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Abstract

Optimality Enhancement in
Move-blocked Model Predictive

Control and Offset-free Model
Predictive Control

Sang Hwan Son
School of Chemical and Biological Engineering

The Graduate School

Seoul National University

Model predictive control (MPC) is a receding horizon control
which derives finite-horizon optimal solution for current state on-
line by solving an optimal control problem. MPC has had a tremen-
dous impact on both industrial and control research areas. There are
several outstanding issues in MPC. MPC has to solve the optimiza-
tion problem within a sampling period so that the reduction of on-
line computational complexity is a one of the main research subject
in MPC. Another major issue is model-plant mismatch due to the
model based predictive approach so that offset-free tracking schemes
by compensating model-plant mismatch or unmeasured disturbance
has been developed. In this thesis, we focused on the optimality per-

formance of move blocking which fixes the decision variables over



arbitrary time intervals to reduce computational load for on-line op-
timization in MPC and disturbance estimator approach based offset-
free MPC which is the most standardly used method to accomplish
offset-free tracking in MPC. We improve the optimality performance
of move blocked MPC in two ways. The first scheme provides a su-
perior base sequence by linearly interpolating complementary base
sequences, and the second scheme provides a proper time-varying
blocking structure with semi-explicit approach. Moreover, we im-
prove the optimality performance of offset-free MPC by exploiting
learned model-plant mismatch compensating signal from estimated
disturbance data. With the proposed schemes, we efficiently improve
the optimality performance while guaranteeing the recursive feasibil-

ity and closed-loop stability.

Keywords: Model predictive control, input parameterization, move-
blocking, model-plant mismatch, offset-free tracking
Student Number: 2016-30232
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Chapter 1

Introduction

Model predictive control (MPC) is a receding horizon control
which dervies finite-horizon optimal solution for current state on-line
by solving an optimal control problem [[1]]. MPC has become a stan-
dard method for decision making in various fields [2, 3, 4} 5. 16} [7]].
The popularity of MPC is based on the fact that the resulting operat-
ing strategy respects all the details of system and problem, including
constraints and interactions [8]].

One of the most outstanding issues in MPC is the online com-
putational load required to solve the optimization problem within a
sampling period. Move blocking is an input parameterization scheme
which fixes the decision variables over arbitrary time intervals, com-
monly referred as blocks, and it is widely implemented to model
predictive control (MPC) to reduce computational load for on-line
optimization. However, existing move blocking schemes have lim-
itations in construction of base sequence and selection of blocking
structure. First, move blocking strategies parameterize either the in-
put sequence or offset from the base sequence of input, but exist-
ing move blocking schemes use a fixed base sequence only and do
not fully exploit the valuable properties from various base sequences.

Second, though selection of blocking structure has a significant effect



on the optimality of moved blocked MPC because the blocking posi-
tion act as the search direction in input sequence space, but existing
move blocked MPC schemes apply arbitrary time-invariant blocking
structures without consideration of the optimality of blocking struc-
ture due to the difficulty of deriving proper time-varying blocking
structure on-line.

Thus, we propose the interpolated solution based move blocking
strategy which parameterizes the offset from the convex combina-
tion of two complementary base sequences — infinite-horizon linear
quadratic regulator solution and shifted previous solution — and op-
timises the interpolation parameter as an additional decision variable
in the optimal control problem to overcome the above-mentioned first
limitation. This allows the controller to exploit the valuable properties
from both solutions by choosing the optimal interpolation parameter
and blocked offset according to the current state on-line while guar-
anteeing the recursive feasibility and closed-loop stability. Then, we
propose the semi-explicit approach for move blocked MPC which
combines the explicit approach for blocking position with simpli-
fied on-line optimization for blocked offset from the base sequence
to overcome the above-mentioned second limitation. This allows the
controller to apply the proper time-varying blocking structure accord-
ing to the current state on-line. By this, we could efficiently improve
the optimality of move blocked MPC with only a little additional
computation cost for critical region search while guaranteeing the re-
cursive feasibility and closed-loop stability.

Since model and data based approaches are complementary to
each other, combination of MPC and machine learning (ML) is an

emerging area of research. However, the existing studies only con-



sider the combination of nominal MPC with ML method, though re-
searches for model-plant mismatch compensation have already been
studied actively in offset-free MPC field to overcome the limitation of
model based approach. Therefore, we propose model-plant mismatch
learning offset-free model predictive control (MPC) which learns and
exploits the intrinsic model-plant mismatch, and effectively combines
the advantages of model and data based approaches and overcome the
limitations of them. The model-plant mismatch is approximated by
general regression neural network (GRNN) with supervised learning
from the estimated steady-state disturbance for each set-point. An im-
proved disturbance estimator is designed to exploit both the learned
model-plant mismatch and stabilizing property of the nominal distur-
bance estimator. We also apply the learned model-plant mismatch to
the target calculator and finite-horizon optimal control problem to im-
prove the prediction accuracy and closed-loop performance of MPC.
Moreover, we examine the robust asymptotic stability of the proposed
offset-free MPC scheme, which is known to be really difficult in nom-
inal offset-free MPC, by exploiting the learned model-plant mismatch

information.

The summary of three proposed approaches are below:

* Move-blocked model predictive control with linear interpola-

tion of base sequences.

* Move-blocked model predictive control with time-varying block-

ing structure by semi-explicit approach.

* Model-plant mismatch learning offset-free model predictive con-

trol.



The rest of this thesis is organised as follows. In Chapter 2, move
blocked model predictive control with guaranteed stability and im-
proved optimality using linear interpolation of base sequences is pro-
posed. In Chapter 3, we propose move blocked model predictive con-
trol with improved optimality using semi-explicit approach for apply-
ing time-varying blocking structure. In Chapter 4, offset-free model
predictive control with guaranteed robust asymptotic stability using
model-plant mismatch learning is proposed. Finally, we present the

conclusion of this thesis and summary in Chapter 5.



Chapter 2

Move-blocked model predictive control with

linear interpolation of base sequences|

2.1 Introduction

One of the most outstanding issues in MPC is the online compu-
tational load required to solve the optimization problem within a sam-
pling period. Computational load is not an issue for systems with rela-
tively slow dynamics, intermittent input updates, or sufficient compu-
tational capacity. However, for systems with fast dynamics (e.g., vehi-
cles, robots) or limited computational capacity (e.g., on-board single-
chip controllers), computational load can hinder the real-time im-
plementation of MPC. Therefore, various techniques have been pro-
posed for reducing the online computational load. Some techniques
are concerned with faster optimization algorithms by exploiting the
structure of the optimal control problem. Among them are the hierar-
chical decomposition approach to separate the objective function of
the optimization problem [9]], warm-starting to obtain a better initial

point of optimization algorithm from the information of the previous

"This chapter is a slightly adapted version of Son, S. H., Park, B. I., Oh, T. H., Kim, J.
W., and Lee, J. M. (2019). "Move blocked model predictive control with guaranteed stability
and improved optimality using linear interpolation of base sequences". International Journal
of Control, under review.
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sampling instant [[10], and fast MPC to improve interior-point search
direction by exploiting the structure of the optimization problem [[11]].
Other techniques reduce computational complexity by modifying the
optimal control problem at the expense of optimality such as input pa-
rameterization. Various input parameterization techniques have been
proposed including approximation of the control law with a param-
eterised function to reduce the order of problem [12, [13], a move
blocking method fixes the decision variables over arbitrary time in-
tervals [[14]], and linear interpolation of typical solutions [15]. Move
blocking and linear interpolation are one of the most commonly used
methods to reduce computational complexity, and are the focus of
this study.

In input parameterization methods which construct input trajec-
tory with a restricted number of variables, the analysis for closed-loop
property such as feasibility and convergence is not straightforward as
in [16]] with only given degree of freedom (d.o.f). Therefore, these
methods usually utilise the typical solutions with feasibility or sta-
bilizing property, which can be derived without much computational
cost, to improve the closed-loop performance of the controller.

In case of interpolation methods, they utilise these typical so-
lutions directly as the basis. [[17] use linear interpolation of uncon-
strainted linear quadratic regulator (LQR) solution and the shifted
version of the previous solution as the solution of MPC. [18]] inter-
polate LQR solution, tail of dual-mode control, and the mean level
solution which is an easily computed feasible solution apart from the
boundary of feasible solution set, to ensure feasibility under some
uncertainty. [[19]] interpolate LQR solution, tail, and an explicit so-

lution at the nearest facet of feasible region to reduce the compu-



tational complexity of multiparametric programming by restricting
the required critical region. However, these interpolated solutions are
usually too restrictive in general because the solutions have to lie in
the convex hull of basis solutions. There also exist interpolation meth-
ods based on stabilizing feedback solutions. [20, 21} 22] directly con-
struct the solution by interpolating feedback solutions, and [23] and
[LS]] apply the interpolation at the terminal control law of dual-mode
control. However, these methods use conservative constraint handling
and the number of variables may become large for high dimensional
systems.

