at the 14th batch. Fig. 2.9 shows

two disturbance inputs. It is assumed that the disturbance input is fil-

tered by 1/(2s+1), and then filtered signal enters at the plant output.

Non-repetitive and repetitive disturbance are the same in this case.
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In Fig. 2.10, the temperatures of the cooling jacket of the 8th batch

are decreasing to act against the repetitive disturbance. The output

trajectory converges to the reference trajectory against the repetitive

disturbance, as shown in Figs. 2.9 and 2.11. Fig. 2.11 shows the non-

repetitive disturbance rejection effect. The non-repetitive disturbance

effect at the 14th batch remains at the output of the 15th batch, al-

though there is no additional disturbance at the 15th. This response

occurs because the controller learns from the previous batch. If the

system parameters are changed or disturbance is entered at the kth

batch, the controller makes the output converge to the changed sys-

tem or attempt to reject the disturbance at the next batch. Therefore,

the input effect against the disturbance at the 14th batch slightly car-

ries over to the 15th, and the output rapidly converges to the reference

trajectory by the time-wise feedback. When the input of the 15th batch

is calculated, the controller cannot reflect the previous error by omit-

ting epk−1(t + 1) of Eq. (2.41); alternatively, a weighting factor less

than 1 can be used on epk−1(t+1) to reject non-repetitive disturbance.

Next, the input effect against the disturbance of the 14th batch does

not carry over to the 15th batch, and the convergence performance

is maintained at the level of the 13th batch. However, if the previ-

ous error is neglected, then the controller cannot adapt to the repet-

itive disturbance. Many disturbances are unknown, unmeasured, and

unpredicted. Furthermore, many batch processes are operated under

model uncertainty. Thus, this type of tuning is not suitable. In Fig.

2.12, the proposed controller is shown to successfully monotonically

reject the repetitive and non-repetitive disturbances.
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Figure 2.9: (Case 3) Disturbance input for k = 8, 9, · · · , ∞ as a repetitive
disturbance and for the 14th batch as a non-repetitive disturbance.
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Figure 2.10: (Case 3) The performance of the proposed ILMPC algorithm
against added repetitive disturbance at the 8th batch.

57



0 20 40 60 80

20

25

30

35

Time [min]

In
p
u
t 
(T

j,
 o

C
)

 

 

0 20 40 60 80
24

26

28

30

32

Time [min]

O
u
tp

u
t 
(T

, o
C

)

 

 
r
y13

y14

y15

y16

u13

u14

u15

u16

Figure 2.11: (Case 3) The performance of the proposed ILMPC algorithm
for non-repetitive disturbance at the 14th batch.
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Figure 2.12: (Case 3) Log scale convergence performance for the nonlinear
batch reactor.

2.5 Conclusion

In this paper, we have presented the constrained ILC algorithm

combined with MPC. This algorithm can reject repetitive and non-

repetitive disturbances along both the time and batch horizons un-

der model uncertainty. We used the incremental state-space model to

guarantee offset-free control. The slack variable is used to guarantee

that a feasible solution will always be found. The disturbance model

and stochastic characteristics can be easily considered because the

proposed ILMPC is similar to the general MPC formulation. In this

paper, we only considered a linear time-invariant system; however,

ILMPC for a time-varying system can be derived using the same pro-

cedure. We presented three cases to show the effectiveness of the pro-

posed ILMPC. Disturbance rejection and convergence were found to

be successfully achieved in all the cases.
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Chapter 3

Iterative Learning Control Combined with
Model Predictive Control for Non-Zero
Convergence

In this chapter, the case in which the output error converges to

non-zero value is studied. The existing ILMPC techniques make the

error converge to zero. However, if the error converges to zero, an

impractical input trajectory may be calculated. We use a generalized

objective function to independently tune weighting factors of manip-

ulated variable change with respect to both the time index and batch

horizons. If the generalized objective function is used, output error

converges to non-zero values. We provide convergence analysis for

both cases of zero convergence and non-zero convergence.

3.1 Iterative Learning Model Predictive Controller for
Non-zero Convergence

We use the following objective function to design the ILMPC

controller.

min
∆um

k (t)

1

2

{
∥epk(t+ 1)∥2Q + ∥δum

k (t)∥2R + ∥∆um
k (t)∥2S

}
(3.1)
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where
epk(t+ 1) = rp(t+ 1)− ŷp

k(t+ 1|t)

rp(t+ 1) =
[
r(t+ 1)T · · · r(t+ p)T

]T (3.2)

, r(t) is the reference trajectory and ∥x∥2Q = xTQx. To obtain the

solution, each input term of the prediction model (2.28) and the ob-

jective function (3.1) should be expressed with respect to ∆um
k (t) as

follows:

δum
k (t) = IL∆um

k (t) + ILu
m
k−1(t)− Iauk(t− 1)

∆δum
k (t) = IL∆um

k (t)− Ia∆uk(t− 1)
(3.3)

where

IL =



I 0 0 · · · 0 0

−I I 0 · · · 0 0

0 −I I · · · 0 0
...

...
... . . . ...

...

0 0 0 · · · I 0

0 0 0 · · · −I I


, Ia =



I

0

0
...

0

0


(3.4)

The following analytical solution can be obtained using Eqs. (2.28),

(3.1) and (3.3).

∆uk(t) = ITa∆um
k (t) = −ITaH−1f (3.5)

where

H = ITLG
TQGIL + ITLRIL + S (3.6)
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f =ITLG
TQ
(
F∆x̂k(t|t)−GIa∆uk(t− 1)− epk−1(t+ 1)

)
+ ITLR

(
ILu

m
k−1(t)− Iauk(t− 1)

) (3.7)

Many control applications need to ensure safety and smooth opera-

tions. For this purpose, the following constraints are considered.

um
min ≤ um

k (t) ≤ um
max

δum
min ≤ δum

k (t) ≤ δum
max

∆um
min ≤ ∆um

k (t) ≤ ∆um
max

yp
min ≤ yp

k(t+ 1|t) ≤ yp
max

(3.8)

A standard quadratic programming (QP) problem for constrained

ILMPC is as follows:

min
∆um

k (t)

1

2
∆um

k (t)H∆um
k (t) + fT∆um

k (t) (3.9)

subject to

M∆um
k (t) ≤ bk(t) (3.10)

where

M =



−I

I

−IL

IL

−IL

IL

−GIL

GIL


(3.11)
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bk(t) =



−um
min + um

k−1(t)

um
max − um

k−1(t)

−δum
min + ILu

m
k−1(t)− Iauk(t− 1)

δum
max − ILu

m
k−1(t) + Iauk(t− 1)

−∆um
min − Ia∆uk−1(t− 1)

∆um
max + Ia∆uk−1(t− 1)

−yp
min + yp

k−1(t+ 1)−GIa∆uk(t− 1) + F∆x̂k(t|t)
yp
max − yp

k−1(t+ 1) +GIa∆uk(t− 1)− F∆x̂k(t|t)


(3.12)

The optimization problem can be solved by appropriate QP solver.

The first input of the optimal solution is implemented on the plant.

The formulation of the proposed ILMPC is similar to the con-

ventional MPC formulation. Thus, various techniques applicable to

MPC, such as disturbance model, time-varying model and advanced

state estimation theory, can be applied without modifying the struc-

ture of the controller.

3.2 Convergence Analysis

3.2.1 Convergence Analysis for an Input Trajectory

First, we prove that ∆uk(t) converges to zero for all t as k → ∞
under the following assumptions.

1. There exists a feasible input trajectory such that e∞ = 0

2. All constraints (3.8) are satisfied when an input trajectory is

converged.

3. A system has the same initial condition for all batches; the same
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input trajectory and the same state trajectory lead to the same

output trajectory.

4. Q, R and S are symmetric positive definite.

Theorem 3.1. Consider the assumptions and the QP problem. Then,

∆uk(t) → 0 ∀t as k → ∞.

Proof We consider the objective function and the minimizer of the

optimization problem at time t of the k-th batch.

Φk(t) =
1

2

{
∥epk(t+ 1)∥2Q + ∥δum

k (t)∥2R + ∥∆um
k (t)∥2S

}
(3.13)

Jk(t) = min
∆um

k (t)
Φk(t) ≥ 0 (3.14)

subject to Eq. (3.8).

An optimal cost (Jk(t)) of an objective function is always less

than or equal to a feasible cost (Φk(t)), i.e., Jk(t) ≤ Φk(t). Let

(e∗,pk (t + 1), u∗,m
k (t)) be the optimal solution for the k-th batch.

The optimal solution of the k-th batch until time t can be used for

the (k + 1)-th batch, then the optimal cost (Jk(t)) of the k-th batch

becomes the feasible cost (Φk+1(t)) of the (k + 1)-th batch. Thus,

epk+1(t + 1) = e∗,pk (t + 1), um
k+1(t) = u∗,m

k (t), δum
k+1 = δu∗,m

k and

∆um
k+1(t) = um

k+1(t) − u∗,m
k (t) = 0. As mentioned above, the opti-

mal cost is always less than or equal to the feasible cost; therefore,

Jk(t) = Φk+1(t) ≥ Jk+1(t).

We have the following inequality.

Jk+1(t) ≤
1

2

{
∥e∗,pk (t+ 1)∥2Q + ∥δu∗,m

k (t)∥2R
}

(3.15)
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By adding and subtracting the same term, we have

Jk+1(t) ≤
1

2

{
∥e∗,pk (t+ 1)∥2Q + ∥δu∗,m

k (t)∥2R + ∥∆u∗,m
k (t)∥2S

}
− 1

2
∥∆u∗,m

k (t)∥2S

= Jk(t)−
1

2
∥∆u∗,m

k (t)∥2S
(3.16)

which yields

0 ≤ Jk+1(t) +
1

2

k∑
j=1

∥∆u∗,m
j (t)∥2S ≤ J1(t) <∞ (3.17)

Thus, ∆u∗,m
k (t) → 0, ∀t as k → ∞. ■

3.2.2 Convergence Analysis for an Output Error

In this section, we show that the output error (ek(t)) converges

to a fixed value (e∗(t)) or 0 using the result of Section 3.2.1. If

k → ∞, all constraints are satisfied by the assumptions. Thus, the

unconstrained solution (3.5) and the constrained solution (3.9, 3.10)

are equal if k → ∞. The purpose of this proof is to know the

converged error for all time (1 ∼ N ), not prediction time horizon

(t ∼ t + p); therefore, we use the unconstrained solution and set

t = 0 and m = p = N . In this case, f in Eq. (3.7) is simplified

because ∆x̂k(0|0) = 0 (the same initial condition for all batches),

∆uk(−1) = 0 and uk(−1) = 0. Furthermore, S in Eq. (3.6) can be

zero because ∆u∞ = 0 and S does not affect the converged value.

It affects the convergence rate. For the above reasons, H in Eq. (3.6)
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and f in Eq. (3.7) are simplified as

H = ITLG
TQGIL + ITLRIL

f = −ITLG
TQek−1 + ITLRILuk−1

(3.18)

Theorem 3.2. Consider the proposed ILMPC controller, ek → 0 as

k → ∞ if R = 0.

Proof The unconstrained solution with t = 0, m = p = N and

R = 0 is as follows:

∆uk = H−1ITLG
TQek−1 (3.19)

By Theorem 3.1, if k → ∞,

∆u∞ = 0 = H−1ITLG
TQe∞ (3.20)

This implies that e∞ = 0. ■

Theorem 3.3. Consider the proposed ILMPC controller, ek → e∗ as

k → ∞.

