2 research outputs found

    ํŠน์ • ์ ์˜ ์ถ”์ ์„ ์œ„ํ•œ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด๊ฐ€ ๊ฒฐํ•ฉ๋œ ์ƒˆ๋กœ์šด ๋ฐ˜๋ณตํ•™์Šต์ œ์–ด ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2017. 2. ์ด์ข…๋ฏผ.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ œ์•ฝ์กฐ๊ฑด์ด ์žˆ๋Š” ๋‹ค๋ณ€์ˆ˜ ํšŒ๋ถ„์‹ ๊ณต์ •์˜ ์ œ์–ด๋ฅผ ์œ„ํ•ด ๋ฐ˜๋ณตํ•™์Šต์ œ์–ด(Iterative learning control, ILC)์™€ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด(Model predictive control, MPC)๋ฅผ ๊ฒฐํ•ฉํ•œ ๋ฐ˜๋ณตํ•™์Šต ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด(Iterative learning model predictive control, ILMPC)๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ์ผ๋ฐ˜์ ์ธ ILC๋Š” ๋ชจ๋ธ์˜ ๋ถˆํ™•์‹ค์„ฑ์ด ์žˆ๋”๋ผ๋„ ์ด์ „ ํšŒ๋ถ„์˜ ์ •๋ณด๋ฅผ ์ด์šฉํ•ด ํ•™์Šตํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ถœ๋ ฅ์„ ๊ธฐ์ค€๊ถค์ ์— ์ˆ˜๋ ด์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ธฐ๋ณธ์ ์œผ๋กœ ๊ฐœ๋ฃจํ”„ ์ œ์–ด์ด๊ธฐ ๋•Œ๋ฌธ์— ์‹ค์‹œ๊ฐ„ ์™ธ๋ž€์„ ์ œ๊ฑฐํ•  ์ˆ˜ ์—†๋‹ค. MPC๋Š” ์ด์ „ ํšŒ๋ถ„์˜ ์ •๋ณด๋ฅผ ์ด์šฉํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ๋ชจ๋“  ํšŒ๋ถ„์—์„œ ๋™์ผํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋ฉฐ ๋ชจ๋ธ์˜ ์ •ํ™•๋„์— ํฌ๊ฒŒ ์˜์กดํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ILC์™€ MPC์˜ ๋ชจ๋“  ์žฅ์ ์„ ํฌํ•จํ•˜๋Š” ILMPC๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋งŽ์€ ํšŒ๋ถ„์‹ ๋˜๋Š” ๋ฐ˜๋ณต ๊ณต์ •์—์„œ ์ถœ๋ ฅ์€ ๋ชจ๋“  ์‹œ๊ฐ„์—์„œ์˜ ๊ธฐ์ค€๊ถค์ ์„ ์ถ”์ ํ•  ํ•„์š”๊ฐ€ ์—†๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์›ํ•˜๋Š” ์ ์—๋งŒ ์ˆ˜๋ ดํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ILMPC ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ์›ํ•˜๋Š” ์ ์„ ์ง€๋‚˜๋Š” ๊ธฐ์ค€๊ถค์ ์„ ๋งŒ๋“œ๋Š” ๊ณผ์ •์ด ํ•„์š” ์—†๊ฒŒ ๋œ๋‹ค. ๋˜ํ•œ ๋ณธ ๋…ผ๋ฌธ์€ ์ ๋Œ€์  ์ถ”์ , ๋ฐ˜๋ณต ํ•™์Šต, ์ œ์•ฝ์กฐ๊ฑด, ์‹ค์‹œ๊ฐ„ ์™ธ๋ž€ ์ œ๊ฑฐ ๋“ฑ์˜ ์„ฑ๋Šฅ์„ ๋ณด์ด๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์˜ˆ์ œ๋ฅผ ์ œ๊ณตํ•œ๋‹ค.In this thesis, we study an iterative learning control (ILC) technique combined with model predictive control (MPC), called the iterative learning model predictive control (ILMPC), for constrained multivariable control of batch processes. Although the general ILC makes the outputs converge to reference trajectories under model uncertainty, it uses open-loop control