In case of move blocking, they utilise the typical solutions as
base sequece and block the offset from the base sequence. [[14] use
the infinite-horizon LQR solution as the base sequence to exploit the
pre-stabilizing property and optimality. [24} 25] use the shifted pre-
vious solution as the base sequence to exploit the feasibility of the
retained previous solution and guarantee monotonic decrease of the
objective value. However, existing move blocking schemes use fixed
base sequences only and do not fully exploit the valuable properties
of several solutions. When using LQR solution as the base sequence,
since its feasibility is not guaranteed, a specific format of blocking
structure called moving window blocking proposed in [14] and a re-
strictive terminal constraint set must be used. On the other hand, when
using the shifted previous solution as the base sequence, since the
optimality of the solution is not guaranteed, the closed-loop perfor-
mance of the controller can be degraded.

Thus, we propose to implement the interpolation of LQR so-
lution and shifted previous solution as the base sequence of move

blocking. Then, the solution trajectory of the proposed method can



be interpreted as the direct sum of interpolated solution and blocked
offset term. This allows the controller to exploit the valuable proper-
ties of both parameterization methods and overcome each limitation
by allowing both schemes to complement each other. In terms of in-
terpolation method, the accessible space of the solution is expanded
outside the convex hull of basis solutions by the blocked offset term
with a flexible blocking structure. In terms of move blocking, the
solution set embeds LQR solution and shifted previous solution by
the base sequence, and the controller can utilise valuable properties
of them. Therefore, the proposed method can effectively enlarge the
feasible region, and improve the closed-loop optimality performance
compared to the existing schemes while easily guaranteeing recursive
feasibility, convergence, stability, only with a little additional compu-
tational cost due to the interpolation parameter.

The rest of this chapter is organised as follows. We provide the
MPC formulation with move blocking for a discrete linear time-invari-
ant system in Section 2.2. In Section 2.3, we analyze the existing
move blocking schemes. In Section 2.4, we propose the interpolated
solution based move bocking scheme, analyze the closed-loop prop-
erties of the proposed scheme, and provide the QP formulation of
the interpolated solution based move blocked MPC. Finally, the nu-
merical examples verify that the proposed interpolated solution based
move blocking scheme can efficiently enlarge the feasible region and
improve the optimality of move blocked MPC compare to the existing

schemes in Section 2.5.



2.2 Preliminaries

2.2.1 MPC formulation

We consider the discrete linear time-invariant system

z(k +1) = Az(k) + Bu(k)
y(k) = Cx(k) 2.1

where £ is the discrete-time index, u(k) € R™ is the input, z(k) €
R"™ is the state, and y(k) € R™ is the output. A, B, and C' are
matrices with appropriate dimensions, and the pair (A,B) is assumed
to be controllable. n,, n,, and n, are the dimensions of the input,
state, and output vectors, respectively.

In the design of control systems, operational constraints are usu-
ally imposed for safe and stable operations. These constraints are
commonly presented as convex polyhedral regions on the input and

state variables.

ueld, re X 2.2)

where U := {u € R™|A,u < b,} and X := {x € R™|A,z < b, }
are compact polyhedral sets containing the origin in their interiors.

In addition, the terminal state x,, is usually imposed to lie in an
control invariant terminal constraint set X to guarantee the recur-
sive feasbility and closed-loop stability. A non-empty set C € X is
referred to as a control invarinat (CI) set for the system in Eq. (2.1)
subject to the constraints in Eq. (2.2), if and only if Vo € C, Ju € U
such that Az + Bu € C [26].



The objective function of regulation problem is commonly de-

scribed as a sum of quadratic stage costs:

N-1

J(20,U) =2 Q x, + Z (x4, u;) (2.3)
i=0

$(a,u) = 1" Qpr +u' Quu

where ¢(z,u) denotes a single-stage cost. Q, € R™*" Q) €
R"™>" and @, € R™*™ are positive definite weighting matrices
for the state vector, terminal state vector, and input vector, respec-
tively.

Then, the optimal control problem in P1 is solved at each sam-

pling instant to derive an optimal input sequence.

P1: J*(z) = mUin J(x0,U)
st. xg=wx, x;01 = Ax; + By

u €U, i€ X, Vi=0,--- ,N—1

Ty € Xt
where U denotes the future input sequence [tojk; Uijk; ==+ 5 UN—1k]
([v1; va; - -+ ; v,] denotes the vertical concatenation [v] , vy , -+ v ]T).

The objective function in Eq. (2.3) can be rewritten as a quadratic

function of U by expressing all the predicted states explicitly:

J(x,U)=UTHU +2U " f +¢ (2.4)

10 -



H=9"QU+Q,, f=9"Q,dx
ci=2 (TQ, P+ Q,)x

- B 0 0 ]
A
AB B 0
A2
o= , U:=| A’B AB B
4 : P :
L AN—lB AN—QB AN—SB ... B

where @, € RV"=*Nne and @, € RN™ >N are the matrices with
diagonal form having {Q., - ,Q., @} and {Q., - - - , @, } as main
diagonal blocks, respectively. Since ¥7'Q, ¥ = 0,Q, = 0,and H >~
0, the objective function J in Eq. (2.4) is a positive definite quadratic
function of U.

Since U, X, and X are polytopic, we can describe constraints in
P1 as a set of linear inequalities with suitable matrices, and then P1
can be reformulated in a condensed form with the objective function
in Eq. (2.4):

P1': J*(z) := mUin J(z,U)

st. Fe+GU <h

where F' € R%*" G € R™*Nmu gnd b € R™ are suitable matrices,
and n. is the number of inequalities.

In MPC, PY’ is solved based on the current measured(or ob-
served) state for each sampling instant, then the first input of the re-
sulting optimal input trajectory is implemented on the system. This

procedure is repeated at later sampling instants in a receding horizon

11



fashion.

2.2.2 Move blocking

Since the computational complexity of solving an optimization
problem depends on the number of decision variables or d.o.f., the
move blocking method that reduces the number of decision variables
by fixing the decision variables over blocks illustrated in Figure 2.1
is commonly used in practice. The input blocking directly parameter-
izes the input sequence, while the offset blocking parameterizes the
offset from the base sequence.

The structure of move blocking is determined by the blocking

positions in Definition 1.

Definition 1. (Blocking position set) The set s := {s1,--- ,sx} in
ascending order denotes the blocking position set, where each com-
ponent s; € N<y denotes the blocking position where each block
begins, and N is the number of blocks (N<y 1s the set of natural
numbers less than or equal to V). Additionally, we represent the set

of admissible s as S.

Definition 2. (Blocking matrix) P € BY *N denotes the blocking ma-
trix, where BV xN js an N x N matrix whose elements are restricted to
the binary values 0 or 1. P is a lower triangular matrix, and the posi-
tion of non-zero elements in P is determined by the blocking position

set s:

P =[Py, -, Py (2.5)

12



Input blocking

U U Uy | Uz | Uy | Us | Ug | Uy | Ug | Ug |Uqg

+
U U Uy Us
Offset blocking
Up |ups [Upz | Uz | Uba|Ubs | Ubs | Un7 | Ubs | Ubo [Ub10
+
O (01026036, ]|05|66|67]6s]| 609|610
+
Up [upy |up2|Ups|Uba|Uns | Ube | Un7 [ Ung|Ubo [Ub10
+ — — —
(0] 01 0, 03

Figure 2.1: A schematic illustration of move blocking when N = 10, N =
3,and s = {1,4,9}.

13 =
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—_ [Osi—l; 1si+1—si; ON—si+1+1] for i= 17 e ,N -1

i

[0, 1;1y_4,41] for i=N

where P; is the i"* column of P, s; is the i** component of s, and 0,),
and 1,, represent a vector of zeros with length m and a vector of ones

with length n, respectively.

In case of input blocking, the entire input sequence U can be de-

scribed with P and a reduced input sequence U := [ty;Uy; - - - ; Uy

as

U=(P®I,,)U=PU (2.6)

where P := P ® I,,, and ® denotes the Kronecker product.
In case of offset blocking, U is formulated with a base sequence
Up € RY™ and an offset sequence © := [;;0s;- - ;0y]. Then, ©

can be parameterized with move blocking as
U=Up+0O©=Ug+ PO (2.7)

where © denotes a reduced offset sequence [51 0g; - - - ;gﬁ].

Despite the studies aimed at improving the performances of in-
put blocking [[16, 27], input blocking suffers from poor closed-loop
performance owing to the inflexibility associated with fixing the ac-
tual inputs [[14]. On the other hand, offset blocking fixes the offset

from the base sequence not the actual input.

14



2.2.3 Move blocked MPC (MBMPC)

In this study, we proceed the discussion based on the MPC with
the offset blocking scheme in Eq. (2.7). When move blocking is im-
plemented on MPC, the d.o.f. is reduced by parameterization, while
the blocking positions are added as new variables with the additional

constraints as in P2.