Proof The unconstrained solution with t = 0 and m = p = N is as

follows:

∆uk = H−1
(
ITLG

TQek−1 − ITLRILuk−1

)
(3.21)

The above equation can be expressed as follows:

uk =
(
I−H−1ITLRIL

)
uk−1 +H−1ITLG

TQek−1 (3.22)
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To simplify, we define Eq. (3.22) as follows:

uk = H1uk−1 +H2ek−1 (3.23)

If k → ∞,

u∞ = H1u∞ +H2e∞ = H1u∞ +H2 (r− y∞) (3.24)

The state-space model (2.5) can be expressed as the lifted vector

form: y∞ = Gpδu∞ = GpILu∞ where Gp is the plant matrix. Sub-

stituting the lifted vector form into Eq. (3.24) and rearranging, we

have

u∞ = (I−H1 +H2GpIL)
−1H2r (3.25)

We can obtain the final result by substituting Eq. (3.25) into e∞ as

follows:

e∗ = r− y∞ = r−GpILu∞

=
{
I−GpIL (I−H1 +H2GpIL)

−1H2

}
r

(3.26)

■

To make analysis of Eq. (3.26) simple, we consider the scalar

case of the equation. Assume that terminal time N is 1 and the sys-

tem has single-input single-output (SISO), then I = IL = 1; other

parameters become scalars which are written in non-bold typeface.

Eq. (3.26) is expressed as follows:

e∗ =

(
1− GpH2

1−H1 +H2Gp

)
r (3.27)
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Figure 3.1: Disturbance for the 7th batch.

where
H1 = 1− R

G2Q+R

H2 =
GQ

G2Q+R

(3.28)

Eq. (3.27) is simplified as

e∗ =

(
1− GGpQ

GGpQ+R

)
r (3.29)

The result indicates that biggerR increases the size of error. IfR = 0,

e∗ = 0; it is the same result as Theorem 3.2. If R → ∞, e∗ → r. The

reason is that if R → ∞, the input does not change from 0; thus, the

output maintains zero value, i.e., e∗ = r − y = r.
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Figure 3.2: Result of the proposed ILMPC with R = 0.01I and S = 0.05I .
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3.3 Illustrative Example

We consider a cooling jacket temperature (Tj) control of a non-

linear batch reactor. A second-order exothermic reaction A → B oc-

curs. It is assumed that Tj is directly manipulated.

dT

dt
= − UA

MCp

(T − Tj)−
∆HV

MCp

k0exp

(
E

RT

)
C2

A

dCA

dt
= −k0exp

(
E

RT

)
C2

A

(3.30)

where T and CA are the state variables, T is the output variable, and

Tj is the input variable. The following parameters were used for plant:

UA

MCp

= 0.09 (L/min)

∆HV

MCp

= −1.64 (K · L/mol)

k0 = 2.53× 1019(L/mol ·min)

E

R
= 13, 500 (K)

T (0) = 25 (◦C)

CA(0) = 0.9 (mol/L)

(3.31)

We obtained the following linear discrete-time model using the least

squares method with a step input with an initial value of 25 ◦C and

a size of 1 ◦C; the sampling interval of 1 min. We assumed that the
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Figure 3.4: Convergence performance with R = 0.01I and S = 0.05I
under the disturbance at the 7th batch.

system was second-order.

x(t+ 1) =

[
0.9153 −0.0416

0.0313 0

]
x(t) +

[
1

0

]
u(t)

y(t) =
[
0.0436 1.3600

]
x(t)

(3.32)

We assume that there exists an unknown output disturbance at

the 7th batch. Disturbance model is 1/(3s+1); and disturbance input

is a step input with the size of 2 as shown in Fig. 3.1. The predic-

tion horizon and the control horizon are 80 and 10, respectively. The

weighting factors Q was fixed as the identity matrix for all simula-

tions. For the first simulation which aimed to show the effectiveness

of the disturbance rejection, we used R = 0.01I and S = 0.05I .

Fig. 3.2 shows the results of the 1st and the 2nd batches. The out-

put of the 1st batch does not track the reference trajectory because
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of the model uncertainty; the output of the 2nd batch converges to

the reference trajectory. The unknown disturbance enters the system

at the 7th batch as shown in Fig. 3.3. The disturbance is, however,

rejected by the real-time feedback controller. The effect of the dis-

turbance remains at the 8th batch because the ILMPC learns from

the information of the previous batch. Therefore, the controller learns

to reject the disturbance of the 7th batch. Because there is no dis-

turbance at the 8th batch, the output rapidly converges to the ref-

erence trajectory again as shown in Fig. 3.4. In Section 3.2.2, we

mentioned that the error cannot go to zero if R is not zero. The exist-

ing ILMPC techniques cannot tune the weighting factor for δum
k (t)

independently. They can tune the weighting factor for ∆um
k (t) or

∆δum
k (t) where ∆δum

k (t) = δum
k (t) − δum

k−1(t). The roles of the

both weighting factors for ∆um
k (t) and ∆δum

k (t) are related to the

convergence rate, not smooth input trajectory. Small or zero weight-

ing factor for ∆um
k (t) for fast convergence may show extreme sensi-

tivity to high-frequency components of the output error [5]. If large

weighting factor for ∆um
k (t) and R = 0 are used, a smooth input

trajectory is obtained from the controller in the early batch; if the

closed-loop error trajectory perfectly converges, the input trajectory

is calculated from the controller for perfect tracking. The input trajec-

tory for perfect tracking including the angular points generally shows

non-smooth trajectory. Hence, the weighting factor for δum
k (t) is re-

quired to obtain a practical input trajectory. Fig. 3.5 shows the results

with respect to three cases (R = 0.1I , R = 0.01I and R = 0) and

Fig. 3.6 shows the convergence results. If we use S = 0.05I , the out-

put error cannot go to zero within 1000 batches. Thus, in this case,

we used S = 0.01I for fast convergence.
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Figure 3.6: Convergence results with respect to different sizes of R (S =
0.01I).

3.4 Conclusions

In this paper, we have proposed the iterative learning model

predictive control technique for real-time disturbance rejection of

batch processes. The proposed algorithm can independently tune the
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weighting factor for the rate of input change with respect to the time

index. We prove that the output error cannot go to zero if the weight-

ing factor for δum
k (t) is not zero. The example is provided to show

the effectiveness for disturbance rejection and iterative learning. Fur-

thermore, the simulation shows that the weighting factor for δum
k (t)

should be able to be tuned independently for obtaining a practical

input trajectory.
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Chapter 4

Iterative Learning Control Combined with
Model Predictive Control for Tracking Specific
Points

In this chapter, we propose a point-to-point ILMPC technique

which can only consider the desired reference points, not an entire

reference trajectory. It does not require to generate a reference tra-

jectory which passes through the desired reference values. The exist-

ing ILMPC techniques aim to track a reference trajectory of repeti-

tive process on a finite time interval while rejecting real-time distur-

bances. In many repetitive processes, however, the output does not

need to track all points of a reference trajectory.

4.1 Introduction

Tracking an entire reference trajectory is not always necessary in

many applications such as a robotic “pick and place” task, crane con-

trol, rapid thermal process, and chemical batch reactor [12, 13, 14].

Many systems only need to track the desired reference points, not

the entire reference trajectory which is generated to pass through the

reference points. An ILC technique that considers only the desired
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reference points is called point-to-point ILC (PTP ILC) and has been

studied recently [15, 16, 17]. Terminal ILC (TILC) has been also

studied for tracking terminal point only [12, 18, 19]. It is a special

case of the PTP ILC problem. These types of PTP ILC algorithms

are open-loop control within an iteration; thus, they cannot reject

real-time disturbances. If real-time disturbances should be rejected,

the PTP ILC algorithm needs integrating with a real-time feedback

controller. To overcome a similar issue, ILC combined with model

predictive control (MPC), called iterative learning model predictive

control (ILMPC), has been studied to reject real-time disturbances

in iteration systems [4, 55, 9, 75]. However, the existing ILMPC al-

gorithms can be used when a reference trajectory on the entire time

sequences is prescribed.

In this chapter, we propose a PTP ILC algorithm combined with

MPC, called point-to-point iterative learning model predictive con-

trol (PTP ILMPC). The proposed PTP ILMPC algorithm can be ap-

plied only using the desired reference points without generating an

arbitrary reference trajectory passing through the desired reference

points. Furthermore, unlike the existing PTP ILC algorithms, it is

based on MPC which is a real-time feedback controller; hence it can

handle real-time disturbances. The proposed PTP ILMPC algorithm

involves input and output constraints. For output constraints soften-

ing, we introduce slack variable; thus, this algorithm ensures a feasi-

ble solution in the optimization step will always be found. In order to

guarantee the convergence of tracking error, the suggested approach

requires the error between measured and estimated outputs go to zero

for all time as the number of iterations goes to infinity. However, nei-

ther classical observer nor Kalman filter guarantees the estimation
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error converge to zero for all time points. To overcome this issue, it-

erative learning observer (ILO) is applied to the algorithm and it can

ensure that the estimation error go to zero for all time as the number

of iterations goes to infinity [90].

4.2 Point-to-Point Iterative Learning Model Predic-
tive Control

4.2.1 Extraction Matrix Formulation

In the PTP ILMPC framework, the outputs need to track the de-

sired reference points only. The reference time instants of the i-th

output and the reference values of the ith output are defined by the

set and the vector:

ψi = {ti1, ti2, · · · , tiN i}

r̃i =
[
ri(ti1) ri(ti2) · · · ri(tiN i)

]T (4.1)

where 0 < ti1 < ti2 < · · · < tiN i ≤ N , and N i is the number of

reference points of i-th output and ri(tij) is the j-th reference value of

the i-th output. The vector of the reference values can be compactly

represented as

rij =

ri (j) , if j ∈ ψi, j = 1, 2, · · · , N

0 , otherwise
(4.2)

where rij is the jth component of a column vector ri. The outputs

should track the reference points. Thus, the outputs at the reference
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time instants are only require to remain in the prediction model, that

is, we only need to minimize the error of outputs at the reference time

instants. We formulate the extraction matrix which can only extract

rows corresponding to the reference points of the vectors and matrices

of the prediction model. The following set, Ψi, is the set of the unique

indices of the reference time instants for i-th output. It is based on the

lifted vector formulation. In the lifted output vector, the i-th output

of the j-th time point, yi(j), is the (nyj − (ny − i))-th component of

the lifted output vector y.

Ψi = {nyt
i
1−(ny−i), nyt

i
2−(ny−i), · · · , nyt

i
N i−(ny−i)} (4.3)

Then, the union is defined as

Ψ =

ny⋃
i=1

Ψi (4.4)

The vector of reference values can be generated by the following rule.

rj =

ri
(

j+(ny−i)

ny

)
, if j ∈ Ψi, j = 1, 2, · · · , nyN

0 , otherwise
(4.5)

where rj is the jth component of a row vector r and the components

of unspecified time instants are zero. For generating the extraction

matrix, we first should generate the following row vector z.

zi =

1 , if i ∈ Ψ, i = 1, 2, · · · , nyN

0 , otherwise
(4.6)
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where zi is the i-th component of a row vector z. The row vector

z should be modified as the following form because the proposed

algorithm is based on predictive control.

zp(t+ 1) ≜
[
znyt+1 znyt+2 · · · znyt+nyp

]
(4.7)

where znyt+1 is the (nyt + 1)-th component of the vector z (4.6).

Finally, the extraction matrix is completed by the following rule.

Zp
i, j(t+1) =

1 , if zpj (t+ 1) = 1,
∑j

l=1 z
p
l (t+ 1) = i

0 , otherwise
(4.8)

where Zp
i,j(t+ 1) is the (i, j) element of a matrix Zp(t+ 1).

Example 4.1

Consider the MIMO system with two outputs, N = 5 and the fol-

lowing reference time instants.

ψ1 ={2, 4}

ψ2 ={2, 5}
(4.9)

In this case, Ψi, Ψ, z, and Z are as follows.