within a batchthus, it cannot reject real-time disturbances. The MPC algorithm shows identical performance for all batches, and it highly depends on model quality because it does not use previous batch information. We integrate the advantages of the two algorithms. In many batch or repetitive processes, the output does not need to track all points of a reference trajectory. We propose a novel ILMPC method which can only consider the desired reference points, not an entire reference trajectory. It does not require to generate a reference trajectory which passes through the specific desired points. Numerical examples are provided to demonstrate the performances of the suggested approach on point-to-point tracking, iterative learning, constraints handling, and real-time disturbance rejection.1. Introduction 1 1.1 Background and Motivation 1 1.2 Literature Review 4 1.2.1 Iterative Learning Control 4 1.2.2 Iterative Learning Control Combined with Model Predictive Control 15 1.2.3 Iterative Learning Control for Point-to-Point Tracking 17 1.3 Major Contributions of This Thesis 18 1.4 Outline of This Thesis 19 2. Iterative Learning Control Combined with Model Predictive Control 22 2.1 Introduction 22 2.2 Prediction Model for Iterative Learning Model Predictive Control 25 2.2.1 Incremental State-Space Model 25 2.2.2 Prediction Model 30 2.3 Iterative Learning Model Predictive Controller 34 2.3.1 Unconstrained ILMPC 34 2.3.2 Constrained ILMPC 35 2.3.3 Convergence Property 37 2.3.4 Extension for Disturbance Model 42 2.4 Numerical Illustrations 44 2.4.1 (Case 1) Unconstrained and Constrained Linear SISO System 45 2.4.2 (Case 2) Constrained Linear MIMO System 49 2.4.3 (Case 3) Nonlinear Batch Reactor 53 2.5 Conclusion 59 3. Iterative Learning Control Combined with Model Predictive Control for Non-Zero Convergence 60 3.1 Iterative Learning Model Predictive Controller for Nonzero Convergence 60 3.2 Convergence Analysis 63 3.2.1 Convergence Analysis for an Input Trajectory 63 3.2.2 Convergence Analysis for an Output Error 65 3.3 Illustrative Example 71 3.4 Conclusions 75 4. Iterative Learning Control Combined with Model Predictive Control for Tracking Specific Points 77 4.1 Introduction 77 4.2 Point-to-Point Iterative Learning Model