P2: J*(z,Up) :=min, g J(zo,U)
st. U=Ug+ PO
To =, Tir1 = Ax; + By,
u €U, x4 €X, T, € Xp
s=A{s1,---,sy5}, s; € Ny

Vi=0,---,N—-1,Vj=1,---,N

The objective function in Eq. (2.4) can be reformulated as a

quadratic function for the parameterized offset O:

J(z,Up,5,0) =0 HO+20 f+v (2.8)
=P'HP

=P (HUs + f)

C:=UyHUg +2ULf +c

|

15 -



Then, P2 can be reformulated in a compact form using Eq. (2.8):

P2': J*(2,Up) = min, g J(z,Up,s,0)
st. Fr+GO < h

S:{Sb"' 75ﬁ}

SieNSN; \V/Z:L,N

where FF € R7%*" G € R"™*N™ and h € R™ are appropriate

matrices, and .. is the number of inequalities.

2.3 Move blocking schemes

In nominal MPC, the CI terminal constraint set is imposed to en-
sure recursive feasibility and stability as in Section 2.2.1. However,
constraining the x, to lie in a CI set cannot guarantee recursive fea-
sibility in MBMPC owing to the extra constraints imposed on the
control input sequence by move blocking. Therefore, several move
blocking schemes have been developed to ensure recursive feasibil-
ity.

One input blocking scheme directly allows the closed-loop state
trajectory to remain within a feasible set by proposing the notion of a
control invariant feasibility (CIF) set [27]. However, this input block-
ing scheme has several major drawbacks such as flexibility degra-
dation of the controller owing to the blocking of the actual input and
considerable domain reduction owing to the restrictiveness of the CIF
set.

In contrast to input blocking, offset blocking guarantee recur-

sive feasibility and stability by utilizing the valuable property from
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the base sequence. We introduce two representative offset blocking

schemes in subsequent sections.

2.3.1 Previous solution based offset blocking

[24] 25] formulate an offset blocking scheme which retains the
previous solution for the base sequence at the current sampling in-

stant, and parameterizes the input sequence in terms of the offsets

from it.
U= \U(k)+ PO (2.9)
U(k) == [Ui\k—ﬁ T §U7v—1|k:—1§ 0,,]
where A € [0,1], and [uj, ;- ;uy_y,_,] represents the shifted

input solution from the previous sampling instant.

Since the shifted version of previous solution sequence is always
constructible from the base sequence, this scheme can easily ensure
the recursive feasibility and stability with the terminal constraint set
of nominal MPC, i.e., the maximal control invariant set in Defini-
tion 3, for all admissible blocking structure only with the condition
s3 = IN. Therefore, this scheme can handle a relatively large feasible
region compared to other move blocking schemes where the previous

solution is not constructible.

Definition 3. (Maximal control invariant set) The maximal control

invariant (MCI) set C,, is a CI set which contains all other CI sets
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and can also be defined as

Coo = {x9 € X | I{w; € R™}°, such that u; € U,
Tiv1 = A.Z'Z + Bu; € X Vie ZZO} (2.10)

where Z is the set of non-negative integers.

However, since the optimality of the retained previous solution
is not ensured, the base sequence can be undesirable for the current
time step especially when the solution sequence is not sufficiently
updated by the blocked offset term at the early stage of the control
system or the reference trajectory rapidly changes in a tracking prob-
lem. In this case, the optimality performance of the controller can be
degraded. Moreover, this scheme cannot utilise the stabilizing prop-

erty of proper feedback law such as the LQR solution.

2.3.2 LQR solution based offset blocking

[14] proposed an offset blocking scheme which utilises the infinite-
horizon LQR solution as the base sequence. The entire input sequence

can be formulated as

U =Urgr(k) + ¥, PO (2.11)
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ULQR(]C) = CI)LZL‘(]{?)

I 0 0 -0
K,B I, 0 -0
L u

UV, =| K,A,B K,B L, -0

K, AN2B K, ANB K, ANB ... I,,

o, = "t ,A =A+BK,

K, AN

where K, is the infinite-horizon LQR gain. U gg(k) is the LQR so-
lution sequence from z(k).

The underlying philosophy of this scheme is quite similar to the
dual-mode control in [28} 29]]. This scheme can exploit the optimality
and stabilizing property of the LQR solution. Therefore, when the
state enters the maximal positive invariant (MPI) set subject to the
LQR gain in Definition 4, this scheme can stabilise the system in an

optimal way.

Definition 4. (Maximal positive invariant set) The set O, (K) is the
maximal positive invariant (MPI) set for the system in Eq. (2.1) sub-

ject to a stabilizing feedback gain K [30].

Ooo(Ks) = {CUO eX ’ Tiy1 = (A—‘—BKS)ZE% € X,
U; = KS.’L'Z' eEU Vi e Zzo} (212)
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However, when the state is outside MPI set subject to K, and
thus the LQR solution is not feasible, the shifted version of previous
solution sequence has to be constructible at the current step to suffi-
ciently ensure the recursive feasibility. For this, the blocking structure
of this scheme is restricted to propagate through a specific pattern
called moving window blocking (MWB) strategy and the terminal
state has to lie in the relatively restrictive set, O, (K L), compared to
that of nominal MPC, C.. Therefore, this scheme can only handle the
smaller feasible region than other move blocking schemes with flexi-

bility in selecting the blocking structure and a larger terminal set.

2.4 Interpolated solution based move blocking

The offset blocking schemes introduced in Section 2.4 mainly
focus on utilizing the fixed form of base sequences, the previous
solution U and the LQR solution Upgr, respectively. Since U and
Urgr have their own advantages and limitations as base sequences,
we propose to implement the interpolated solution of U and U LOR
as the base sequence to improve the closed-loop performance of the
MBMPC by addressing the limitations and inheriting the valuable

properties of each solution.

2.4.1 Interpolated solution based MBMPC

The proposed interpolated solution based offset blocking uses

the linear interpolation of Uand U Lor as the base sequence.

Up(k) = AU (k) + (1 — NUror(k) (2.13)

20



where A € [0, 1] is the interpolation parameter.
The input sequence within the optimization window is the sum

of the base sequence and the parameterized offset expressed as
U =AU(k) + (1 — NUor(k) + PO (2.14)

The optimal control problem of interpolated solution based MBM-
PC is given by

P3: J*(2,U) := min g, J(2o,U)
st. U=AU(k)+ (1= ANUror(k) + PO
To =T, i1 — A.Z'l -+ B'LLI

Uieu, $i+1€)€, T, GXT

s={s1,---,sy5}, s; € Ny
Vi=0,---,N—-1,Vj=1,--- N
0<A<1

Since the shifted optimal solution sequence at the previous sam-
pling instant [uj, ;- ; U*N—l\k;—l] can be constructed from U in Eq.
(2.14), this scheme guarantees the recursive feasibility and stability.
These closed-loop properties can be proved in a similar way to nom-

inal MPC in [1]].
Theorem 1. Consider the optimal control problem P3. If the blocking

position set s satisfies sy = N, then a feasible solution is always

guaranteed to exist.
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Proof) We can select the interpolation parameter as A = 1 and the
reduced offset sequence as © = [0;--- ;0;v], v € U. If sy = N, then
the entire offset sequence can have the form of © = [0;- - - ;0; v|, and

the entire input sequence can always be given by

U(k) == [ui|k—1; e 3“7V-1|k;—1; g (2.15)

which results in the prediction of future state sequence as

X(k) = [25_15 s TNp—1; TE] (2.16)

Since [u’l‘|k_1; e ;u}‘v_”k_l] is the shifted version of the previ-
ous optimal input solution, Tyt € C« 1s guaranteed. Moreover,
because of the invariance of C, there always exists v € U such that
Ing = Ava‘ w1 T Bv € C. Therefore, we can ensure that there

always exists a feasible solution for the problem. [

Remark 1. From Theorem 1, we can reformulate any arbitrary in-
put sequence U in Eq. (2.14) as in Eq. (2.17) with a pseudo base
sequence Up.

U = Ug(k) + PO, (2.17)

Up (k) := AU (k) + (1 = NUrqnr(k)

0, = [51;52; s Oy — A

From Remark 1, we can consider U p as the base sequence of
the interpolated solution based MBMPC instead of Up, and proceed

with the analysis using Ug.
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Remark 2. Since U in Eq. (2.15) 1s ensured to be feasible with proper
v € U, the base sequence Ug always enters the feasible solution set

as A — 1 even when Urgr and U are infeasible.

In case of LQR solution based MBMPC, since the LQR solu-
tion is not guaranteed to be feasible, a specific pattern of blocking
structure called MWB strategy and a restrictive terminal set O (K, )
have to be used to ensure recursive feasibility and stability, which
can considerably reduce the feasible region. On the other hand, in
case of the proposed interpolated solution based MBMPC, since the
feasibility of P3 is ensured by the base sequence as in Remark 2, the
selection of blocking structure is flexible only with the condition of
sz = N. Moreover, since LQR solution does not need to be feasible
at the terminal state, the proposed scheme does not require to impose
the terminal state to lie in O (K, ) and can use a relatively large ter-
minal constraint set, C... Therefore, the proposed scheme can handle
a relatively large feasible region compared to that of LQR solution
based MBMPC. We demonstrate this property by directly comparing
the feasible region of both schemes in the numerical example section.