Ψ1 = {3, 7} (4.10)

Ψ2 = {4, 10} (4.11)

Ψ = {3, 4, 7, 10} (4.12)
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z =
[
0 0 1 1 0 0 1 0 0 1

]
(4.13)

Z =


0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1

 (4.14)

If the current time is 2 and the prediction horizon is 2, zp(t + 1)

and Zp(t+ 1) are as follows.

zp(t+ 1) =
[
0 0 1 0

]
(4.15)

Zp(t+ 1) =
[
0 0 1 0

]
(4.16)

4.2.2 Constrained PTP ILMPC

We can generate the vectors, the matrices, and the prediction

model for PTP ILMPC by using extraction matrix Zp(t + 1). Tilde

(˜) denotes the vectors or the matrices which only have components

corresponding to the reference points. For example, G is used for

ILMPC and G̃ is used for PTP ILMPC. The prediction model for

PTP ILMPC is given as

ˆ̃yp
k(t+ 1|t) = ỹp

k−1(t+ 1) + G̃∆δum
k (t) + F̃∆x̂k(t|t) (4.17)

G̃ = Zp(t+ 1)G, F̃ = Zp(t+ 1)F (4.18)

ỹp
k−1(t+ 1) = Zp(t+ 1)yp

k−1(t+ 1) (4.19)
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The vector of reference values is generated in the same manner. r̃p(t+

1) = Zp(t+ 1)rp(t+ 1).

Then we can design the PTP ILMPC controller with the follow-

ing objective function.

min
∆um

k (t), εpk(t+1)

1

2

{
∥ˆ̃epk(t+ 1|t)∥2

Q̃
+ ∥um

k (t)∥2S + ∥δum
k (t)∥2R

+ ∥∆um
k (t)∥2P + ∥εpk(t+ 1)∥2E

} (4.20)

where ˆ̃epk(t + 1|t) = r̃p(t + 1) − ˆ̃yp
k(t + 1|t) and ∥x∥2Q = xTQx. In

many control applications, input and output constraints are require to

ensure safety, smooth operations. In ILMPC controller, we consider

the following constraints for this purpose.

um
min ≤ um

k (t) ≤ um
max

δum
min ≤ δum

k (t) ≤ δum
max

∆um
min ≤ ∆um

k (t) ≤ ∆um
max

yp
min − εpk(t+ 1) ≤ ŷp

k(t+ 1|t) ≤ yp
max + εpk(t+ 1)

εpk(t+ 1) ≥ 0

(4.21)

where εpk(t + 1), called slack variable, is defined such that it is non-

zero only if a constraint is violated, and ensures that a feasible so-

lution will always be found. It is referred to as constraints softening

[86, 87]. um
k (t), δu

m
k (t), and ∆δum

k (t) in the objective function and
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constraints can be expressed with respect to ∆um
k (t) as follows:

um
k (t) = um

k−1(t) + ∆um
k (t)

δum
k (t) = ILu

m
k−1(t)− Iauk(t− 1) + IL∆um

k (t)

∆δum
k (t) = −Ia∆uk(t− 1) + IL∆um

k (t)

(4.22)

where

IL ∈ Rnum×num =



I 0 0 · · · 0

−I I 0 · · · 0

0 −I I · · · 0
...

...
... . . . ...

0 0 0 · · · I


, Ia ∈ Rnum×nu =



I

0

0
...

0


(4.23)

where I is the identity matrix with the size of nu × nu. The objec-

tive function can be rewritten by combining ∆um
k (t) and εpk(t + 1).

The following is a standard quadratic programming (QP) problem for

constrained PTP ILMPC.

min
∆um

k (t), εpk(t+1)

1

2

[
∆um

k (t)

εpk(t+ 1)

]T [
H 0

0 E

][
∆um

k (t)

εpk(t+ 1)

]

+

[
f

0

]T [
∆um

k (t)

εpk(t+ 1)

] (4.24)

subject to

Mu

[
∆um

k (t)

εpk(t+ 1)

]
≤ Mk(t) (4.25)
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where

H ≜ ITLG̃
T Q̃G̃IL + S+ ITLRIL +P (4.26)

f ≜ITLG̃
T Q̃
[
F̃∆x̂k(t|t)− G̃Ia∆uk(t− 1)− ẽpk−1(t+ 1)

]
+ Sum

k−1(t) + ITLRILu
m
k−1(t)− ITLRIauk(t− 1)

(4.27)

Mu ≜



−I 0

I 0

−IL 0

IL 0

−IL 0

IL 0

−GIL −I

GIL −I

0 −I



(4.28)

Mk(t) ≜



−um
min + um

k−1(t)

um
max − um

k−1(t)

−δum
min + ILu

m
k−1(t)− Iauk(t− 1)

δum
max − ILu

m
k−1(t) + Iauk(t− 1)

−∆um
min − Ia∆uk−1(t− 1)

∆um
max + Ia∆uk−1(t− 1)

−yp
min + yp

k−1(t+ 1)−GIa∆uk(t− 1) + F∆x̂k(t|t)
yp

max − yp
k−1(t+ 1) +GIa∆uk(t− 1)− F∆x̂k(t|t)

0


(4.29)

where I is the identity matrix with the size of num × num. The op-

timization problem can be solved by appropriate QP solver. The first

input in the optimal sequence is sent into the plant.
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4.2.3 Iterative Learning Observer

We applied the ILO [90] to the PTP ILMPC, so that the con-

vergence of the PTP ILMPC can be guaranteed. We use the ILO to

estimate output, not state. For convergence, yek(t) ≜ yk(t) − ŷk(t|t)
should be zero for all time t as k → ∞. General observer, however,

can guarantee yek(t) → 0 as t→ ∞. Hence the error of yk(t)− ŷk(t|t)
always exists at the early time points. First, the state is estimated

along the time direction as follows:

x̂k(t|t− 1) = Ax̂k(t− 1|t− 1) +Bδuk(t− 1)

x̂k(t|t) = x̂k(t|t− 1) +K {yk(t)− Cx̂(t|t− 1)}
(4.30)

where K is the time-wise observer gain for the system (2.5). The

additional input vk(t) is added in the measurement update equation

for further correction in the direction of iteration.

x̂k(t|t) = x̂k(t|t− 1) +K {yk(t)− Cx̂k(t|t− 1)} − vk(t− 1)

(4.31)

Using the observer error xek(t) ≜ xk(t) − x̂k(t|t) and the state space

model (2.5), the following state space model can be obtained.

xek(t+ 1) = Aexek(t) + vk(t)

yek(t) = Cxek(t)
(4.32)

where Ae ≜ A − KCA. Now, it becomes a problem to find input

vk(t) to satisfy yek(t) → 0 ∀t as k → ∞. It can be solved by general

ILC algorithm. We applied Arimoto-type ILC algorithm, so that an

ILO gain can be determined regardless of time-wise observer gain K
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because Arimoto-type ILC algorithm uses input and output matrices

only. In this case, the input matrix is the identity matrix and the output

matrix is C.

Theorem 4.1. Consider the linear system (2.5) with xek(0) = xe0 and

the following ILO input update law.

vk(t) = vk−1(t)− Lyek−1(t+ 1) (4.33)

The yek(t) converges asymptotically to zero ∀t as k → ∞ if L is

chosen such that ρ(I − CL) < 1, where ρ(·) is a spectral radius.

Proof First, the state space model (4.32) and the ILO input update

law (4.33) can be recast as the lifted form.

ye
k = Gevk + Fexe0 (4.34)

vk = vk−1 − Lye
k−1 (4.35)
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where

Ge ≜


C 0 · · · 0

CAe C · · · 0
...

... . . . ...

CAeN−1 CAeN−2 · · · C

 , Fe ≜


CAe

CAe2

...

CAeN



L ≜


L 0 · · · 0

0 L · · · 0
...

... . . . ...

0 0 · · · L


ye
k ≜

[
yek(1) yek(2) · · · yek(N)

]
vk ≜

[
vk(0) vk(1) · · · vk(N − 1)

]

(4.36)

Substitution of Eq.(4.35) into Eq.(4.34) yields

ye
k = Gevk−1 −GeLye

k−1 + Fexe0 (4.37)

Using ye
k−1 = Gevk−1 + Fexe0, the following can be derived:

ye
k = (I−GeL)ye

k−1 (4.38)

Thus, ye
k → 0 as k → ∞ if L is chosen such that ρ(I −GeL) < 1.

where

I−GeL =


I − CL 0 · · · 0

−CAeL I − CL · · · 0
...

... . . . ...

−CAeN−1L −CAeN−2L · · · I − CL

 (4.39)
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Eigenvalues of the block triangular matrix (I − GeL) are identical

to the eigenvalues of the diagonal block (I − CL), that is, ρ(I −
GeL) = ρ(I − CL). Thus, ye

k → 0 as k → ∞ if L is chosen such

that ρ(I − CL) < 1. ■

4.3 Convergence Analysis

4.3.1 Convergence of Input Trajectory

This section presents the convergence proof for the constrained

PTP ILMPC under the following assumptions.

A1. There exists a feasible input trajectory u∞ such that e∞ = 0,

umin ≤ u∞ ≤ umax and δumin ≤ δu∞ ≤ δumax.

A2. Output constraints are satisfied when input trajectory is con-

verged. Thus, ε∞(t) become zero ∀t.

A3. The system has the same initial condition for all iteration and

shows the same output trajectory and the state trajectory under

the same input trajectory.

A4. Q̃, P, E, S and R are symmetric positive definite.

Lemma 4.1. If Q, S, R and E are symmetric positive definite, then

∥a+ b∥2Q + ∥c+ d∥2S + ∥e∥2R + ∥f∥2E ≤(√
∥a∥2Q + ∥c∥2S + ∥e∥2R + ∥f∥2E +

√
∥b∥2Q +

√
∥d∥2S

)2 (4.40)
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Proof

∥a+ b∥2Q + ∥c+ d∥2S + ∥e∥2R + ∥f∥2E =

(a+ b)TQ(a+ b) + (c+ d)TS(c+ d) + eTRe+ fTEf =

aTQa+ bTQb+ cTSc+ dTSd+ eTRe+ fTEf + 2aTQb+ 2cTSd ≤

aTQa+ bTQb+ cTSc+ dTSd+ eTRe+ fTEf

+ 2
√
aTQa

√
bTQb+ 2

√
cTSc

√
dTSd ≤

aTQa+ bTQb+ cTSc+ dTSd+ eTRe+ fTEf

+ 2
√
aTQa+ cTSc+ eTRe+ fTEf

√
bTQb

+ 2
√
aTQa+ cTSc+ eTRe+ fTEf

√
dTSd+ 2

√
bTQb

√
dTSd =(√

aTQa+ cTSc+ eTRe+ fTEf +
√
bTQb+

√
dTSd

)2
=(√

∥a∥2Q + ∥c∥2S + ∥e∥2R + ∥f∥2E +
√

∥b∥2Q +
√

∥d∥2S
)2

(4.41)

■

Theorem 4.2. Consider the assumptions A1-A4, the system (2.1), the

ILO (4.31) and the constrained optimization problem (4.20, 4.21).

Then, ∆uk(t) → 0 ∀t ∈ {0, 1, · · · , N − 1} as k → ∞.

