2 research outputs found

    ์ด๋™๋ธ”๋ก ๋ฐ ์ž”๋ฅ˜ํŽธ์ฐจ ์ œ๊ฑฐ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด ๊ธฐ๋ฒ•์˜ ์ตœ์ ์„ฑ ํ–ฅ์ƒ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€,2020. 2. ์ด์ข…๋ฏผ.Model predictive control (MPC) is a receding horizon control which derives finite-horizon optimal solution for current state on-line by solving an optimal control problem. MPC has had a tremendous impact on both industrial and control research areas. There are several outstanding issues in MPC. MPC has to solve the optimization problem within a sampling period so that the reduction of on-line computational complexity is a one of the main research subject in MPC. Another major issue is model-plant mismatch due to the model based predictive approach so that offset-free tracking schemes by compensating model-plant mismatch or unmeasured disturbance has been developed. In this thesis, we focused on the optimality performance of move blocking which fixes the decision variables over arbitrary time intervals to reduce computational load for on-line optimization in MPC and disturbance estimator approach based offset-free MPC which is the most standardly used method to accomplish offset-free tracking in MPC. We improve the optimality performance of move blocked MPC in two ways. The first scheme provides a superior base sequence by linearly interpolating complementary base sequences, and the second scheme provides a proper time-varying blocking structure with semi-explicit approach. Moreover, we improve the optimality performance of offset-free MPC by exploiting learned model-plant mismatch compensating signal from estimated disturbance data. With the proposed schemes, we efficiently improve the optimality performance while guaranteeing the recursive feasibility and closed-loop stability.๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด๋Š” ํ˜„์žฌ ์‹œ์Šคํ…œ ์ƒํƒœ์— ๋Œ€ํ•œ ์œ ํ•œ ๊ตฌ๊ฐ„ ์ตœ์ ํ•ด๋ฅผ ๋„์ถœํ•˜๋Š” ์˜จ๋ผ์ธ ์ด๋™ ๊ตฌ๊ฐ„ ์ œ์–ด ๋ฐฉ์‹์ด๋‹ค. ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด๋Š” ํ”ผ๋“œ๋ฐฑ์„ ํ†ตํ•œ ๊ณต์ • ๋™ํŠน์„ฑ๊ณผ ์ œ์•ฝ ์กฐ๊ฑด์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ฐ˜์˜ํ•˜๋Š” ์žฅ์ ์œผ๋กœ ์ธํ•ด ์‚ฐ์—… ๋ฐ ์ œ์–ด ์—ฐ๊ตฌ ๋ถ„์•ผ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์ณค๋‹ค. ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด์—๋Š” ๋ช‡ ๊ฐ€์ง€ ํ•ด๊ฒฐ๋˜์–ด์•ผ ํ•  ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด์—์„œ๋Š” ์ƒ˜ํ”Œ๋ง ๊ธฐ๊ฐ„ ๋‚ด์— ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ํ’€์–ด๋‚ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์˜จ๋ผ์ธ ๊ณ„์‚ฐ ๋ณต์žก์„ฑ์˜ ๊ฐ์†Œ๊ฐ€ ์ฃผ์š” ์—ฐ๊ตฌ ์ฃผ์ œ ์ค‘ ํ•˜๋‚˜๋กœ ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๋˜ ๋‹ค๋ฅธ ์ฃผ์š” ๋ฌธ์ œ๋Š” ๋ชจ๋ธ์— ๊ธฐ๋ฐ˜ํ•œ ์˜ˆ์ธก์„ ์ด์šฉํ•˜๋Š” ์ ‘๊ทผ ๋ฐฉ์‹์œผ๋กœ ์ธํ•ด ๋ชจ๋ธ-ํ”Œ๋žœํŠธ ๋ถˆ์ผ์น˜๋กœ ์ธํ•œ ์˜ค์ฐจ๋ฅผ ํ•ด๊ฒฐํ•ด์•ผ ํ•œ๋‹ค๋Š” ์ ์ด๋ฉฐ, ๋ชจ๋ธ ํ”Œ๋žœํŠธ ๋ถˆ์ผ์น˜ ๋˜๋Š” ์ธก์ •๋˜์ง€ ์•Š์€ ์™ธ๋ž€์„ ๋ณด์ƒํ•˜์—ฌ ์ž”๋ฅ˜ํŽธ์ฐจ ์—†์ด ์ฐธ์กฐ์‹ ํ˜ธ๋ฅผ ์ถ”์ ํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด์—์„œ์˜ ์˜จ๋ผ์ธ ์ตœ์ ํ™”๋ฅผ ์œ„ํ•œ ๊ณ„์‚ฐ ๋ถ€ํ•˜๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ์ž„์˜์˜ ์‹œ๊ฐ„ ๊ฐ„๊ฒฉ์— ๊ฑธ์ณ ๊ฒฐ์ • ๋ณ€์ˆ˜๋ฅผ ๊ณ ์ •์‹œํ‚ค๋Š” ์ด๋™ ๋ธ”๋ก ์ „๋žต์˜ ์ตœ์ ์„ฑ ํ–ฅ์ƒ์— ์ค‘์ ์„ ๋‘์—ˆ์œผ๋ฉฐ, ๋˜ํ•œ ์ž”๋ฅ˜ํŽธ์ฐจ๋ฅผ ์ œ๊ฑฐํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ€์žฅ ํ‘œ์ค€์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ์™ธ๋ž€ ์ถ”์ •๊ธฐ๋ฅผ ์ด์šฉํ•œ ์ž”๋ฅ˜ํŽธ์ฐจ-์ œ๊ฑฐ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด ๊ธฐ๋ฒ•์˜ ์ตœ์ ์„ฑ ํ–ฅ์ƒ์— ์ค‘์ ์„ ๋‘์—ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋™ ๋ธ”๋ก ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด์˜ ์ตœ์  ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๋‘ ๊ฐ€์ง€ ์ „๋žต์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ „๋žต์€ ์ด๋™ ๋ธ”๋ก ์ „๋žต์—์„œ ์ผ๋ฐ˜์ ์œผ๋กœ ๊ณ ์ •๋œ ์ฑ„๋กœ ์‚ฌ์šฉ๋˜๋Š” ๊ธฐ๋ฐ˜ ์‹œํ€€์Šค๋ฅผ ์ƒํ˜ธ ๋ณด์™„์ ์ธ ๋‘ ๊ธฐ๋ฐ˜ ์‹œํ€€์Šค์˜ ์„ ํ˜• ๋ณด๊ฐ„์œผ๋กœ ๋Œ€์ฒดํ•จ์œผ๋กœ์จ ๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ๊ธฐ๋ฐ˜ ์‹œํ€€์Šค๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ๋‘ ๋ฒˆ์งธ ์ „๋žต์€ ์ค€-๋ช…์‹œ์  ์ ‘๊ทผ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ํ˜„์žฌ ์‹œ์Šคํ…œ ์ƒํƒœ์— ์ ์ ˆํ•œ ์‹œ๋ณ€ ๋ธ”๋ก ๊ตฌ์กฐ๋ฅผ ์˜จ๋ผ์ธ์—์„œ ์ œ๊ณตํ•œ๋‹ค. ๋˜ํ•œ, ์ž”๋ฅ˜ํŽธ์ฐจ-์ œ๊ฑฐ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด ๊ธฐ๋ฒ•์˜ ์ตœ์  ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ถ”์ • ์™ธ๋ž€ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ํ•™์Šต๋œ ๋ชจ๋ธ-ํ”Œ๋žœํŠธ ๋ถˆ์ผ์น˜ ๋ณด์ƒ ์‹ ํ˜ธ๋ฅผ ์˜จ๋ผ์ธ์—์„œ ์ด์šฉํ•˜๋Š” ์ „๋žต์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ์„ธ ๊ฐ€์ง€ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด์˜ ๋ฐ˜๋ณต์  ์‹คํ˜„๊ฐ€๋Šฅ์„ฑ๊ณผ ํ์‡„-๋ฃจํ”„ ์•ˆ์ •์„ฑ์„ ๋ณด์žฅํ•˜๋ฉด์„œ ์ตœ์  ์„ฑ๋Šฅ์„ ํšจ์œจ์ ์œผ๋กœ ๊ฐœ์„  ํ•˜์˜€๋‹ค.1. Introduction 1 2. Move-blocked model predictive control with linear interpolation of base sequences 5 2.1 Introduction 5 2.2 Preliminaries 9 2.2.1 MPC formulation 9 2.2.2 Move blocking 12 2.2.3 Move blocked MPC (MBMPC) 15 2.3 Move blocking schemes 16 2.3.1 Previous solution based offset blocking 17 2.3.2 LQR solution based offset blocking 18 2.4 Interpolated solution based move blocking 20 2.4.1 Interpolated solution based MBMPC 20 2.4.2 QP formulation 26 2.5 Numerical examples 29 2.5.1 Example 1 (Feasible region) 30 2.5.2 Example 2 (Performance in regulation problem) 33 2.5.3 Example 3 (Performance in tracking problem) 36 3. Move-blocked model predictive control with time-varying blocking structure by semi-explicit approach 43 3.1 Introduction 43 3.2 Problem formulation 46 3.3 Move blocked MPC 48 3.3.1 Move blocking scheme 48 3.3.2 Implementation of move blocking 51 3.4 Semi-explicit approach for move blocked MPC 53 3.4.1 Off-line generation of critical region 56 3.4.2 On-line MPC scheme with critical region search 60 3.4.3 Property of semi-explicit move blocked MPC 62 3.5 Numerical examples 70 3.5.1 Example 1 (Regulation problem) 71 3.5.2 Example 2 (Tracking problem) 77 4. Model-plant mismatch learning offset-free model predictive control 83 4.1 Introduction 83 4.2 Offset-free MPC: Disturbance estimator approach 86 4.2.1 Preliminaries 86 4.2.2 Disturbance estimator and controller design 87 4.2.3 Offset-free