In case of previous solution based MBMPC, since the optimality
of the base sequence is not guaranteed, the optimality performance of
the controller can be considerably degraded than that of the nominal
MPC. On the other hand, in case of the proposed interpolated solution
based offset blocked MPC, since the base sequence Ug is always ac-
cessible to the infinite-horizon LQR solution as A — 0, the controller
has an additional d.o.f. in the monotonically decreasing direction of

the objective value. Therefore, this scheme can effectively improve
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the optimality performance of the controller by adjusting the interpo-
lation parameter with the parameterised offset compared to the sim-
ple previous solution based MBMPC. Moreover, we can maximise
the utilization of the closed-loop optimality of the LQR solution in
this scheme by applying the concept of dual-mode prediction in [29]
and fixing the control input as the LQR solution when the state of
the system reaches the O (K, ) where the LQR solution is always
feasible and optimal.

The convergence property of the interpolated solution based MB-
MPC is described below.

Theorem 2. Consider the closed-loop receding horizon control sys-
tem with input update by the optimal control problem of the interpo-
lated solution based MBMPC in P3. The system will converge to the
origin as £ — oo under the commonly used basic stability assump-

tion given by

min_ ah T(Qr — Q)TN + On(En ) SO (218)

VEM,%N“CECOO

where oy (z,u) == 27Q  x + u' Q,u.
Proof) As in the proof of Theorem 1, we can obtain a feasible so-

lution U in Eq. (2.15) by selecting s with sy = N, A = 1, and

© = [0;--- ;0;v]. Then, we can describe the expected objective value
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when U is implemented to the system as

N-1

J(z(k), U(k)) = Z ¢(95:|k71a u:|k71) + ¢<x*N\k717 v) + ﬂnkQNgle

i=1

(2.19)

where 27, | = x(k).

Since the optimal solution sequence of the previous sampling in-
stant U} := [uak_l; u’{‘k_l; . ?U*N—1\k—1] and U are identical ex-
cept for the first and last components, we can reformulate Eq. (2.19)

as

J(w(k), U (k) =Ji_y = $lx(k), ulk - 1)) (2.20)

+ Thjp—1 Qe — QN)x*NWfl + ON (TN, V)

where J; 1= J*(x(7), ﬁ(z), s(7)) denotes the optimal cost at the sam-
pling instant 7.

Since U is not the optimal input sequence, the inequality in Eq.
(2.21) holds:

Ti < J(x(k),U(k)) .21

Substituting Eq. (2.20) into Eq. (2.21) gives

Jr < Jya—o(a(k), u(k — 1)) (2.22)

+ Tyt Q. — QN)x*N\k;—l + N (T, V)
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By the assumption in Eq. (2.18), Eq. (2.22) can be reformulated as
Jr = Jig < —o(a(k), u(k - 1)) (2.23)

Since ¢(z(k),u(k — 1)) > 0 Vx(k) # 0, and u(k — 1) # 0,,,
we can see that the optimal cost J* strictly decreases over time. More-
over, since the optimal cost is lower-bounded by zero, J* > 0, the se-
quence of J* converges to zero as the state of the closed-loop system

converges to the origin. [

The closed-loop stability of the interpolated solution based MBMPC

is easily ensured by Corollary 1.

Corollary 1. When the convergence to the origin of the interpolated
solution based MBMPC is guaranteed, the asymptotic stability of the
origin is inherently ensured by the fact that O, (K, ) is a neighbor-
hood containing the origin in its interior, and the stabilizing control

law u = K, x is feasible and optimal Vz € O, (K, ).

2.4.2 QP formulation

We reformulate the input sequence in Eq. (2.14) as

U = Upor(k) + M(k)V (2.24)

where V is the vector of decision variables.
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Then, the objective function can be reformulated in a quadratic

function for V:

J=VTH,V+2V'f +¢, (2.25)

H, := M(k)"HM k)
fo = M(k)" (HULqr(k) + f)
EV = ULQR(]{?)THULQR(/{?) + 2ULQR(/{?)Tf +c

The constraints can be formulated in terms of V" as Egs. (2.26)—
(2.30). For generality, the constraint on the rate of input changes du €
U, is also considered, where U, := {du € R™ : As,0u < bs,} is a

compact polyhedral set containing the origin in the interior.

. Input values
(I, ® A)M(E)]V <C1®b, — (I, ® Ay)Urgr(k)  (2.26)
. Rate of input changes
(1, ® As)CoM(K)V < Cy ® by,
— (Iy ® Asu)(CoULqr(k) —ug(k)) (2.27)
. State values
(I, ® A)VM(k)]V < C, ® b,
(L, © A,)(@a(k) + WUrgn(k)  (228)
. Terminal state value

[ATC;g\I/M(k)]V S bT — ATCP)((I)QZ’(IC) -+ ‘IJULQR(/f))
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. Weighting factor

—Cy 0
V< (2.29)
Cy 1
where
- q o 1 00---00
u(k —1) 1
—-110---00
0 1
uo(k):: . ,012: . ,CQI: 0—-11---00 ®Inu
0 1
- - - - 0 00---—11

CS = [Onzxnzy' o 70nz><nzalnz]7 C'4 = [1707' o 70]

where 0,,, «,,, represents the n, X n, matrix of zeros.
Now, after the blocking structure is selected, we can reformulate
P3 as a standard QP problem by substituting Egs. (2.25)—(2.30) into

P3 and omitting the constant term:

P4: J*(z(k),U(k),s) =miny VTHV +2VTf
s.t. 'V <vw
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where

(Iy ® Ay)M (k)
(Iy ® Asu)CaM (k)
(Iy ® Ay)YM(k)
ArCy UM (k)
-0,

C,y |

Ci @b, — (I, ® Ay)Urgr(k)

C1 @ bsy — (Iy ® Asu)(CoULqr(k) —u(k))
CL @by — (I, © A,)(@a(k) + WUnon(k))
br — ArCy(Da(k) + WUson(k))

0
1

Then, the optimal control problem in P4 can be solved by a QP
solver. The outline of the interpolated solution based MBMPC with
applying the concept of dual-mode control is summarised in Algo-

rithm 2.1.

2.5 Numerical examples

In this section, we demonstrate the efficacy of the interpolated
solution based MBMPC through examples comparing the performance
of the proposed scheme and existing MBMPC schemes in terms of
the volume of feasible region, closed-loop cost and computational
load.

The selection of blocking positions has a significant impact on
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Algorithm 2.1. Interpolated solution based MBMPC

Initialise z(0) = 2o, U(0) = Opp,
for k=0,1,--- , K do
Measure(or estimate) (k) at sampling instant k
Select blocking position set s(k) with sjz = N
Compute Urgr(k) = ®,x(k)
if (k) € Ox(K,) then
SetA\* =0,0" =0y,
else
Solve P4 — \*,©"
end if
Compute U* = MU (k) + (1 — A)Ugr(k) + PO"
Apply ug‘ ;. to the system
Update U (k + 1) = (Wl Uy g On, ]
Wait for the next sampling instant k& + 1

end for

Table 2.1: Interpolated solution based MBMPC

the optimality performance of the controller, and the optimality of
the blocking structure has been considered in various perspectives
[25,31]. However, in this study, since we only focus on the efficiency
of base sequence, we apply an arbitrary time-invariant blocking struc-
ture for all the cases.

The terminal MPI set O (K, ) and MCI set C,, were calcu-
lated using the MPT3 toolbox [32]. Simulations are performed using
MATLAB® R2019a with Intel® Core™ i7-6700 CPU @ 3.40GHz,
32 GB RAM.

2.5.1 Example 1 (Feasible region)

The linear discrete time model is given by
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0.9146 0.1665 0.0405 0.0544 —0.0757
x(k+1) = 10.2665 0.3353 0.0058 | (k) + [0.0053 0.1477 | u(k)
0  0.0405 0.5353 0.8647 0

The system constraints are given by

— 100 < z; <100, —100 < 2 <100, —100 < z3 < 100

—1<u <1, =2<u; <2

We derived the feasible region of each MBMPC scheme with
N = 10, N = 3, and the time-invariant blocking structure s =
{1,5,10}. The control parameters are @), = diag{2,2,2} and Q, =
diag{1, 1}. We also describe the trajectory of a constrained regulation
problem from the initial state 2(0) = [60; —60; 60] with the proposed
scheme.