Proof We consider the objective function at time t of the k-th itera-

tion

Φk(t) =
1

2

{
∥ˆ̃epk(t+ 1|t)∥2

Q̃
+ ∥um

k (t)∥2S + ∥δum
k (t)∥2R

+ ∥∆um
k (t)∥2P + ∥εpk(t+ 1)∥2E

} (4.42)

90



and the minimizer of the optimization problem

Jk(t) = min
∆um

k (t), εpk(t+1)
Φk(t) ≥ 0 (4.43)

subject to

um
min ≤ um

k (t) ≤ um
max

δum
min ≤ δum

k (t) ≤ δum
max

∆um
min ≤ ∆um

k (t) ≤ ∆um
max

yp
min − εpk(t+ 1) ≤ ŷp

k(t+ 1|t) ≤ yp
max + εpk(t+ 1)

εpk(t+ 1) ≥ 0

(4.44)

We will use the fact that an optimal solution of an objective function

is always less than or equal to a feasible solution, then we will use

the k-th optimal solution for the (k+1)-th feasible solution. First, we

define the following estimation errors

ẽe,pk (t+ 1|t) ≜ ẽpk(t+ 1)− ˆ̃epk(t+ 1|t)

ye,p
k (t+ 1|t) ≜ yp

k(t+ 1)− ŷp
k(t+ 1|t)

(4.45)

We can derive the (k + 1)-th prediction error and slack variable us-

ing (2.28), (4.17), (4.44), (4.45) and the above assumptions. The fol-

lowing is obtained using (2.28) and the definition, ˆ̃epk+1(t + 1|t) =

r̃p(t+ 1)− ˆ̃yp
k+1(t+ 1|t).

ˆ̃epk+1(t+ 1|t) = ẽpk(t+ 1)− G̃∆δum
k+1(t)− F̃∆x̂k+1(t|t) (4.46)

Let (ˆ̃e∗,pk (t+1|t), u∗,m
k (t), ε∗,pk (t+1)) be the optimal solution for
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the k-th iteration. At the (k + 1)-th iteration, the optimal solution of

the k-th iteration until time t is used for the (k+1)-th iteration. Thus,

∆δum
k+1(t) and ∆x̂k+1(t|t) become zero because of the assumption

(A3). From the assumption (A3) and (4.45), we have

ˆ̃epk+1(t+ 1|t) = ˆ̃epk(t+ 1|t) + ẽe,pk (t+ 1|t) (4.47)

Similarly, using (2.28), (4.44) and (4.45), we also have

εpk+1(t+ 1) = εpk(t+ 1) + ye,p
k (t+ 1|t) (4.48)

The following is a feasible solution but may not be optimal.

ˆ̃ek+1(t+ 1|t) = ˆ̃e∗,pk (t+ 1|t) + ẽe,pk (t+ 1|t)

um
k+1(t) = u∗,m

k (t)

δum
k+1(t) = δu∗,m

k (t)

∆um
k+1(t) = 0

εpk+1(t+ 1) = ε∗,pk (t+ 1) + ye,p
k (t+ 1|t)

(4.49)

We have

Jk+1(t) ≤
1

2

{
∥ˆ̃e∗,pk (t+ 1|t) + ẽe,pk (t+ 1|t)∥2

Q̃
+ ∥u∗,m

k (t)∥2S

+ ∥δu∗,m
k (t)∥2R + ∥ε∗,pk (t+ 1) + ye,p

k (t+ 1|t)∥2E
}
(4.50)
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By Lemma 4.1, we have

Jk+1(t) ≤

(√
Jk(t)−

1

2
∥∆u∗,m

k (t)∥2P

+

√
1

2
∥ẽe,pk (t+ 1|t)∥2

Q̃
+

√
1

2
∥ye,p

k (t+ 1|t)∥2E

)2

≤

(√
Jk(t) +

√
1

2
∥ẽe,pk (t+ 1|t)∥2

Q̃

+

√
1

2
∥ye,p

k (t+ 1|t)∥2E

)2

(4.51)

which yields

√
Jk+1(t) ≤

√
J1(t) +

k∑
j=1

{√
1

2
∥ẽe,pj (t+ 1|t)∥2

Q̃

+

√
1

2
∥ye,p

j (t+ 1|t)∥2E

} (4.52)

By Theorem 4.1, ye,p
k (t+ 1|t) → 0 as k → ∞. Furthermore, ẽe,pk (t+

1|t) → 0 as k → ∞ because ẽk(t+ 1|t) = ẽpk(t+ 1)− ˆ̃epk(t+ 1|t) =
r̃p(t+1)−Zp(t+1)yp

k(t+1)− r̃p(t+1)+Zp(t+1)ŷp
k(t+1|t) =

−Zp(t + 1)ye,p
k (t + 1|t). The second term on the right-hand side of

(4.52) is bounded for all k. Thus, we have

Jk(t) ≤ Jmax(t) <∞ ∀k < 0 (4.53)
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From (4.51), we obtain

Jk+1(t) ≤

(√
Jk(t)−

1

2
∥∆u∗,m

k (t)∥2P

+

√
1

2
∥ẽe,pk (t+ 1|t)∥2

Q̃
+

√
1

2
∥ye,p

k (t+ 1|t)∥2E

)2

=Jk(t)−
1

2
∥∆u∗,m

k (t)∥2P

+

(√
1

2
∥ẽe,pk (t+ 1|t)∥2

Q̃
+

√
1

2
∥ye,p

k (t+ 1|t)∥2E

)2

+ 2

√
Jk(t)−

1

2
∥∆u∗,m

k (t)∥2P

×

(√
1

2
∥ẽe,pk (t+ 1|t)∥2

Q̃
+

√
1

2
∥ye,p

k (t+ 1|t)∥2E

)
≤Jk(t)−

1

2
∥∆u∗,m

k (t)∥2P

+

(√
1

2
∥ẽe,pk (t+ 1|t)∥2

Q̃
+

√
1

2
∥ye,p

k (t+ 1|t)∥2E

)2

+ 2
√
Jmax(t)

×

(√
1

2
∥ẽe,pk (t+ 1|t)∥2

Q̃
+

√
1

2
∥ye,p

k (t+ 1|t)∥2E

)
(4.54)

94



Then, it leads to

Jk+1(t) +
1

2

k∑
j=1

∥∆u∗,m
j (t)∥2P ≤ J1(t)

+
k∑

j=1

{(√
1

2
∥ẽe,pj (t+ 1|t)∥2

Q̃
+

√
1

2
∥ye,p

j (t+ 1|t)∥2E

)2

+ 2
√
Jmax(t)

×

(√
1

2
∥ẽe,pj (t+ 1|t)∥2

Q̃
+

√
1

2
∥ye,p

j (t+ 1|t)∥2E

)}
(4.55)

where Jmax(t), ẽe,pk (t + 1|t), and ye,p
k (t + 1|t) are bounded for all k

and t. Thus,

Jk+1(t) +
1

2

k∑
j=1

∥∆u∗,m
j (t)∥2P <∞ (4.56)

Hence, ∆u∗,m
k (t) → 0, ∀t as k → ∞. ■

4.3.2 Convergence of Error

So far we, we showed that uk(t) converges to u∗(t), ∀t as

k → ∞. Now, we show that ek(t) converges to e∗(t) or 0, ∀t as

k → ∞. By the assumptions of A1 and A2, input constraints and out-

put constraints are respected as k → ∞. Thus, constrained solution

and unconstrained solution become equal as k → ∞. Convergence is

proved using unconstrained solution. We consider full time-sequence

without real-time feedback because we are concerned with the error

of all reference points when the convergence is achieved. We define

uk, ∆uk, r̃, ỹk, and ẽk as the vectors of full time-sequence. It can
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be derived by setting t = 0 and m = p = N . Unconstrained so-

lution of the proposed PTP ILMPC is ∆um
k (t) = −H−1f where H

and f are (4.26) and (4.27), respectively. In this section, we consider

full time-sequence at time 0 and non-active output constraints (output

constraints are satisfied), and thus we can set P = 0 of H and f can

be simplified as follows.

H = ITLG̃
T Q̃G̃IL + S+ ITLRIL

f = −ITLG̃
T Q̃ẽk−1 + Suk−1 + ITLRILuk−1

(4.57)

Theorem 4.3. Consider the linear system (2.1) and the proposed PTP

ILMPC controller. ẽk(t) → 0 for all reference points as k → ∞ if

S = R = 0 where S and R are the weighting matrices of (4.20).

Proof In case of assuming full time-sequence, the unconstrained so-

lution of the proposed PTP ILMPC is as follows

∆uk = H−1
(
ITLG̃

T Q̃ẽk−1 − Suk−1 − ITLRILuk−1

)
(4.58)

where S, R = 0; thus,

∆uk = H−1ITLG̃
T Q̃ẽk−1 (4.59)

By Theorem 4.2, if k → ∞,

∆u∞ = 0 = H−1ITLG̃
T Q̃ẽ∞ (4.60)

This implies that the final error satisfies ẽ∞ = 0. ■

Theorem 4.4. Consider the linear system (2.1) and the proposed PTP
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ILMPC controller. ẽk(t) → e∗(t) for all reference points as k → ∞.

Proof (4.58) can be rearranged as

uk =
(
I−H−1S−H−1ITLRIL

)
uk−1 +H−1ITLG̃

T Q̃ẽk−1 (4.61)

By Theorem 4.2, if k → ∞,

u∞ = H1u∞ +H2ẽ∞

= H1u∞ +H2 (r̃− ỹ∞)
(4.62)

where
H1 ≜ I−H−1S−H−1ITLRIL

H2 ≜ H−1ITLG̃
T Q̃

(4.63)

(2.28) can be expressed as the lifted form: ỹ∞ = G̃pδu∞ = G̃pILu∞

with xk(0) = 0 where G̃p is the plant matrix. Substitution of ỹ∞ into

(4.62) yields

u∞ = H1u∞ +H2

(
r̃− G̃pILu∞

)
(4.64)

, which can be rearranged to

(
I−H1 +H2G̃pIL

)
u∞ = H2r̃ (4.65)

Substituting (4.63) into the matrix in the left-hand side of (4.65)

yields

I−H1 +H2G̃pIL = H−1
(
ITLG̃

T Q̃G̃pIL + S+ ILRIL

)
(4.66)
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H of (4.57) and the second matrix of the right-hand side of (4.66)

have the same structure, and thus the matrix in the left-hand side of

(4.65) is invertible because the hessian (H) of the QP problem is

invertible. Thus,

u∞ =
(
I−H1 +H2G̃pIL

)−1

H2r̃ (4.67)

Finally, we can obtain the converged value of error (ẽ∗) by substitut-

ing (4.67) into ẽ∞ as follows

ẽ∗ = ẽ∞ = r̃− ỹ∞ = r̃− G̃pILu∞

=

(
I− G̃pIL

(
I−H1 +H2G̃pIL

)−1

H2

)
r̃

(4.68)

■

4.4 Numerical Examples

4.4.1 Example 1 (Linear SISO System with Distur-
bance)

The proposed algorithm is illustrated by the following plant

transfer function.

yp(s) =
2.5

(20s+ 1)(15s+ 1)
u(s) +

1

5s+ 1
d(s) (4.69)

where d(s) is disturbance input which enters the system at the 14th

and 15th iterations. The controller is designed based on the following
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Figure 4.1: (Example 1) The performance of the proposed PTP ILMPC al-
gorithm.
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posed PTP ILMPC algorithm.
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Figure 4.3: (Example 1) Log scale convergence performance for the con-
strained linear SISO system.

model transfer function.

ym(s) =
1.5

(18s+ 1)(15s+ 1)
u(s) (4.70)

Terminal time is 100 with the sampling interval of 1. We used the

following parameters for designing the controller: p0 = 100, m0 =

20, Q̃ = I, S = 10−6I, R = P = 10−4I, E = 104I . The ref-

erence time instants are 20, 40, 60, 70, 80, and 100. The vector of

reference values is r̃ =
[
0 5 −3 −3 3 0

]T
. The following in-

put constraint is applied to the PTP ILMPC controller.