Predictive Control 79 4.2.1 Extraction Matrix Formulation 79 4.2.2 Constrained PTP ILMPC 82 4.2.3 Iterative Learning Observer 86 4.3 Convergence Analysis 89 4.3.1 Convergence of Input Trajectory 89 4.3.2 Convergence of Error 95 4.4 Numerical Examples 98 4.4.1 Example 1 (Linear SISO System with Disturbance) 98 4.4.2 Example 2 (Linear SISO System) 104 4.4.3 Example 3 (Comparison between the Proposed PTP ILMPC and PTP ILC) 107 4.4.4 Example 4 (Nonlinear Semi-Batch Reactor) 113 4.5 Conclusion 119 5. Stochastic Iterative Learning Control for Batch-varying Reference Trajectory 120 5.1 Introduction 121 5.2 ILC for Batch-Varying Reference Trajectories 123 5.2.1 Convergence Property for ILC with Batch-Varying Reference Trajectories 123 5.2.2 Iterative Learning Identification 126 5.2.3 Deterministic ILC Controller for Batch-Varying Reference Trajectories 129 5.3 ILC for LTI Stochastic System with Batch-Varying Reference Trajectories 132 5.3.1 Approach1: Batch-Domain Kalman Filter-Based Approach 133 5.3.2 Approach2: Time-Domain Kalman Filter-Based Approach 137 5.4 Numerical Examples 141 5.4.1 Example 1 (Random Reference Trajectories 141 5.4.2 Example 2 (Particular Types of Reference Trajectories 149 5.5 Conclusion 151 6. Conclusions and Future Works 156 6.1 Conclusions 156 6.2 Future work 157 Bibliography 158 ์ดˆ๋ก 170Docto

    Development of soft sensor based on Raman spectroscopy for on-line monitoring of glucose concentrations in microalgal production system

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2013. 2. ์ด์ข…๋ฏผ.however, these equipments have a lot of drawbacks. In this work, we will present an integrated framework to estimate glucose concentration in real-time using Raman spectroscopy. The proposed framework proceed to the following steps. First, backgound effect on the Raman spectra will be removed by Rolling-Circle Filter (RCF). Secondly, we will find the relationship between Raman spectra taken from the samples and glucose concentrations using Partial Least Squares (PLS). In the last step, we will adjust the predicted values using Successive Savitzky-Golay smoothing filter. Two experiment were carried out in order to show that the proposed framework is able to estimate glucose concentration. In case of the first experiment, prediction performance R2 of glucose concentrations improved from 0.899 to 0.943 using the proposed framework. Also, in case of the second experiment, prediction performance R2 of glucose concentrations greatly improved from 0.413 to 0.973 using this framework.