Figure 2.2 shows the feasible regions of the nominal MPC and
MBMPC based on previous solution, interpolated solution, and LQR
solution. The first three 2D plots are the projections of the 3D feasible
region in the last plot onto 2D spaces, respectively. It is clear that the
feasible region of the proposed interpolated solution based MBMPC
is much larger than that of LQR solution based MBMPC. The consid-
erable difference in the volume of the feasible regions is mainly due
to the difference in the terminal sets. The LQR based MBMPC have
to constrain the terminal state in the MPI set for recursive feasibility.
On the other hand, since previous solution or interpolated solution

based MBMPC can inherently ensure the recursive feasibility by the
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base sequence, it has the terminal MCI set yielding a much larger

feasible region.

2.5.2 Example 2 (Performance in regulation problem)

The linear descrete time model of the ball-plate system in [14] is

given by
[10.03-0.315 —0.00412] [ 0.00011]
0 1 —21 —0452 —0.0156
x(k+1)= z(k) + u(k)
00 1 00514 0.00245
00 0 27 0.195

x = [ly, vy, @, vy] denotes the state vector where [, and v, are the po-
sition and velocity of the ball, and ¢ and v, are the angle and angular
velocity of the plate, respectively. The input variable u is the voltage

to the motor of the plate. The operational constraints are given by

—20<1, <20, =30 <, <30, =10 <9 <10

—2<v3<2, -10<u <10

We simulated a constrained regulation problem from the initial
state £(0) = [15;5; —0.1; 1] using nominal MPC and the proposed
and existing MBMPC scheme with N = 15, N = 3, and the time-
invariant blocking structure s = {1,8,15}. The control parameters
are (), = diag{6,0.1,500,100}, Q, = 3Q., and Q, = 1.

Figure 2.3 shows the results of nominal MPC and MBMPC based
on the interpolated solution and previous solution in regulation prob-

lem. In this example, the states and input trajectories of the proposed
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Figure 2.4: Comparison of the average computation time and closed-loop
cost of nominal MPC and MBMPC based on the interpolated solution with
and without dual-mode control, and previous solution in regulation problem
in the ball-plate system.

35



interpolated solution based MBMPC are regulated to the origin faster
than that of the existing previous solution based MBMPC. Moreover,
we also compare the result of interpolated solution based MBMPCs
with and without the dual-mode control. We can see the interpolation
parameter A\ of the case with dual-mode control is maintained as 0
from the 17"* sampling instant, after the state of the system reaches
O (K, ), to fully utilise the optimality of LQR solution. Since the
infinite horizon LQR solution is superior to that of the finite hori-
zon optimal solution, if it is feasible, the interpolated solution based
MBMPC with dual-mode control even shows better performance than
that of the nominal MPC after the 17" sampling instant. On the other
hand, the interpolated solution based MBMPC without dual-mode
control cannot fully exploit the optimality of LQR solution. There-
fore, the case with dual-mode control shows slightly better closed-
loop cost than the case without dual-mode control in Figure 2.4. The
graph in Figure 2.4 quantitatively shows that the proposed interpo-
lated solution based MBMPC can efficiently improve the closed-loop
optimality compare to the existing previous solution based MBMPC
with a slight additional computational cost due to the interpolation

parameter.

2.5.3 Example 3 (Performance in tracking problem)

The objective function of the reference tracking problem is com-

monly given by

J = (Rs(k) - Y)TQY(Rs(k) - Y) + AUvTC?dUAU' (2.30)
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where R, (k) € R¥™ denotes the reference trajectory at sampling in-
stant k, AU := [0uop; Sue; - - - 3 0un—1)x) denotes the future rate of
input change sequence, and (), and (), are weighting matrices with
diagonal form having {Q),, - - , @y} and {Q4y, - - - , Qau } as main di-
agonal blocks, respectively. This objective function can be reformu-

lated as the quadratic function of U:

Jy(x,U)=U"H,U+2U"f, +¢, (2.31)

H,:=9,0Q,%,+C)Q,Cs

fy =0, Qy(Pyz — Rs) — Cy Q0

¢y = (Rs — @yx) " Q) (Rs — yx) + 15 Q,ug
o, := (I, ®C)®, U, := (I, ®C)¥

In the reference tracking problem, we cannot derive the infinite-
horizon LQR solution when the reference trajectory changes contin-
ually. Therefore, we used the unconstrained optimal solution U,;,, :=
—H, ' f, instead of Urgg. Then, the entire input sequence of the in-
terpolated solution based move blocking in Eq. (2.14) can be refor-

mulated as

U =\U(k)+ (1= \NU, (k) + PO
= M(k)V + U, (k) (2.32)

M(k) = [U(k) = Uy, (k), P]
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and the objective function in Eq. (2.32) can be reformulated as

Jy=V'H\V +2V'f +7¢, (2.33)

H, .= M(k)"H,M(k)

Ty = M k)" (H,Uy, (k) + )
¢y = U, (k) H, Uy, (k) + 205, (K) ' fy + ¢,

Finally, we can construct the standard QP problem by substitut-
ing the objective function in Eq. (2.34) into P4 in the same manner as
in Section 2.5.2.

We consider a chemical semi-batch reactor where a exothermic
series-parallel first order reactions take place. The objective is to con-
trol the reactor temperature (77), concentration of reactant A (C'y),
and volume of the solution (V) by manipulating the temperature of
the jacket (7;) and the feed flow rate of the reactant B (() fccq). The
following equations describe the dynamics of the semi-batch reactor
(33, 134]:

AT Qfeea UA AH, By
el i —T)— T-T)— =1k
7 % (T'teea ) VpC’p( j) oC, 10eF C4Clp
AH
kaoeRT CBCC
pOp
dC ce _ By
Ca_ i, e 0aCp
d ee _ =1 _ B2
% = Q{/ d(CB,feed — CB) — ke mh CaCp — ke wt CpCc
d ee _ &1 _ L2
Co _ _Qreet | pige 7 CaCly — hage™ 7 CCle
dt 1%
dV
- Qfeed
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We consider T', C'y4, Cg, C, V as the state and assume that all states

are measurable. We used the following parameters in this system:

Tteea = 308 K, Cpg feed = 0.9 mol/L, UA/pC,, = 3.75 L/min

k1o = 5.0969 x 10'® L/mol - min, kg = 2.2391 x 10'" L/mol - min
Ei/R=12305K, E,/R=13450K, AH,/(pC,) = —28.5K - L/mol,
AH,/(pC,) = —20.5 K - L/mol

The linearised discrete time model is derived with sampling instant

of 1min at the initial point:
xo = [298.15;1;0;0; 50], wuy = [0;298.15]
The operational constraints are given by

OSCA§17 OSCB§17 Ogccfl
290 <T <310, 290 <7T; <310
50 <V <100, 0< Qfeeqd <0.3

We used the objective function in Eq. (2.32) with the control param-
eters of ), = diag{5,5000,1} and Qq, = diag{10,0.01}; and the
prediction horizon of N = 24 and number of blocks of N = 3: and
the time-invariant blocking structure s = {1,12,24}.

Figure 2.5 shows the trajectories of variables in the reference
tracking control of nominal MPC, and previous solution and inter-
polated solution based MBMPC. In the plot of controlled variable
T', the proposed interpolated solution based MBMPC shows better
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I \nter.+MB
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0 - 0
Avg. computation time Closed-loop cost

Figure 2.6: Comparison of the average computation time and closed-loop
cost of nominal MPC and MBMPC based on the interpolated solution, and
previous solution in reference tracking problem in the chemical reactor sys-
tem.
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tracking performance than that of the existing previous solution based
MBMPC, while the proposed scheme shows quite similar trajectory
in the plot of manipulated variable 7). On the other hand, in case of
C4 and V trajectory, the MBMPCs and nominal MPC do not show
much difference, because this variable has a relatively small effect
on the objective value. We can quantitatively confirm that the pro-
posed scheme efficiently improved the closed-loop cost compared to
the existing scheme with a slight additional computation time due
to the interpolation parameter in Figure 2.6. Additionally, we can
see the interpolation parameter A does not remain as 0 after a spe-
cific sampling instant unlike the result in Figure 2.3. This is because,
since no fixed stabilizing feedback law is available in this case ow-
ing to the continually changing reference trajectory as in the plot of
controlled variables, the interpolated solution based MBMPC utilises
the unconstrained optimal solution U}, instead of Urgr so that the

MBMPC cannot apply the concept of dual-mode control.
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Chapter 3

Move-blocked model predictive control with
time-varying blocking structure by semi-explicit

approach]

3.1 Introduction

On-line computational load is one of the most outstanding is-
sues in MPC which calculates the optimal solution for every sampling
instant. Therefore, various computational complexity reduction tech-
niques have been developed. Some techniques exploit the structure of
the optimal control problem such as hierarchical decomposition ap-
proach [9], warm-starting [10], and fast MPC [11]]. Other techniques
reduce the order of the problem by input parameterization [12] or
move blocking which fixes decision variables over arbitrary time in-
tervals, so-called blocks [14].