− 20 ≤ uk(t) ≤ 20 (4.71)

First, we need to determine the time-wise observer gain (K) and the

iteration-wise observer gain (L). K was obtained using Kalman filter
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Figure 4.4: (Example 1) The performance of the proposed PTP ILMPC al-
gorithm under output constraint.
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in which the state noise covariance matrix was diag(0.1, 0.1, 0.001)

and the measurement noise variance was 0.001. CT (CCT )−1 was

used for L such that ρ(I − CL) < 1.

Fig. 4.1 shows the performance of the proposed PTP ILMPC

algorithm in the early iteration. Although there is plant-model mis-

match, the tracking error is decreased as k increases. Fig. 4.2 shows

the performance under the unknown real-time disturbance. The out-

put of the 13th iteration is converged to the reference points. Step

disturbance input with the size of 5 is entered at the time 35 of the

14th and 15th iterations. At the 14th iteration, the disturbance is re-

jected in time horizon. It is the main advantage of the proposed PTP

ILMPC. The existing PTP ILC algorithms cannot reject real-time dis-

turbance because they do not include real-time feedback controller.

At the 15th iteration, the output is converging to the reference points

by learning to reject previous disturbance. After the 16th iteration,

the disturbance does not enter to the system. Although there is no dis-

turbance, the tracking performance of the 16th iteration is decreased

because the controller learns to reject the previous disturbance from

the previous iteration; however, the output quickly converges to the

reference points with the real-time feedback. At the 17th iteration,

the output starts to converge to the all reference points again. Fig. 4.3

shows the maximum absolute error. Fig. 4.1 shows the large over-

shoot although there is no disturbance; thus, the following input and

output constraints are used to reduce the large overshoot.

− 20 ≤ uk(t) ≤ 20, − 3.5 ≤ yk(t) ≤ 5.5 (4.72)

The overshoot is reduced by applying output constraint as shown in
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Fig. 4.4.

4.4.2 Example 2 (Linear SISO System)

This example shows that different output trajectories are created

by the controller according to different weighting factor R. The pro-

posed algorithm is illustrated by the following plant transfer function.

yp(s) =
2.5

(4s+ 1)(2s+ 1)
u(s) (4.73)

The controller is designed based on the following model transfer

function.

ym(s) =
1.5

(5s+ 1)(3s+ 1)
u(s) (4.74)

Terminal time is 100 with the sampling interval of 1. We used the

following parameters for designing the controller.

p0 = 100, m0 = 50

Q̃ = I, S = R = 0, P = 0.05I, E = 0
(4.75)

The reference time instants are 20, 40, 60, 70, 80, 100. The vector of

reference values is as follows.

r̃ =
[
0 5 −3 −3 3 0

]T
(4.76)

Kalman gain and iterative learning observer gain were calculated in

the same manner as example 1. Fig. 4.5 shows the result with R = 0

at 1st, 2nd and 30th batch.

In some case, the input trajectory may need to have a softer ap-
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Figure 4.5: (Example 2) The performance of the proposed PTP ILMPC al-
gorithm with R = 0.

pearance. Thus, we use R = 0.1 instead of R = 0 for the next simu-

lation. Fig. 4.6 is the second simulation with R = 0.1 at 1st, 2nd and

30th batch. In Fig. 4.6, the output trajectory becomes a new trajectory

for passing through the reference points. If conventional controller is

used, a new reference trajectory through the points with a smooth
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input trajectory should be calculated.
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Figure 4.6: (Example 2) The performance of the proposed PTP ILMPC al-
gorithm with R = 0.1.
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4.4.3 Example 3 (Comparison between the Proposed
PTP ILMPC and PTP ILC)

In this section, we compare the proposed PTP ILMPC method

with the existing PTP ILC method [16]. The plant, model and param-

eters except for R are identical to those in Example 1. To compare

the two techniques, we set R = 0 and the reason is that the PTP

ILC method cannot tune a weighting factor R. Fig. (4.7) shows the

input and output trajectories of the two techniques in the first and sec-

ond iterations. The PTP ILMPC method converges faster because of

the real-time feedback. Fig. (4.8) shows the results under the distur-

bance which occurs at the 5th iteration. The PTP ILC method does

not respond to the disturbance because it does not have real-time

feedback function. At the 6th iteration, PTP ILC learns to reject the

disturbance which occurred at the 5th iteration. However, the out-

put trajectory is farther from the reference points because there is no

disturbance at the 6th iteration. That is, PTP ILC tried to reject the

disturbance which did not exist. At the 5th iteration, the proposed

PTP ILMPC successfully rejects the disturbance. At the 6th iteration,

PTP ILMPC also learns to reject the disturbance which does not ex-

ist. However, the output trajectory quickly converges to the reference

points by real-time feedback. In Fig. (4.9), the proposed PTP ILMPC

converges faster and is robust to the disturbance. Finally, we compare

the performance under output constraints. The PTP ILC method can-

not use output constraints. Thus, the output constraints technique we

used was applied to the PTP ILC and then compared two techniques.

The input trajectory which satisfies the output constraints depends

entirely on the accuracy of the model because the PTP ILC method
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is an open-loop control. The proposed PTP ILMPC method calcu-

lates the input value satisfying the output constraints in real time and

shows excellent performance. The proposed PTP ILMPC method is

superior to PTP ILC in output constraint, convergence rate and distur-

bance rejection performance. However, because PTP ILMPC needs

to perform optimization (quadratic programming) every step, it takes

longer calculation time than PTP ILC. If the sampling interval is suf-

ficient to solve the QP problem, the proposed method shows better

performance.
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4.4.4 Example 4 (Nonlinear Semi-Batch Reactor)

We consider a jacketed semi-batch reactor where exothermic

series-parallel first-order reactions occur [91].

A+B
k1−→ C, r1 = k1CACB

B + C
k2−→ D, r2 = k2CBCC

(4.77)

The reactor system is

dT

dt
=
Qfeed

V
(Tfeed − T )− UA

V ρCp

(T − Tj)−

∆H1

ρCp

k10e
− E1

RT CACB − ∆H2

ρCp

k20e
− E2

RT CBCC

dCA

dt
=− Qfeed

V
CA − k10e

− E1
RT CACB

dCB

dt
=
Qfeed

V
(CB,feed − CB)− k10e

− E1
RT CACB−

k20e
− E2

RT CBCC

dCC

dt
=− Qfeed

V
CC + k10e

− E1
RT CACB − k20e

− E2
RT CBCC

dV

dt
=Qfeed, Qfeed(t) =

0, if t < 31 min

Qfeed(t), if t ≥ 31

(4.78)

with the initial conditions of T (0) = 298 K, CA(0) =

1 mol/L, CB = CC = 0 mol/L, and V (0) = 50 L. The pa-

rameters are specified as follows: Tfeed = 308 K, CB,feed =

0.9 mol/L, UA/(ρCp) = 3.75L/min, k10 = 5.0969 × 1016 L/mol ·
min, k20 = 2.2391× 1017 L/mol · min, E1/R = 12305 K, E2/R =

13450 K, ∆H1/(ρCp) = −28.5 K · L/mol, and ∆H2/(ρCp) =

−20.5 K · L/mol.
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The manipulated variables are the feed flow rate of the reac-

tant B (Qfeed(t)) and the jacket temperature (Tj(t)). The controlled

variables are the reactor temperature (T (t)) and the yield of the de-

sired product (V (t)CC(t)). The first control objective is to main-

tain the reactor temperature at 308.15 K during the reaction period

(t = 30 ∼ 80 min) and to terminate the reactor operation at 303.15

K. The second control objective is to achieve the yield of 42 mol for

the desired product at t =100 min. Terminal time is 100 min with the

sampling interval of 1 min.

We used the following linear model to control the above system

where the four states and the second output are nonlinear.

xk(t+ 1) =



2.367 −1.300 −0.002 0.088 0.025

1.631 −0.548 −0.003 0.076 0.027

0.003 −0.003 1 1 0

0 0 0 1 0

0 0 0 0 1


xk(t)

+



0.088 0.025

0.076 0.027

1 0

1 0

0 1


δuk(t)

yk(t) =

[
0.680 0.734 0.001 0 0

−49.855 46.189 0.911 0 0

]
xk(t)

(4.79)

A linearized model was obtained at xs =
[
298.15 1 0 1 100

]T
and us =

[
0 298.15

]T
. Then, two states were removed by minimal

realization. Finally, the above state-space model was obtained using
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the state-space augmentation. The following input and output con-

straints are applied to the controller.

0.5 ≤Qfeed(t) ≤ 1.5 L/min

|δQfeed(t)| ≤ 0.5 L/min

293.15 ≤Tj(t) ≤ 318.15 K

|δTj(t)| ≤ 3 K

T (t) ≤ 311.15 K

(4.80)

We used the following parameters for designing the controller: p0 =

100, m0 = 40, Q̃ = I, S = 0, R = 0.01, P = 0.02, and E = 105I .

Kalman gain was calculated using the state noise covariance matrix

diag(0.1, 0.1, 0.1, 0.01, 0.01) and the measurement noise covariance

matrix diag(0.001, 0.001). Iterative learning observer gain L was cal-

culated by CT (CCT )−1 in the same manner as example 1.

In Fig. 4.11, the reactor temperature shows large overshoot when

the output constraint is not applied. Thus, we used the output con-

straint to reduce the large overshoot; however, the reactor temper-

ature reaches 311.9 K although the upper limit of the constraint is

311.15 K. The reason is that the output constraint is not hard con-

straint. If there is no feasible solution which satisfies both input and

output constraints, the output constraint is softened because of the

slack variable. The second reason is plant-model mismatch. The in-

put trajectories satisfying the output constraint are calculated using

the model. Notwithstanding the reasons, the output constraint is ef-

fective to suppress large overshoot. Fig. 4.12 shows the results of the

1st, 3rd and 50th iteration. The yields at terminal times of 1st, 3rd and

50th iterations are 38.366, 41.107 and 42.000, respectively. The reac-
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tor temperature is also successfully converged to the reference points

as shown in Fig. 4.12.
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Figure 4.13: (Example 4) Log scale convergence performance for the non-
linear MIMO system.

4.5 Conclusion

This paper has proposed the novel control technique combining

ILC, MPC and PTP tracking problem, called PTP ILMPC. This algo-

rithm can track the reference points without generating reference tra-

jectory while learning by using the information of previous iteration.

Furthermore, the proposed algorithm can reject real-time disturbance

because it is combined with MPC controller. In this paper, we have

provided the algorithm for a linear time-invariant system. However,

the proposed algorithm for a time-varying system can be derived by

the same procedure. Two examples, linear SISO system and nonlin-

ear MIMO system, are provided to show the effectiveness of the PTP

ILMPC. Future work will consider time-delayed multi-rate sampled

data system.

119



Chapter 5

Stochastic Iterative Learning Control for
Batch-varying Reference Trajectory

In this chapter, we present adaptive ILC schemes for discrete LTI

stochastic system with BVRT. In this case, if the state noise and mea-

surement noise exist,convergence rate and tracking performance are

degraded because the controller considers the difference arising from

the noise as tracking error. To deal with such a problem, we pro-

pose two approaches. The first is based on a batch-domain Kalman

filter, which uses the difference between the current output trajec-

tory and the next reference trajectory as a state vector, while the sec-

ond is based on a time-domain Kalman filter. In the second approach,

the system is identified at the end of each batch in an iterative fash-

ion using the observer/Kalman filter identification (OKID). Then, the

stochastic problem is handled using Kalman filter with a steady-state

Kalman gain obtained from the identification. Therefore, the second

approach can track the reference trajectories of discrete LTI stochas-

tic system using only the input–output information. Simulation exam-

ples are provided to show the effectiveness of the proposed schemes.
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5.1 Introduction

Iterative learning control (ILC) is an effective control scheme in

handling a system repeating the same task on a finite interval. Iter-

ative learning controller controls a system in batch or iteration do-

main, while general controller, PID, LQR or MPC, controls a system

in time domain. In the ILC, the input values for the entire time of

the next batch operation are computed using input and output val-

ues of the current batch. ILC was first introduced for robot manipu-

lators; in addition, it has been implemented in many industrial pro-

cesses such as semiconductor manufacturing and chemical processes

[3, 49, 13, 12, 62, 52]. Most of the ILC schemes focus on tracking

batch-invariant reference trajectory. Recently, several ILC schemes

have been studied for tracking batch-varying references [92, 93, 94],

and they use a recursive least squares algorithm to update the param-

eters iteratively along the batch index. Our previous work [95] also

handles a system with batch-varying references using lifted system

framework and iterative learning identification. However, these stud-

ies present methods for deterministic system only.