๋ฏธ์„ธ์กฐ๋ฅ˜๋Š” ๊ด‘ํ•ฉ์„ฑ์„ ํ•˜๋Š” ์ˆ˜์ค‘ ๋‹จ์„ธํฌ ์ƒ๋ฌผ๋กœ ์ฒญ์ •์—๋„ˆ์ง€ ๋ฐ ์œ ์šฉ๋ฌผ์งˆ์˜ ์›๋ฃŒ๋กœ ์ฃผ๋ชฉ ๋ฐ›๊ณ  ์žˆ๋‹ค. ๋ฏธ์„ธ์กฐ๋ฅ˜๋Š” ๋น„ํƒ€๋ฏผ, ์ฒœ์—ฐ์ƒ‰์†Œ, ์นด๋กœํ…Œ๋…ธ์ด์ฆˆ, ๋‹จ๋ฐฑ์งˆ, ํƒ„์ˆ˜ํ™”๋ฌผ๊ณผ ๊ฐ™์€ ๋ฌผ์งˆ ์ƒ์‚ฐ์„ ์œ„ํ•ด ๋งŽ์ด ์‚ฌ์šฉ๋˜๋ฉฐ ์ตœ๊ทผ์—๋Š” ๋ฐ”์ด์˜ค๋””์ ค์˜ ์›๋ฃŒ๊ฐ€ ๋˜๋Š” Triacylglycerols (TAGs)๋กœ ์ธํ•ด ํฐ ์ฃผ๋ชฉ์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. ๊ด‘์ƒ๋ฌผ๋ฐ˜์‘๊ธฐ๋ฅผ ์ด์šฉํ•œ ๋ฏธ์„ธ์กฐ๋ฅ˜ ๋ฐฐ์–‘์—์„œ ์ค‘์š”ํ•œ ๋‘ ๋ณ€์ˆ˜๋Š” ๊ธ€๋ฃจ์ฝ”์ฆˆ์˜ ๋†๋„์™€ ๋น›์˜ ์„ธ๊ธฐ์ด๋‹ค. ๋”ฐ๋ผ์„œ ์ตœ์ ์ œ์–ด๋ฅผ ์œ„ํ•ด์„œ๋Š” ๋‘ ๋ณ€์ˆ˜์˜ ์‹ค์‹œ๊ฐ„ ์ธก์ •์ด ๊ฐ€๋Šฅํ•ด์•ผ ํ•œ๋‹ค. ๋น›์˜ ์„ธ๊ธฐ์˜ ๊ฒฝ์šฐ ๊ด‘๋„๊ณ„๋ฅผ ์ด์šฉํ•˜์—ฌ ์‹ค์‹œ๊ฐ„ ์ธก์ •์ด ๊ฐ€๋Šฅํ•˜๊ณ , ๊ธ€๋ฃจ์ฝ”์ฆˆ ๋†๋„์˜ ๊ฒฝ์šฐ continous glucose monitors (CGMs)๋‚˜ ๊ณ ์„ฑ๋Šฅ์•ก์ฒดํฌ๋กœ๋งˆํ† ๊ทธ๋ž˜ํ”ผ (High-performance liquid chromatography, HPLC)๋กœ ์ธก์ •์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ํ•˜์ง€๋งŒ CGMs๋Š” ์‹ค์‹œ๊ฐ„ ์ธก์ •์€ ๊ฐ€๋Šฅํ•˜๋‚˜ ๋ฒ”์šฉ์„ฑ์ด ๋–จ์–ด์ง€๊ณ  ์žฅ๊ธฐ๊ฐ„ ์‚ฌ์šฉ์ด ๋ถˆ๊ฐ€๋Šฅํ•˜๋ฉฐ, HPLC๋Š” ๋ฒ”์šฉ์„ฑ์ด ์ข‹๊ณ  ์žฅ๊ธฐ๊ฐ„ ์‚ฌ์šฉ์ด ๊ฐ€๋Šฅํ•˜๋‚˜ ์‹ค์‹œ๊ฐ„ ์ธก์ •์ด ์–ด๋ ค์šด ๋‹จ์ ์ด ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ผ๋งŒ ๋ถ„๊ด‘๊ธฐ์™€ ๋‹ค๋ณ€๋Ÿ‰ ํšŒ๊ท€ ๋ถ„์„ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ๊ธ€๋ฃจ์ฝ”์ฆˆ ๋†๋„๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋Š” ํ†ตํ•ฉ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ํ”„๋ ˆ์ž„์›Œํฌ์˜ ๊ณผ์ •์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์šฐ์„  Rolling-Circle Filter (RCF)๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ผ๋งŒ ์ŠคํŽ™ํŠธ๋Ÿผ์˜ ๋ฐฐ๊ฒฝ์„ ์ œ๊ฑฐํ•œ๋‹ค. ๊ทธ ๋‹ค์Œ ๋ถ€๋ถ„ํšŒ๊ท€๋ถ„์„ (Partial Least Squares, PLS)์„ ์ด์šฉํ•ด ๋ผ๋งŒ ์ŠคํŽ™ํŠธ๋Ÿผ๊ณผ ๊ธ€๋ฃจ์ฝ”์ฆˆ ๋†๋„์˜ ๊ด€๊ณ„๋ฅผ ์ฐพ๊ณ , PLS๋ฅผ ํ†ตํ•ด ์˜ˆ์ธก๋œ ๊ธ€๋ฃจ์ฝ”์ฆˆ ๋†๋„๋ฅผ Successive Savitzky-Golay filter๋ฅผ ์ด์šฉํ•ด ๋ณด์ •ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•˜๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ด์šฉํ•ด ๋†๋„ ์˜ˆ์ธก์ด ๊ฐ€๋Šฅํ•œ์ง€ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€์˜ ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์—ฌ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ์‹คํ—˜์˜ ๊ฒฝ์šฐ ๋ณธ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด ๊ธ€๋ฃจ์ฝ”์ฆˆ ๋†๋„ ์˜ˆ์ธก์„ฑ๋Šฅ์€ R2๊ธฐ์ค€ 0.899์—์„œ 0.943์œผ๋กœ ํ–ฅ์ƒ๋˜์—ˆ์œผ๋ฉฐ, ์‹ค์ œ ๋ฏธ์„ธ์กฐ๋ฅ˜๋ฐฐ์–‘์•ก์„ ์ด์šฉํ•œ ๋‘ ๋ฒˆ์งธ ์‹คํ—˜์˜ ๊ฒฝ์šฐ ๊ธ€๋ฃจ์ฝ”์ฆˆ ๋†๋„ ์˜ˆ์ธก์„ฑ๋Šฅ์€ R2๊ธฐ์ค€ 0.413์—์„œ 0.973์œผ๋กœ ํฌ๊ฒŒ ํ–ฅ์ƒ๋˜์—ˆ๋‹ค.Microalgal cultivation process has recently attracted much attention due to biotechnological and chemical potential. Microalgae can be used to produce a diverse range of valuable compounds such as vitamins, natural pigments, carotenoid, protein and carbohydrates. They also produce triacylglycerols (TAGs) as feedstocks for biodiesel production. In the algal production process using photo-bioreactor, two parameters, glucose concentrations and light intensities, are very improtant for optimal control. Therefore, two parameters should be measured in real-time. In case of light intensity, photometer can be used to measure light intensity in real-time. In case of glucose concentration, continuous glucose monitors (CGMs) and High-performance liquid chromatography (HPLC) can be used to measure the concentration1. ์„œ๋ก  2. ์‹คํ—˜ 2.1 ์‹คํ—˜ ์žฅ๋น„ 2.2 ๋ผ๋งŒ ๋ถ„๊ด‘๋ฒ• 2.3 ํ˜ผํ•ฉ๋ฌผ ์ƒ˜ํ”Œ 2.4 ๋ฏธ์„ธ์กฐ๋ฅ˜ ์ƒ˜ํ”Œ 3. ์ด๋ก  3.1 ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ๊ธฐ๋ฒ• 3.1.1 Rolling-Circle Filter (RCF) 3.1.2 Successive Savitky-Golay smoothing filter 3.1.3 Standard Normal Variate (SNV) 3.2 ๋‹ค๋ณ€๋Ÿ‰ ํšŒ๊ท€ ๋ถ„์„ 3.2.1 ๋‹ค์ค‘ํšŒ๊ท€๋ถ„์„ (Multiple Linear Regression, MLR) 3.2.2 ์ฃผ์„ฑ๋ถ„๋ถ„์„ (Principal Component Analysis, PCA) 3.2.3 ์ฃผ์„ฑ๋ถ„ํšŒ๊ท€๋ถ„์„ (Principal Component Regression, PCR) 3.2.4 ๋ถ€๋ถ„ํšŒ๊ท€๋ถ„์„ (Partial Least Squares, PLS) 3.2.5 Radial Basis Function PLS (RBF-PLS) 4. ๊ฒฐ๊ณผ 4.1 ํ˜ผํ•ฉ๋ฌผ ์ƒ˜ํ”Œ์˜ ๊ธ€๋ฃจ์ฝ”์ฆˆ ๋†๋„ ์˜ˆ์ธก 4.2 ๋ฏธ์„ธ์กฐ๋ฅ˜ ์ƒ˜ํ”Œ์˜ ๊ธ€๋ฃจ์ฝ”์ฆˆ ๋†๋„ ์˜ˆ์ธก 4.2.1 RCF์ ์šฉ ์ „ ํ›„์˜ PLS ๋ชจ๋ธ ์„ฑ๋Šฅ ๋น„๊ต 4.2.2 ๋…๋ฆฝ์ ์ธ ์‹คํ—˜๊ตฐ์˜ ๊ธ€๋ฃจ์ฝ”์ฆˆ ๋†๋„ ์˜ˆ์ธก 4.2.3 Successive SG filter ์ ์šฉ 4.2.4 ์ „์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•๊ณผ ํšŒ๊ท€๋ถ„์„ ๊ธฐ๋ฒ•์— ๋”ฐ๋ฅธ ์˜ˆ์ธก ๋ชจ๋ธ ์„ฑ๋Šฅ ๋น„๊ต 5. ๊ฒฐ๋ก  ๋ฐ ์ œ์•ˆMaste
    corecore