Since move blocking fixes the value of decision variables in each
block, the commonly used methods for ensuring recursive feasibil-
ity and closed-loop stability in MPC cannot work in move blocked

MPC due to the extra constraints imposed on the control input se-

This chapter is a slightly adapted version of Son, S. H., Oh, T. H., Kim, J. W., and Lee,
J. M. (2019). "Move blocked model predictive control with improved optimality using semi-
explicit approach for applying time-varying blocking structure”. Journal of Process Control,
under review.
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quence. Therefore, the offset blocking scheme which fixes the devia-
tion from the specific base sequence is widely used to guarantee the
recursive feasibility and closed-loop stability by utilizing the valuable
properties from the base sequence. In offset blocked MPC, the base
sequence and the blocking structure act as the initial point and the
search direction, respectively, in solution space. Therefore, the opti-
mality performance of move blocked MPC is considerably affected
by the optimality of the base sequence and the blocking structure.
There exist several sudies based on various kinds of base sequence
(14, 24]. However, since the optimal control problem of the move
blocked MPC is a mixed integer program (MIP) where blocking po-
sitions are integer variables, considering the optimality of blocking
structure is not a simple problem.

Some studies consider the optimality of the blocking structure
in various perspectives, but the scheme which derives a proper time-
varying blocking structure according to the current state on-line has
not been studied yet. Shekhar and Maciejowski (2012) [31] propose a
move blocking scheme which derives the time-varying optimal block-
ing structure by solving all the optimization problems for every ad-
missible blocking structure on-line using parallel computing. How-
ever, this scheme cannot reduce the actual on-line computational load
of the controller. Shekhar and Manzie (2015) [25] propose the move
blocking scheme which derives the time-invariant optimal blocking
structure in terms of maximizing the region of attractions not the op-
timality.

Since the on-line computation for the optimal blocking struc-
ture in MIP of move blocked MPC is prohibitive, we employ the
methodology of explicit MPC [35]], which moves the computational
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effort for on-line optimization to off-line by exploiting the encoded
state dependent information from parametric programming. Paramet-
ric programming studies the behavior of the optimizer and the value
function according to the parameter (or current state) and subdivide
the parameter space into several characteristic regions to depict the
corresponding performance as a function of the parameter off-line
[36].

In nominal MPC, the value function and optimizer function can
be explicitly derived as a function of the current state when the active
constraints at the optimum are known [37]. However, in case of move
blocked MPC, both the active constraints and the blocking position
set at the optimum are needed to specify the optimizer and value func-
tion. Therefore, when we consider all the combinations of admissible
blocking position sets and the active constraint sets, the number of
critical regions become exorbitant. Thus, we propose a semi-explicit
approach which combines the explicit approach with simplified on-
line optimization as in [38} 139, 40]. In the proposed semi-explicit
move blocked MPC, we solve the multiparametric program and gen-
erate critical regions only for the blocking position set off-line. Then,
we can explicitly obtain the proper time-varying blocking structure
according to the current parameter by searching the critical regions,
and derive the optimal blocked offset by on-line optimization of the
reduced optimal control problem.

The rest of the chapter is organized as follows. We provide the
standard MPC formulation with quadratic stage-wise cost in a dis-
crete linear time-invariant system in Section 3.2. In Section 3.3, we
introduce the move blocking scheme and implement it on MPC. In

Section 3.4, we propose the semi-explicit approach for move blocked
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MPC, and provide the formulation that generates the critical regions
off-line and search them on-line. We also show the closed-loop prop-
erty of the proposed scheme. Finally, Section 3.5 presents the numeri-
cal examples to verify the efficacy of the proposed semi-explicit move

blocked MPC scheme compared to existing methods.

3.2 Problem formulation

We consider the discrete linear time-invariant system in Eq. (3.1)

x(k+1) = Az(k) + Bu(k)
y(k) = Cx(k)

(3.1)

with constraints

ueld, re X (3.2)

where u(k) € R™, y(k) € R™, and x(k) € R" denote the in-
put, output, and state, respectively. ¢/ and X" are the input and state
constraint sets presented as compact polyhedral region containing the
origin in their interiors. We assume the pair (A, B) is stabilizable and
the pair (C, A) detectable.

To render the state of the system to the origin from a given ini-

tial state, the objective function is commonly described as a sum of
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quadratic stage costs as Eq. (3.3).

N—
J(@0,U) = llanllgy + ) (l2illg, + [l
0

1=

—_

gu) (3.3)

U:= [Uo;U1§"‘ ;UN—l]

where Q, € R™*™ @, € R"™*" and QY € R"™*"= denote

the positive definite weight matrix for input, state, and the terminal

state, respectively. [v1;vq; - - - ; v, represents the vertical concatena-
. T,T T
tion [v; , vy, v, ] .

We can reformulate J as a quadratic function of the input se-

quence by substituting Eq. (3.1) into Eq. (3.3):

J(xo,U)=U"HU +2U " f 4+ ¢ (3.4)
H:=0"Q.V+Q,
f=0"Q, oz

ci=2 (7Q, 4+ Q,)x

where

- B 0 0 0]

A
AB B 0 -+ 0

AQ
o:=| |, V:=| A’B AB B -0
r : P :
L AN—IB AN_2B AN_SB~~B

QX = diag{va e anvQ;\f}
QU = dzag{@ua e >Qu}
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diag{Q1,Q2, - ,Q,} is a matrix with the diagonal form having
Q1,Q2, -+ , @, as main diagonal blocks.

Then, model predictive controller solves the finite horizon op-
timal control problem P1 for each sampling instant and apply the

solution to the system in a receding horizon manner.

Pl: J'(z) = mUin J(z,U)

st. Fe+GU <h

where F' € R**" G € R™*Nnw and b € R™ are suitable matrices
derived considering the constraint sets in Eq. (3.2) and the terminal
state constraint set for the purpose of ensuring the recursive feasibility

which is commonly chosen as a control invariant (CI) set [26].

3.3 Move blocked MPC

3.3.1 Move blocking scheme

Move blocking is a kind of input parameterization scheme which
mitigates the computational complexity associated with optimization
by fixing the value of decision variables over arbitrary time intervals,
so-called blocks as illustrated in Figure 3.1. The blocking structure

is determined by the blocking positions in Definition 1.

Definition 1. The ascending set s := {s1,--- , Sy} is a blocking po-
sition set where s; € Ncy fori =1, --- ., N denotes each blocking
position where the block begins, and N denotes the number of blocks

(N< 1s the set of natural numbers less than or equal to V). In addi-
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Basic form

U [Uz (U3 | Ug | Us [ Ug [ U7 [ Ug | Ug | Ugp
+
Uy Uy U3
Velocity form
ouq [duy |dus|duy|[dus|dug|du, |6ug|dugduq g
+
da; 0 0|65, 0 0O O 0 (553 O

Figure 3.1: A schematic illustration of move blocking when N = 10, N =

3,and s = {1,4,9}.
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tion, let S represent the collection of admissible s.

Figure 3.1 represents the input sequence in velocity form where
ou; := u; — u;_1. The blocking matrix in velocity form is derived

from s as in Definition 2.

Definition 2. P, € BY*N denotes the blocking matrix where BY*N
is an N x N matrix whose elements are restricted to the binary val-
ues 0 or 1. P, takes a lower triangular form and each column of P,
contains exactly one non-zero element. The position of non-zero el-
ements in P, is determined by the elements of blocking position set
s:

s = [Psy,  , Ps_] (3.5)

Y Sﬁ

P, :=[05_1;1;0y_,] for i=1--- N

|

where 0,,, represents a vector of zeros with length m.

The blocking matrix in velocity form is simpler than that of the

basic form, and allows for a straightforward formulation.

Remark 1. When move blocking scheme is expressed in velocity
form, du; is non-zero only when ¢ € s, and du; at remaining parts are
fixed as 0. From this, we can see the selection of blocking positions
is identical to the selection of variables having degrees of freedom in

the prediction horizon in velocity form.

Now, we can describe the parameterized input variation sequence
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using the reduced variables and the blocking matrix in velocity form:

AU = (Ps;® I,,,)AU (3.6)
where ® denotes the Kronecker product, AU := [duq; dug; - - - ; dun]
denotes the sequence of input variation, and AU := [0%y; 6Ty; - - - ; 0]

denotes the reduced sequence of input variation. This is the basic type
of move blocking scheme called input blocking which parameterizes
the input sequence by directly fixing the actual input. Input blocking
scheme is simple but has limitations in terms of closed-loop perfor-
mance due to the inflexibility from fixing the actual input [[14]].
Offset blocking fixes the offset from the base sequence not the

actual input as in the input blocking:

AO = (P, ® I,,)AO

AU = AU, + (P, ® I,,)A©

3.7

where AU, denotes the variation of base sequence, A© := [§0;; 00s;
-+ : 60y] denotes the offset variation sequence, and A© := [§6; 605;
-+ - ; 00] denotes the reduced offset variation sequence. Offset block-
ing scheme can deal with the limitations of input blocking scheme by

exploiting the valuable properties from base sequences.