In this paper, we present adaptive ILC schemes for discrete lin-

ear time-invariant (LTI) stochastic system with batch-varying refer-

ence trajectories (BVRT). In batch processes (polymerization reac-

tor or rapid thermal process), reference trajectory can be changed

in case feed conditions, start up speed or shut down speed needs to

be varied. New reference trajectory can be calculated from off-line

optimization. In addition, products with various specifications can

be produced from the same system. For example, one etching sys-

tem in semiconductor manufacturing can produce wafers with vari-
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ous critical dimensions if the system can track BVRT. If the system

has BVRT, convergence property of ILC differs from traditional ILC

which aims at tracking an identical reference trajectory [95]. In this

case, we should identify precise Markov parameters of system dy-

namics. Hence, we introduce iterative learning identification to sat-

isfy convergence condition. In case of stochastic system, the pres-

ence of noises decreases the convergence rate and performance. This

is because the controller considers noise as tracking error. To handle

these issues, we propose two Kalman filter-based approaches. In case

of batch-to-batch control problem, Kalman filter can be used in either

time-domain or batch-domain. We apply Kalman filter in both the do-

mains, and then compare the rate and tracking performance of the two

approaches. In the first approach, we use Kalman filter in the batch-

domain. Ahn et al. [88] proposed Kalman filter-augmented iterative

learning control. This method can be applied only if a system has an

identical reference trajectory and a fixed learning gain matrix. Hence,

we extend the method to handle BVRT and batch-varying learning

gain matrix. In the second approach, system Markov parameters are

identified using the observer/Kalman filter identification (OKID) [96]

in an iterative learning manner. The OKID algorithm is numerically

efficient and robust with respect to measurement noise if the output

residual error is zero-mean and Gaussian noise [97]. It also provides

steady-state Kalman gain and system Markov parameters. With the

steady-state Kalman gain, we can use the general Kalman filter in the

time-domain for handling stochastic issue without covariance infor-

mation of state and measurement noises. Therefore, the second ap-

proach uses only input-output information. The comparative results

of the two approaches are provided in Section 5.4.
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The rest of this paper is organized as follows: In Section 5.2, the

deterministic ILC scheme for BVRT and convergence property are

presented. In Section 5.3, the two Kalman filter-based approaches are

proposed for handling stochastic issue. Then, numerical illustrations

are provided in Section 5.4. Section 5.5 provides concluding remarks.

5.2 ILC for Batch-Varying Reference Trajectories

5.2.1 Convergence Property for ILC with Batch-
Varying Reference Trajectories

First, we consider the following linear discrete time-invariant

system which operates on an interval t ∈ [0, N ] :

xk(t+ 1) = Axk(t) +Buk(t)

yk(t) = Cxk(t)
(5.1)

where xk(t) ∈ Rn is the state vector; uk(t) ∈ Rm is the input vector;

yk(t) ∈ Rq is the output vector; t is the time index; k is the batch

index; and the matrices A,B, and C are real matrices of appropriate

dimensions and assumed to be time-invariant. Because finite time in-

tervals [0, N ] are considered in ILC, this system can be rewritten as a

lifted system:

yk = Gpuk (5.2)
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with xk(0) = 0 and the plant matrix Gp = R(qN)×(mN) defined as

Gp =


CB 0 · · · 0

CAB CB · · · 0
...

... . . . ...

CAN−1B CAN−2B · · · CB

 (5.3)

and the vectors yk ∈ RqN , and uk ∈ RmN are defined as

yk =
[
yTk (1) yTk (2) · · · yTk (N)

]T
(5.4)

uk =
[
uTk (0) uTk (1) · · · uTk (N − 1)

]T
(5.5)

The system matrix Gp is a Markov matrix with a lower triangular

Toeplitz structure.

The most general input update law of the conventional ILC

with batch-invariant reference trajectory is represented by uk+1 =

uk + H(r − yk) = uk + Hek where H is a learning gain matrix, and

r is a reference trajectory. It is assumed that input trajectory for next

batch is calculated when the current batch operation is finished. Thus,

uk+1 is calculated using available information uk and yk. In this case,

it is well known that ek → 0 as k → ∞ if ∥I−GpH∥∞ < 1 where I is

the identity matrix [98]. In the conventional ILC formulation, yk con-

verges to the same reference r for all batches. Hence, it is possible to

make the output converge as long as we know the values of the error

and the model satisfying the convergence condition. If the reference

trajectories are varied in batches, we should know not only the values

of the error but also the input variation necessary to move the output
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from the current reference rk to the next reference rk+1. The desired

input of (k + 1)-th batch can be expressed as the following form:

ud
k+1 = uk + (ud

k+1 − uk) (5.6)

where ud
k+1 is the desired input for next reference rk+1. With the

plant description of yk = Gpuk and rk+1 = Gpud
k+1, Eq. (5.6) can

be rewritten as:

ud
k+1 = uk + G−1

p (rk+1 − yk) (5.7)

In the ILC problem, it is assumed that the plant matrix Gp is unknown

or not invertible. Hence, we introduce batch-varying learning gain

matrix to obtain input update law of the ILC for BVRT:

uk+1 = uk + Hk(rk+1 − yk) (5.8)

Theorem 5.1. Consider the linear system (5.1) and the ILC con-

troller (5.8). The system is convergent if Hk is chosen such that

GpHk = I.

Proof The error at the (k + 1)-th batch is derived as

rk+1 − yk+1 = rk+1 − Gpuk+1

= rk+1 − Gp [uk + Hk(rk+1 − yk)]

= rk+1 − yk − GpHkrk+1 + GpHkyk

(5.9)
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then, adding ((rk − rk) + (GpHkrk − GpHkrk)) to Eq. (5.9) yields

ek+1 = ek − GpHkek +∆rk+1 − GpHk∆rk+1

= (I − GpHk)ek + (I − GpHk)∆rk+1

= (I − GpHk)
ke1 +

k∑
j=1

(I − GpHk)
j∆rk+2−j

(5.10)

where ∆rk+1 = rk+1 − rk. In this case, the system cannot be conver-

gent under traditional ILC convergence property, i.e., ∥I−GpHk∥∞ <

1, because of the accumulated ∆rk on the error, and ∆rk+1 cannot

be 0 since the reference trajectories vary for all batches. Therefore,

the second term should be zero for ek → 0. For this, the learning

gain matrix Hk should be chosen such that GpHk = I leading to

(I − GpHk)∆rk+1 = 0. ■

5.2.2 Iterative Learning Identification

To find the learning gain matrix Hk such that GpHk = I, we

should find the precise system Markov parameter matrix Gp. We can

represent the input-output description in the following matrix form:

Yk = gpUk (5.11)

where

Yk =
[
yk(1) yk(2) · · · yk(N)

]
(5.12)

gp =
[
CB CAB · · · CAN−1B

]
(5.13)

126



and

Uk =



uk(0) uk(1) uk(2) · · · uk(N − 1)

uk(0) uk(1) · · · uk(N − 2)

uk(0) · · · uk(N − 3)
. . . ...

uk(0)


(5.14)

If we find gp, we can reconstruct the system Markov parameter ma-

trix Gp. To compute gp, we can use the following system Markov

parameters update law similar to the input update law in Eq. (5.8).

gk = gk−1 + (Yk − Ŷk)HM
k (5.15)

where Ŷk = gk−1Uk and HM
k is the learning gain matrix of the system

Markov parameters.

Theorem 5.2. The estimated system Markov parameters gk is con-

vergent to the real system Markov parameters gp, if HM
k is chosen

such that ∥I − UkHM
k ∥ < 1.

Proof The model error can be written in the following form:

Yk+1 − Ŷk+1 = gpUk+1 − gkUk+1 (5.16)

Substitution of Eq. (5.15) into Eq. (5.16) yields

Yk+1 − Ŷk+1 = gpUk+1 −
[
gk−1 + (Yk − Ŷk)HM

k

]
Uk+1 (5.17)
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Using Yk+1 = gpUk+1 and Ŷk+1 = gkUk+1, the following can be

derived:

(gp− gk)Uk+1 = (gp− gk−1− gpUkHM
k + gk−1UkHM

k )Uk+1 (5.18)

This equation can be rearranged to

(gp − gk)Uk+1 = (gp − gk−1)
(
I − UkHM

k

)
Uk+1 (5.19)

Then, it leads to the inequality

∥gp − gk∥∥Uk+1∥ ≤ ∥gp − gk−1∥
∥∥I − UkHM

k

∥∥ ∥Uk+1∥ (5.20)

Therefore, ∥gp − gk∥ → 0 as k → ∞ if HM
k is chosen such that∥∥I − UkHM

k

∥∥ < 1. ■

In this case, we can compute HM
k using Uk such that UkHM

k = I.

Lemma 5.1. [99] Let U is an m × n matrix. Then, rank(UTU) =

rank(U).

Corollary 5.1. If U is an m× n matrix such that rank(U) = n, then

UTU is invertible. Therefore, there exists a least-squares solution if

U has a full column rank.

The upper triangular matrix Uk with uk(0) ̸= 0 has always a full

column rank; however, initial input uk(0) can be zero or very small

value. In this case, we cannot obtain least-squares solution or numer-

ical problem can occur. Hence, we compute HM
k using the pseudo

inverse of Uk, U†
k, based on the singular value decomposition (SVD).

Therefore, we use the pseudo inverse of Uk as the learning gain matrix
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Figure 5.1: The scheme of the deterministic ILC for batch-varying reference
trajectories.

HM
k of the system Markov parameters. Finally, the following system

Markov parameters update law is obtained.

gk+1 = gk +
(

Yk − Ŷk

)
U†

k (5.21)

5.2.3 Deterministic ILC Controller for Batch-Varying
Reference Trajectories

We can design the ILC controller by the following objective

function.

min
∆uk+1

J =
1

2

{
eTk+1ek+1

}
(5.22)
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First, we need to derive ek+1 to use the objective function. The input-

output relationship between two adjacent batches is

yk+1 = yk + Gp∆uk+1 (5.23)

then, adding (rk+1 − rk) to Eq. (5.23), the following error dynamics

can be obtained.

ek+1 = ek − Gp∆uk+1 + rk+1 − rk (5.24)

Substituting Eq. (5.24) for ek+1 in Eq. (5.22) with ∂J/∂∆uk+1 = 0

yields

uk+1 = uk +
(
GT

p Gp

)−1 GT
p (rk+1 − yk) (5.25)

Because the precise plant Gp is unknown, we use Gk instead of Gp

because Gk → Gp if k → ∞ from Theorem 5.2 where Gk is recon-

structed using gk (5.21). Then, we have the following input update

law of the deterministic ILC for BVRT.

uk+1 = uk +
(
GT

k Gk

)−1 GT
k (rk+1 − yk)

= uk + Hk (rk+1 − yk)
(5.26)

Otherwise, the learning gain matrix Hk can be obtained from the con-

vergence property GpHk = I in Theorem 5.1. Using the least squares

solution, we can obtain the learning gain matrix Hk = (GT
p Gp)

−1Gp

directly. Then, Gp can be replaced by Gk from Theorem 5.2. The pro-

cedure of the deterministic ILC for BVRT is illustrated in Fig. 5.1.
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5.2.3.1 Quadratic criterion-based ILC for batch-
varying reference trajectories

In many ILC designs, the following quadratic objective function

involving both regulation error and input change is applied [5].

min
∆uk+1

J =
1

2

{
eTk+1Qek+1 +∆uT

k+1R∆uk+1

}
(5.27)

By solving the quadratic objective function, we can obtain the fol-

lowing quadratic-criterion-based ILC (Q-ILC) input update law.

uk+1 = uk +
(
GT

k QGk + R
)−1 GT

k Q (rk+1 − yk) (5.28)

Unlike typical ILC for batch-invariant reference trajectories, in the

ILC for BVRT, input signal does not converge to a specific signal

because the reference trajectories are changed along the batch index.