tracking condition 89 4.3 Model-plant mismatch learning offset-free MPC 91 4.3.1 Model-plant mismatch learning 92 4.3.2 Application of learned model-plant mismatch 97 4.3.3 Robust asymptotic stability of model-plant mismatch learning offset-free MPC 102 4.4 Numerical example 117 4.4.1 System with random set-point 120 4.4.2 Transformed system 125 4.4.3 System with multiple random set-points 128 5. Concluding remarks 134 5.1 Move-blocked model predictive control with linear interpolation of base sequences 134 5.2 Move-blocked model predictive control with time-varying blocking structure by semi-explicit approach 135 5.3 Model-plant mismatch learning offset-free model predictive control 136 5.4 Conclusions 138 5.5 Future work 139 Bibliography 145Docto

    ํšŒ๋ถ„์‹ ๊ณ ๋ถ„์ž ์„ธ์ฒ™๊ณต์ •์˜ ๊ธฐ์ดˆ์  ๋ชจ๋ธ๋ง ๋ฐ ์‹คํ—˜์  ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2016. 2. ์ด์ข…๋ฏผ.After polymerization reaction, impurities composed of adduct, used solvent and catalyst remain inside the formed polymers. These impurities should be removed by washing to improve the purity of the polymers. In this process, the model of the polymer washing process is essential to optimize the energy, resources and operating time. This work proposes a fundamental model of polymer washing process to provide theoretical basis for optimization. The model describes the impurity distribution inside the polymers using pseudo steady state approximation with the concept of moving boundary of diffusion. Also, the impurity diffusion at polymer surface is described with Fick's law. In addition, this work reports an experimental investigation of polymer washing process using SPAEK (sulfonated poly(aryl ether ketone)) samples. In the investigation, impurity diffusion coefficient at polymer surface of the experiment is computed from the pH data. The computed D have different values for each operation, as a lumped parameter. However these values show the same trajectory with the introduction of a dimensionless number Co for each operation. This means other impurity diffusion factors, not included in the model, embraced in D are only affected by Co, even if the initial impurity concentrations inside the polymers are different for each operation. Finally, we predict the pH changes in a different experimental condition, and validate the prediction performance of the model.Chapter 1. Introduction 1 Chapter 2. Modeling 4 2.1 Pseudo steady state approximation of impurity distribution inside the polymer 6 2.2 Mole balance of impurities inside the polymer and in batch 8 2.3 Impurity diffusion rate at polymer surface 9 Chapter 3. Experimental Investigation 11 3.1 Relationship between hydroxide ion concentration and impurity concentration 12 3.2 Impurity diffusion coefficient at polymer surface 15 3.3 Numerical simulation for the radius of the diffusion boundary 20 Chapter 4. Model Validation 22 4.1 Estimation of impurity diffusion coefficient at polymer surface 23 4.2 Numerical simulation for pH changes and model validation 23 Chapter 5. Conclusion 29 References 31 ์ดˆ ๋ก 34Maste
    corecore