3.3.2 Implementation of move blocking

In this study, we proceed the formulation based on the offset
blocking scheme in velocity form using the shifted previous solu-

tion as the base sequence with fixing the last blocking position as /V,
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s3 = IV, to ensure the recursive feasibility [24), 25]]:

U=U+C,P,AO (3.8)
U(k) == [u’{\ml; T ;U*N—1|k71; 0,,]
11---0
Cl = . . . ® [nu
P,.=P,® I,

where U denotes the shifted previous solution. Then, the objective

function can be rewritten as a quadratic function of A© by substitut-

ing Eq. (3.8) into Eq. (3.4) as

J(z,U,5,AB) = A® HAB +2A0 ' +¢ (3.9)
H:=P'C/HC,P,

F=PlC{(HU + f)

c=U"HU+20"f +c.

Proposition 1. H is positive definite Vs € S.

Proof) P] X P, generates an N X N matrix consisting of X € RV*V
elements only corresponding to each blocking position in s. From
this, we can see P,'C| HC, P, is a principal submatrix of C|' HC}.
Thus, since C|! HC) is positive definite, P,'C| HC, P, is also posi-
tive definite Vs € S. []
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When move blocking scheme is implemented on MPC, the or-
der of existing variables is reduced by parameterization, the blocking
positions are added as new variables, and additional constraints from

move blocking are imposed on the optimal control problem as in P2.

P2: J*(x2,0) = min  \g J(7, U,s,AO)
st. Fr+GAO <h
S:{Sl,"' ,Sﬁ}, SN:N

s; € Neyfori=1,--- ,N—1

As we can see above, P2 is an MIP where blocking positions
s; are integer variables. Since the computational complexity to derive
the optimal solution of MIP is too high, time-invariant blocking struc-
tures, such as control horizon [41} 42] or blocking structure which
maximizes the volume of the approximate region of attraction [23]],
are commonly used. The computation of the time-varying optimal
blocking structure by enumeration with the assumption of a parallel
controller is proposed in [31} 43]]. However, since this scheme cannot
reduce the actual on-line computation burden, we do not consider it

in this study.

3.4 Semi-explicit approach for move blocked MPC

Since the selection of blocking structure has a significant impact
on optimality as described in Remark 1, the optimality performance
of the controller can be efficiently improved when we can select a

proper blocking structure given a current state on-line. However, the

53 :



on-line optimization of the MIP in P2 is not practical. Thus, we pro-
pose to apply the explicit approach using multiparametric program-
ming to move the on-line computational load to off-line.

In nominal MPC, the optimization problem is usually convex
where the optimizer and the value function can be explicitly derived
as functions of the current state by utilizing Karush-Kuhn-Tucker
(KKT) conditions when the active constraints at the optimum are
known. Thus, critical region in multiparametric programming of nom-
inal MPC is usually derived for each active constraint set as in Defi-

nition 3.

Definition 3. Let U*(x) be the optimizer for z € Aj and [. :=
{1,---,n.} be the set of constraint indices in P1. Then, the critical
region related to a set of active constraints with the index set A C I,

is defined as

where F;, G; and h; denote the i*" elements of F, G, and h in P1,

respectively[36].

In case of move blocked MPC, both the active constraints and
the blocking position set at the optimum are needed to specify the
optimizer and value function. Therefore, when we consider all the
combinations of admissible blocking position sets and the active con-
straint sets among the non-redundant constraints depending on each

blocking position set, the number of critical regions in the worst case
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can be n, 4 in Eq. (3.11).

o=y 20 (3.11)
=1

N-—-1
ng = | __
N —1

where n, denotes the number of admissible blocking position sets
with sy = N, and ng; denotes the number of the non-redundant
constraints when the blocking structure with the i** admissible block-
ing position set is implemented.

To move all the on-line computational load for solving P2 to off-
line, we have to investigate n; 4 combinations in Eq. (3.11). However,
in this case, the off-line computational cost for generating the criti-
cal regions is significantly large, and the on-line computational cost
for finding the critical region of the current parameter belongs to the
parameter space would also be large. Therefore, this multiparamatric
programming in fully explicit manner is not practical.

To address this limitation of move blocked MPC, we propose to
proceed multiparametric programming in semi-explicit manner which
generates critical regions only for the blocking position sets off-line
not for the blocked offset variation sequence. Then, we can explicitly
derive the proper time-varying blocking position set s* for a current
parameter with critical region search and solve the reduced problem

on-line only for A® in P3 with 5*.

P3: J*(2,U,5) = min ,g J(z,U,5*,AO)
st. Fr+GAO<h
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Since the MIP in P2 is converted to a convex optimization problem
in P3 by deriving the proper integer variables (i.e., blocking position
set) explicitly, the proposed scheme considerably reduces the on-line
computational complexity and makes it possible to exploit the proper

time-varying blocking structure for the current parameter on-line.

3.4.1 Off-line generation of critical region

In P1 of nominal MPC, the optimal solution depends on the cur-
rent state = only, therefore, the parameter vector of multiparametric
programming is identical to . In P2 of move blocked MPC, since the
optimal solution depends on x and U, the parameter vector should be
dependent on (z, U ) pair. Then, the critical regions are generated in
the space of the parameter vector.

Now, based on Definition 3, we can simply think of the critical
regions for each admissible s as the sets of parameters for which the
same s is optimal. To generate these critical regions, we should be
able to obtain the optimal A@: from given s. However, we cannot
obtain A@: only from the blocking structure. Therefore, we utilize
the unconstrained optimal solution A@): which can be easily derived

from the blocking structure instead of the exact solution A@::

1

AO*(z,U)=—H . (3.12)

This allows for a straightforward formulation of the unconstrained

value function .J*(z, U) given s by substituting Eq. (3.12) into Eq.
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(3.9):

T, 0)=—F H 'F+z (3.13)

= —(HU + f)TC,H,C] (HU + f) + ¢
H,:= P,(P/C/HC,P,)~'P].
Now, we define the parameter vector g dependent on (x, U ) pair

as
g(z,U) = C[(HU + f). (3.14)

Then, we can reformulate j;“ with g by substituting Eq. (3.14) into
Eq. (3.13):

Jig) = —g Hg +¢. (3.15)

j;(g) implies the unconstrained value function for the current
parameter g given the blocking position set s. Let Sy represent the
collection of admissible s with sy = N. Then, we can derive the min-
imal unconstrained value function among j;‘( g) for each admissible
s € Sy and the minimizing blocking position set s* for the current

parameter g:
§(g) = argmin .5 J7(g). (3.16)
Let Z, := {1,--- ,n,} denote the set of indices for each s € Sy

and s(7) be the blocking position set corresponding to the index i €

Z,. Then, we define the critical regions as the sets of parameters g for
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which the same blocking position set s achieves the minimal j:(g)

as in Definition 4.

Definition 4. Consider an admissible blocking position set s(i) €

Sy, i@ € Z. The critical region associated with s(7) is defined as

CRsq) = {9 |5"(9) = s(i)}. (3.17)

Let i*(g) € Z, denote the corresponding index of s*(g), i.e.,
s(i*(g)) = $*(g). Then, the inequality in Eq. (3.18) holds based on
the definition of j/;‘(g) and 5*(g) in Egs. (3.15) and (3.16).

9" (Hir(gp) — Ho))g >0 Vj € L\ " (3.18)

where Hy(;) := Ps(i)(PST(i)C’lTHClPS(Z-))*lPJ(i). Then, we can derive

C Ry as Eq. (3.19) with Eq. (3.18) according to Definition 4.
CRyiy=1{9|9 Hyijyg >0 VjeI,\i} (3.19)

where Hy(; ;) := Hy) — Hy(j)-

Proposition 2. H,; is positive semi-definite Vi € Z,.

Proof) From Eq. (3.5), Ps(i)YPST(i) becomes a sparse matrix where the

X elements are located on each blocking position in s(i). Thus, the

principle minors of Py(;) (P, C{ HC1 Py;)) ™' Py, are identical to the
principle minors of (P, Cy HC1 Py;))~" or zero. Since P, C}' HC' Py
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is positive definite from Proposition 1, its inverse (P,;, C HC1 Py(;)) ™!
is also positive definite Vi € Z,. Therefore, we can see Pi;) (PST(Z‘)C'lT H
ClPs(i))_lPST(i) is positive semi-definite Vi € Z;. O

Proposition 3. H,; ;) is indefinite Vi, j € Z,,1 # j.