Therefore, input penalty term on Q-ILC obstruct the convergence.

That is, larger input weighting factor R shows worse convergence

performance. According to Theorem 5.1 and Eq. (5.28), convergence

property of the Q-ILC controller takes the following form and we

can assume that convergence of the Markov parameter matrix Gk is

complete if k → ∞.

I − G
(
GTQG + R

)−1 GTQ = 0 (5.29)

where 0 denotes the zero matrix. To satisfy the above equation, all the

eigenvalues of the left-hand side should be zero. The left-hand side

can be expressed as the following form using matrix inversion lemma
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[100]. (
I + GR−1GTQ

)−1
= 0 (5.30)

In this case, the eigenvalues of the left-hand side cannot be zero.

∣∣∣λi ((I + GR−1GTQ
)−1
)∣∣∣ = ∣∣∣∣∣ 1

1 + λi
(
GR−1GTQ

)∣∣∣∣∣ ̸= 0,∀i

(5.31)

Therefore, convergence performance of the Q-ILC with BVRT de-

creases as the input weighting factor R increases. Comparison of

convergence performance according to the size of R is illustrated in

Fig. 5.8 of Section 5.4.

5.3 ILC for LTI Stochastic System with Batch-Varying
Reference Trajectories

We consider the following linear discrete time-invariant stochas-

tic system operating on an interval t ∈ [0, N ]:

xk(t+ 1) = Axk(t) +Buk(t) + Γw(t)

yk(t) = Cxk(t) + v(t)
(5.32)

where wk(t) is the state noise; vk(t) is the measurement noise and Γ

is the state noise matrix. In the ILC controller for stochastic system,

noises are included in the input update equation (5.26). Thus, conver-

gence rate and performance are reduced since the controller considers

the noise as tracking error.

In this paper, two Kalman filter-based approaches are proposed

to deal with the stochastic issue. The first approach is based on the
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Figure 5.2: The scheme of the batch-domain Kalman filter-based stochastic
ILC for batch-varying reference trajectories.

Kalman filtering on the batch-domain. The second one is based on the

Kalman filtering on the time-domain using the steady-state Kalman

gain obtained from the observer/Kalman filter identification (OKID).

5.3.1 Approach 1: Batch-Domain Kalman Filter-
Based Approach

Suppose that there exist state noise, wk ∼ N(0, Q), and mea-

surement noise, vk ∼ N(0, R), in input update law and input-output

relationship, respectively [88]. By defining Ek = rk+1 − yk, we can

obtain the following relationship:
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uk+1 = uk +HkEk +wk (5.33)

ỹk = yk + vk = Gk−1uk + vk (5.34)

Ek+1 = Ek + rk+2 − rk+1 −Gkuk+1 +Gk−1uk (5.35)

Ẽk = rk+1 − ỹk = Ek − vk (5.36)

where yk is a true output and ỹk is a measured output. If the measured

output is applied to the input update equation directly, the equation is

affected by the state and measurement noises as follows.

uk+1 =uk +HkẼk +wk = uk +HkEk −Hkvk +wk

uk+2 =uk +HkEk −Hkvk +wk +Hk+1Ek+1 −Hk+1vk+1 +wk+1

(5.37)

Input signal should be updated using u and HE, not Hv and w.

Therefore, the input signal should be updated using filtered output

yk or filtered difference Ek. Substitution of Eq. (5.33) into Eq. (5.35)

yields

Ek+1 = (I−GkHk)Ek + rk+2 − rk+1 −Gkuk +Gk−1uk −Gkwk

(5.38)

Because GkHk can be assumed to be the identity matrix and Gk−1uk

goes to yk as k → ∞ from the iterative learning identification, we

can obtain the following state-space model in the batch-domain.

Ek+1 = −Ek +
[
I −Gk

] [rk+2

uk

]
−Gkwk

Ẽk = Ek − vk

(5.39)
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The Kalman filter equations are presented as follows.

• Batch update (Prediction)

Ê−
k+1 = −Êk +

[
I −Gk

] [rk+2

uk

]
P−

k+1 = Pk +GkQG
T
k

(5.40)

• Measurement update (Correction)

Kk = P−
k (P

−
k +R)−1

Êk = Ê−
k +Kk(Ẽk − Ê−

k )

Pk = (I−Kk)P
−
k

(5.41)

where Pk and Kk are the error covariance matrix and Kalman gain,

respectively. Gk in the Kalman filter equation is the same form as Gk

in the deterministic process because Gk consists of impulse response

coefficients which are deterministic parts in the LTI stochastic pro-

cess. Therefore, Gk is updated using iterative learning identification

(5.15) and estimated state Êk is used for input update law as follows:

uk+1 = uk +HkÊk (5.42)

The procedure of the approach 1 is summarized in Fig. 5.2.

135



System

Iterative
OKID

ERA

𝐴𝐴,𝐵𝐵,𝐶𝐶

Learning
Controller

MemoryMemoryMemory

Lifted
Kalman Filter𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐾𝐾

Reformulation

Figure 5.3: The scheme of the time-domain Kalman filter-based stochastic
ILC for batch-varying reference trajectories.
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5.3.2 Approach 2: Time-Domain Kalman Filter-Based
Approach

5.3.2.1 Identification of Observer/Kalman filter
Markov parameters (OKID)

This algorithm computes the Markov parameters of an observer

or Kalman filter from experimental input and output data [96].

Add and subtract the term My(t) to the right-hand side of the

state equation, Eq. (5.1), to yield

xk(t+ 1) = Axk(t) +Buk(t) +Myk(t)−Myk(t)

= (A+MC)xk(t) +Buk(t)−Myk(t)

= Āxk(t) + B̄ūk(t)

(5.43)

where
Ā = A+MC

B̄ =
[
B −M

]
ūk =

[
uk(t)

yk(t)

] (5.44)

The input-output description in matrix form becomes

q×N

Yk = ḡk
q×(q+m)p

(q+m)p×N

Ūk (5.45)

where

Yk =
[
yk(1) yk(2) · · · yk(p) · · · yk(N)

]
ḡk =

[
CB̄ CĀB̄ · · · CĀp−1B̄

] (5.46)
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and

Ūk =



ūk(0) ūk(1) ūk(2) · · · ūk(p− 1) · · · ūk(N − 1)

ūk(0) ūk(1) · · · ūk(p− 2) · · · ūk(N − 2)

ūk(0) · · · ūk(p− 3) · · · ūk(N − 3)
. . . ... · · · ...

ūk(0) · · · ūk(N − p)


(5.47)

The first p Markov parameters approximately satisfy ḡk =

YkŪ
†
k and the approximation error decreases as p increases. To find

ḡk iteratively, we can use the following system Markov parameters

update law introduced in Section 5.2.2.

ḡk = ḡk−1 + (Yk − Ŷk)Ū
†
k (5.48)

To recover the system Markov parameters in gk from the ob-

server Markov parameters in ḡk, the following notation is used.

ḡk =
[
CB̄ CĀB̄ · · · CĀp−1B̄

]
=
[
ḡk,0 ḡk,1 · · · ḡk,p−1

]
(5.49)

where

ḡk,l = CĀlB̄

=
[
C(A+MC)lB −C(A+MC)lM

]
≡
[
ḡ
(1)
k,l ḡ

(2)
k,l

] (5.50)

The general relationship between the actual system Markov parame-
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ters and observer Markov parameters is

gk,l = CAlB = ḡ
(1)
k,l +

l−1∑
i=0

ḡ
(2)
k,i ḡk,l−i−1 (5.51)

Eq. (5.51) can be rewritten in the following matrix form:

I

−ḡ
(2)
k,0 I

−ḡ
(2)
k,1 −ḡ

(2)
k,0 I

...
...

... . . .

−ḡ
(2)
k,p−2 −ḡ

(2)
k,p−3 −ḡ

(2)
k,p−4 · · · I





gk,0

gk,1

gk,2

...

gk,p−1


=



ḡ
(1)
k,0

ḡ
(1)
k,1

ḡ
(1)
k,2
...

ḡ
(1)
k,p−1


(5.52)

Note that identity matrix I and all ḡ(2)
k,i are q×q square matrices; there-

fore, unique system Markov parameters can be computed by using

inverse matrix. Then, the system Markov parameters, gk,i, are used in

a Hankel matrix to identify A,B, and C by the eigensystem realiza-

tion algorithm (ERA). The obtained A,C, and the observer Markov

parameters, ḡ(2)
k,i , are used to calculate steady-state Kalman gain, K.

For further details and proof, see the references [101, 102].

5.3.2.2 Input update law using filtered output

In section 5.3.2.1, we obtained the state space model (A,B,C)

for computing the learning gain matrix Hk and steady-state Kalman

gain (K) using iterative OKID and ERA, and therefore the filtered

output can be computed without recursive calculation. Kalman filter

equation for the time and measurement updates are presented as fol-
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lows.

x̂−k (t) = Ax̂k(t− 1) +Buk(t− 1) : Time update

x̂k(t) = x̂−k (t) +K[yk(t)− Cx̂−k (t)] : Measurement update

ŷk(t) = Cx̂k(t) : Filtered output
(5.53)

where x̂−k (t) is predicted a priori state estimate, x̂k(t) is updated a

posteriori state estimate. By substituting the time update equation

into measurement update equation, we can obtain the following equa-

tion:

x̂k(t) =Ax̂k(t− 1) +Buk(t− 1)

+K {yk(t)− C[Ax̂k(t− 1) +Buk(t− 1)]}

=(A−KCA)x̂k(t− 1) + (B −KCB)uk(t− 1) +Kyk(t)

=AK x̂k(t− 1) +BKuk(t− 1) +Kyk(t)

ŷk(t) =Cx̂k(t)
(5.54)
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where AK = A−KCA and BK = B −KCB. These equations for

a sequence of time steps can be written as
ŷk(1)

ŷk(2)
...

ŷk(N)

 =


CBK

CAKBK CBK

...
... . . .

CAN−1
K BK CAN−2

K BK · · · CBK




uk(0)

uk(1)
...

uk(N − 1)



+


CK

CAKK CK
...

... . . .

CAN−1
K K CAN−2

K K · · · CK





yk(1)

yk(2)

yk(3)
...

yk(N)


(5.55)

ŷk = Ḡkuk + K̄yk (5.56)

We can use the following input update law using the filtered out-

put ŷk.

uk+1 = uk +Hk(rk+1 − ŷk) (5.57)

The procedure of the approach 2 is illustrated in Fig. 5.3.

5.4 Numerical Examples

5.4.1 Example 1 (Random Reference Trajectories

The proposed algorithms are evaluated using the following lin-

ear discrete time-invariant system (5.58) converted from the transfer
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Figure 5.4: The tracking results of the deterministic ILC for batch-varying
reference trajectories from second batch to sixth batch (Example 1).
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Figure 5.5: The tracking results of the batch-domain Kalman filter-based
stochastic ILC for batch-varying reference trajectories from second batch to
sixth batch (Example 1).
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Figure 5.6: The tracking results of the time-domain Kalman filter-based
stochastic ILC for batch-varying reference trajectories from second batch
to sixth batch (Example 1).
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function G(s) = 1.5/(16s2 + 10s+ 1).

xk(t+ 1) =

[
0.5145 −0.0460

0.7359 0.9745

]
xk(t) +

[
0.7359

0.4082

]
uk(t) +

[
1

1

]
wk(t)

yk(t) =
[
0 0.0938

]
xk(t) + vk(t)

(5.58)

which operates on t ∈ [0, 1, · · · , 500] and wk(t) ∼
N(0, 0.01), vk(t) ∼ N(0, 1.5). Q and R are 0.01 and 1.5,

respectively. BVRT are produced using the following random

trajectory generator.

rk(t) = 10

[
sin

(
t

d1,k

)
+ sin2

(
t

d2,k

)
+ sin3

(
t

d3,k

)]
(5.59)

where d1,k, d2,k and d3,k are random integers from the uniform distri-

bution between 20 and 90, changed along the batch index.

First, deterministic ILC for BVRT presented in Section 5.2.3 was

applied to the given stochastic system. A unit step input was used for

the first batch. To use the input update law (5.26) for the second batch,

learning gain matrix H1 = (GT
1G1)

−1GT
1 was computed using iter-

ative learning identification (5.21). Then, the input update law (5.26)

was applied to find the second input trajectory. Fig. 4 shows the sim-

ulation results of the deterministic ILC for BVRT from the second

to sixth batches. The result shows good tracking performance even if

reference trajectories vary with every batch. However, outputs have

larger noise than inherent noise in the system because deterministic

ILC for BVRT does not consider the noise effect.

Before simulating two Kalman filter-based ILC for BVRT pro-

posed in Section 5.3, we should calculate the norm of inherent noise
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(state and measurement noises) in the stochastic system. In this pa-

per, convergence performance is evaluated using the norm of error,

which cannot go to zero in the stochastic system because inherent

noise cannot be eliminated. Thus, the norm of error in the stochas-

tic system can converge up to the norm of inherent noise. In order

to calculate the norm of inherent noise, we have to pre-calculate the

covariance of output vector as in the following steps.

E[xk(t+ 1)xk(t+ 1)T ] = AE[xk(t)xk(t)T ]AT + ΓQΓT

E[yk(t)yk(t)T ] = CE[xk(t)xk(t)T ]CT +R

=
t−1∑
i=0

CAiΓQΓT (AT )iCT +R

≡ Ry(t)

(5.60)

Defining Ry ≡ diag {Ry(1), Ry(2), · · · , Ry(500)}, the norm of

stochastic vector yk is, ∥yk∥ =
√

E[yT
k yk] =

√
trace(Ry) = 27.49.

Hence, the lower bound of the norm of error is 27.49.

The simulation results of batch-domain Kalman filter-based ILC

for BVRT proposed in Section 5.3.1 are shown in Fig. 5. In this case,

the convergence rate is slower than that of the deterministic ILC

for BVRT because several batches are required for convergence of

Kalman filter in the batch-domain. However, it shows better conver-

gence performance than deterministic ILC for BVRT. Finally, Fig. 6

shows the simulation results of the time-domain Kalman filter-based

ILC for BVRT. Comparison results of the deterministic approach,

batch-domain and time-domain Kalman filter-based approaches are

are shown in Fig. 7. Both the Kalman filter-based approaches are

convergent up to the lower bound of the norm of error unlike de-

148



terministic approach, but the time-domain Kalman filter-based ap-

proach shows faster convergence rate. This is because steady-state

Kalman gain is used in the approach 2. In addition, the approach 2

can converge without using covariance information. Thus from nu-

merical simulations, we can conclude that second approach is better

than the first.

In Section 5.2.3.1, we mentioned that convergence performance

decreases as input weighting factor R of Q-ILC controller increases.

Learning gain matrix (GT
kGk)

−1GT
k of the time-domain approach

was replaced by the quadratic criterion-based learning gain matrix

(GT
kQGk+R)−1GT

kQ, and the simulation was performed using var-

ious size of R, fixing Q = I. As the size of R increases, convergence

performance gradually diminishes as shown in Fig. 8.

5.4.2 Example 2 (Particular Types of Reference Tra-
jectories

We consider temperature control of a linearized batch reactor

where a second-order exothermic reaction A → B takes place [5].

It is assumed that temperature of a cooling jacket is directly manipu-

lated.

dT (t)

dt
=

[
−k0∆HV

MCp

E

R

C2
A0

T 2
0

e−E/RT0 − UA

MCp

]
T (t)

− 2
∆HV

MCp

k0CA0e
−E/RT0CA(t) +

UA

MCp

Tj(t) + w1(t)

dCA(t)

dt
=− k0

E

R

C2
A0

T 2
0

e−E/RT0T (t)− 2k0CA0e
−E/RT0CA(t) + w2(t)

(5.61)
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The following values were used for the parameters:

UA

MCp

= 0.09 (l/min)

∆HV

MCp

= − 1.64 (K l/mol)

k0 = 2.53× 1019 (l/mol min)

E

R
= 13, 550 (K)

T0 = 25 (◦C)

CA0 = 0.9 (mol/l)

(5.62)

which operates on t ∈ [0, 0.2, · · · , 100] and w1(t) ∼
N(0, 0.0001), w2(t) ∼ N(0, 0.001) and measurement noise v(t) ∼
N(0, 0.1). Reference trajectory of batch reactor can be changed for

different feed concentration, operating condition or reducing opera-

tion time. In this case, we consider three types of reference trajec-

tories, which are for normal operation (1st, 2nd and 3rd batches),

faster shut down (4th and 5th batches) and faster start up (6th and 7th

batches) then, trajectories are repeated in a same order. Application

process is the same with the example 1, but it is assumed that we ob-

tained a unit step input and a step response before computing a input

signal of a first batch. For calculating the lower bound of the norm

of error for the example 2, we should convert the state noise covari-

ance for the continuous time system to the covariance for the discrete

time system. Then, we can obtain the lower bound of the norm of

error, ∥yk∥ = 7.57, using Eq. (5.60). Fig. 5.9, 5.10 and 5.11 show

the tracking results of one deterministic approach and two stochas-

tic approaches. Simulation results of example 1 and 2 show similar

150



convergence trends as shown in Fig. 5.12. As with the previous ex-

ample, the time domain Kalman filter-based approach shows better

convergence performance than the batch domain Kalman filter-based

approach.

5.5 Conclusion

This paper has presented adaptive ILC schemes for discrete LTI

stochastic system with BVRT. For handling stochastic issue, we have

developed two approaches. In the first approach, we suppose that

there exist state noise in input update law and measurement noise

in input-output relationship for defining the stochastic state-space

model. Using defined state-space model, updated term rk+1 − yk in

the input update law (5.42) is estimated using batch-domain Kalman

filter. In the second approach, pure output signal for input update is

estimated using time-domain Kalman filter. Markov parameters and

steady-state Kalman gain are calculated in the iterative OKID step.

The calculated Markov parameters are used for generating learning

gain matrix and the steady-state Kalman gain is used for time-domain

Kalman filter. Because the steady-state Kalman gain is computed in

the iterative OKID step, the Kalman filter can be applied without co-

variance information. Both the approaches show similar convergence

performance but the second approach shows faster convergence rate.

Future work will consider nonlinear systems to cover wider operation

ranges.
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Figure 5.9: The tracking results of the deterministic ILC for batch-varying
reference trajectories from second batch to sixth batch (Example 2).
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Figure 5.10: The tracking results of the batch-domain Kalman filter-based
stochastic ILC for batch-varying reference trajectories from second batch to
sixth batch (Example 2).

153



0 20 40 60 80 100
10

20

30

40

2
n

d
 b

a
tc

h

 

 

Reference Trajectory

Output Trajectory

0 20 40 60 80 100

25

30

35

3
rd

 b
a

tc
h

0 20 40 60 80 100

25

30

35

4
th

 b
a

tc
h

0 20 40 60 80 100

25

30

35

5
th

 b
a

tc
h

0 20 40 60 80 100

25

30

35

Time (min)

6
th

 b
a

tc
h

(◦C)

Figure 5.11: The tracking results of the time-domain Kalman filter-based
stochastic ILC for batch-varying reference trajectories from second batch to
sixth batch (Example 2).
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

In a batch, cyclic, repetitive or iteration process, perfect tracking

of a time-varying reference trajectory cannot be achieved with con-

ventional control techniques because of highly nonlinear dynamics

and model uncertainty. To address this issue, many ILC algorithms

have been developed. In this thesis, we propose the standard form of

ILMPC technique. The proposed ILMPC is similar to conventional

MPC and includes all advantages of MPC and ILC; thus, many tech-

niques for conventional control method can be applied without par-

ticular modification. However, it is not always desirable that the out-

put error converge to zero. An input trajectory for perfect tracking

including vertices of a reference trajectory may have a non-smooth

trajectory. For convergence with non-zero error, we use a generalized

objective function to independently tune weighting factors of manip-

ulated variable change with respect to both the time index and batch

horizons. The major contribution of this thesis is to propose a novel

ILMPC for tracking specific desired points without generating a ref-

erence trajectory passing through the specific desired points. Track-

ing an entire reference trajectory is not always necessary in many
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applications. To address this issue, we introduce an extraction matrix

that extracts only the components related to specific points. Then, we

design the PTP ILMPC algorithm using the extraction matrix. Track-

ing reference trajectories, disturbance rejection and convergence were

found to be successfully achieved in all the cases.

6.2 Future work

There are several directions for further work based on the sug-

gested framework in this thesis. They include:

• PTP ILMPC combined with economic MPC: If the output can

converge to specific points, there is more degree of freedom be-

cause there is intervals where the output does not have reference

trajectory to track. In the interval without reference trajectory, it

may be possible to calculate the input trajectory that maximizes

economic efficiency.

• PTP ILMPC combined with length-varying ILC: In many batch

processes, shortening the operating time means improving the

economy. The proposed PTP ILMPC method assumes the same

operating time; thus, the assumption needs to be relaxed.
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초록

본논문에서는제약조건이있는다변수회분식공정의제어를

위해반복학습제어(Iterative learning control, ILC)와모델예측제어

(Model predictive control, MPC)를 결합한 반복학습 모델예측제어

(Iterative learning model predictive control, ILMPC)를다룬다.일반

적인 ILC는모델의불확실성이있더라도이전회분의정보를이용

해 학습하기 때문에 출력을 기준궤적에 수렴시킬 수 있다. 하지만

기본적으로개루프제어이기때문에실시간외란을제거할수없다.

MPC는 이전 회분의 정보를 이용하지 않기 때문에 모든 회분에서

동일한 성능을 보이며 모델의 정확도에 크게 의존한다. 본 논문에

서 ILC와 MPC의 모든 장점을 포함하는 ILMPC를 제안한다. 많은

회분식또는반복공정에서출력은모든시간에서의기준궤적을추

적할필요가없다.따라서본논문에서는원하는점에만수렴할수

있는 새로운 ILMPC 기법을 제안한다. 제안한 기법을 사용할 경우

원하는점을지나는기준궤적을만드는과정이필요없게된다.또

한 본 논문은 점대점 추적, 반복 학습, 제약조건, 실시간 외란 제거

등의성능을보이기위한다양한예제를제공한다.

주요어 : 반복학습제어, 모델예측제어, 점대점 추적, 실시간 외란

제거

학번 : 2013-30282
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