Proof) The position of nonzero diagonal components of H,; and
H ;) are identical to the elements of s(7) and s(j), respectively. There-
fore, there is at least one nonzero diagonal component in each of
H;y and H,(j) whose positions do not overlap with each other when
i # j. We can see these nonzero diagonal components are positive
from Proposition 2. Then, the diagonal components of H;) — Hy(j
corresponding to the nonoverlapped components of H,; are positive
and those of H,(;) are negative. Thus, we can see H,(; ;) is indefinite
Vi, ] € I, 1 # 7. [

From Proposition 3, we can see H(; ;) is not positive definite
and the inequality ¢" Hy(; ;)¢ > 0 does not hold Vg € R"™ . There-
fore, the critical region defined in Definition 4 is always a partition
of parameter space of g, and we can subdivide the parameter space
into n, number of critical regions for each admissible blocking posi-
tion set s € Sy off-line. Then, we can obtain s* for current parameter
g(k) on-line only by determining which critical region the parameter

belongs to.
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3.4.2 On-line MPC scheme with critical region search

In this section, we present the on-line move blocked MPC scheme
with the semi-explicit approach. As the receding horizon control pro-
ceeds, the critical region where the current parameter belongs to chan-
ges according to the change of x and U. Therefore, we have to track
the transition of critical region in the parameter space continually.
This study utilizes an efficient line-search based point location tech-
nique presented in [44]], which tracks the boundaries of critical re-
gions where the parameter point crosses on the straight line from the
previous parameter g(k — 1) to the current parameter g(k), to track
the transition of critical region.

Based on Eq. (3.19), the boundary between the critical regions
CRy;) and C Ry(;) can be described as

By ={9 19" Hyizg = 0}. (3.20)

Each critical region shares ns; — 1 number of boundaries with other
critical regions for each admissible (i, j) pair.

Now, let i(k) € Z, denote the index of critical region where the
current parameter g(k) belongs to. Then, we can derive i(k) by track-
ing the transition of critical region from i(k — 1) through successive
iteration of line-search as described in Algorithm 3.1. /; ; denotes the
scaled distance from the parameter g, to the boundary B, ;) along
the Ag direction derived from the quadratic formula.

As shown in Proposition 3, H; ;) is a sparse matrix in which
only the elements at positions corresponding to the components of
s(7) and s(j) are nonzero. Therefore, only the components of param-

eter g € B,(; ;) corresponding to s(i) U s(j) are constrained whereas

60 :



Algorithm 3.1. Tracking of critical region transition
Initialize go = g(k — 1), gy = g(k), and i = i(k — 1)
loop
Set Ag =gr — go
Perform the line search: £(j*) = minjez \; £i; >0
—g0 Hi jAg + (Ag" H; j(g09] — 9790 ) Hijgo)"/?

(gi,j = AgTHMAg )
if / < 1 then

Update gg < go + ¢Ag, i+ j*
else
Set i(k) = i and apply i(k) to the controller
Exit the loop
end if
end loop

Table 3.1: Tracking of critical region transition

the remaining components have degrees of freedom. For example,
when N = 10, s(i) = {1,2,3,10}, and s(j) = {1,4,5, 10}, then the
6,7, 8, and 9" components of g have degrees of freedom. Therefore,
the more number of s(j) elements are identical to the elements of
s(i), the more sparse the H,( ;) is, g € B, ;) has more degrees of
freedom, and B,(; j) occupies more volume among the boundary of
CRy)-

In this point of view, the most dominant boundaries for C'R,;

are B,(; j) where the components of s(i) and s(j) are identical ex-

27‘7)
cept one element. Then, the set of indices j that form the dominant

boundaries for C'R,(;) can be defined as
it ={j € L\ i | n(s(i) Ns(j)) = N — 1}, (3.21)
The number of components of Ig&T with fixing s(j)x = NN to ensure
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the recursive feasibility is

n%m = (N — N)(N —1). (3.22)

S

dom
s

Since the number of dominant boundaries n5°™ is much smaller than
the number of overall boundaries n, — 1 of C'R,;), we can efficiently
reduce the computation time for line search in Algorithm 3.1 by con-
sidering the dominant boundaries only, i.e. performing the line search
for j € ZJo" instead of j € Z; \ i.

By tracking the critical region where the current parameter be-
longs to with Algorithm 3.1, we obtain the proper blocking position
set 3*. Then, we obtain optimal blocked offset A©" by solving the
reduced problem P3 with s*. The outline of move blocked MPC with

semi-explicit approach is summarized in Algorithm 3.2.

3.4.3 Property of semi-explicit move blocked MPC

Since the shifted previous solution U (k) := [Wlje1s " S UN s
0,,,] is guaranteed to be feasible until the k¥ + N — 1%* sampling in-
stant, the offset blocking with U can utilize this feasible property.
Thus, the proposed semi-explicit move blocked MPC based on this
offset blocking scheme can guarantee the recursive feasibility with
any admissible blocking structure under the condition of sy = N
and X = C,,, where C,, is the maximal controlled invariant set de-
fined below.

Definition 5. The maximal controlled invariant (MCI) set C, is a CI
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Algorithm 3.2. Semi-explicit move blocked MPC
Initialize z(0) = 0, U(0) = Uy, g(0) = go. and i(0) = io
Set 5* = 5(i(0)) and derive A®" by solving P3
Compute U* = U(0) + C1Pyi(0) A8
Apply u to the system
Update U(1) = [u; -+ ;uly_1;0n,]
Wait for the next sampling instant 1
fork=1,--- ,Kdo
Measure(or estimate) z:(k) at sampling instant k
Compute g(k) = C] (HU (k) + f)
if Ag(k) < g4 then
Seti(k) =i(k—1)
else
Obtain 4(k) through Algorithm 3.1 with j € Ig(ol.’&fl))
end if
Set 5* = s(i(k)) and derive A by solving P3
Compute U* = U (k) + ClPS(i(k))A@*
Apply ug to the system
Update U (k + 1) = [u}; - ;uly_1;0n,]
Wait for the next sampling instant k + 1
end for

Table 3.2: Semi-explicit move blocked MPC

set which contains all other CI sets and can also be defined as

Coo = {xp € X | I{w; € R™}°, such that u; € U,
Tiv1 = A[Ez + Bu; € X Vi € ZZO} (3.23)

where Z~ is the set of non-negative integers [29].

The recursive feasibility of semi-explicit move blocked MPC is

described below.
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Theorem 1. Consider the optimal control problem P3. If s* € Sy

and Xr = C., then a feasible solution is always guaranteed to exist.

Proof) We can choose the reduced offset variation sequence as A© =
[0;---;0;v], v € U. If sy = N, then the entire input sequence can

always be given by

U(k) == [ujjp_15 - 5 uN_1jp—1} V] (3.24)

which results in the prediction of future state sequence as

X(k) = [Tygs - 5 TN 1k Tk (3.25)

Since [u’{| PIFTERE ;u*N71| ._1) is the shifted previous input solu-
tion, Ty _1)x € Xp is guaranteed. Moreover, there always exists v, €
U which satisfies the terminal constraint Ty, = AZn_1, + Byy €
Xr owing to the invariance of Xp. Therefore, we can ensure that a

feasible solution of P3 is always guaranteed to exist. ]

From Theorem 1, feasibility of the initial values z(0) and U (0)
guarantees the recursive feasibility of the proposed semi-explicit move
blocked MPC.

The convergence of semi-explicit move blocked MPC can be

proved in a similar manner shown in [33]] with Theorem 1.
Theorem 2. Consider the closed-loop system under receding horizon
control with input update by the semi-explicit move blocked MPC in

Algorithm 3.2. The system will converge to the origin as £k — o0
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under the assumption given by

min ¢, (z,u) <0, Vo€ Cyx (3.26)

uel,xt€Coo

Gy (T, u) = d(x,u) + QN2 — 2T QNx

¢($, u) = xTsz + uTQuU
where T = Az + Bu.

Proof) As in Theorem 1, we can always obtain a feasible input se-
quence Uin Eq. (3.24) with suitable v}, € Y. Then, we can derive the

expected objective value when Uis implemented:

N—

N

J(@(k), UK) = > ¢(Fifk fs151) + S@En—1jes Vi) + Tap@h Tnpi

=0

(3.27)

where Zo;, = z(k).
Since the optimal input sequence and resulting state sequence at
the previous sampling instant are identical to U and X except the first

and last components, we can reformulate Eq. (3.27) as

J(w(k), UK)) = Ji_y = ¢(ax-1,un1) + ban (Eno i) (3.28)
where J* = J*(x(i), (A](z),g* (7)) denotes the optimal cost of the

problem P3 at the sampling instant ;.

Since U is just a feasible solution sequence of P3 with A© =
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[0; - - - ; 0; v], the following inequality holds:
Jr < J(x(k), U(k)). (3.29)
Substituting Eq. (3.28) into Eq. (3.29) gives
Jp < i — O @1, uk—1) + Oan (TNt Vi) (3.30)
By the assumption in Eq. (3.26), Eq. (3.30) can be reformulated as

o = Jiot < —(@h-1, up—1). (3.31)

Since J* > 0, the sequence of J* strictly decreases over time. Now,

summing both sides of Eq. (3.31) over all £ > 1 gives
—Jy < Z¢ (Tr—1, ug-1) (3.32)
Since JZ > 0, Eq. (3.32) can be rearranged as
i¢ (Tr—1, up—1) < Jg. (3.33)
k=1

From the non-negativity of ¢(xy_1,u,_1) for all & > 1, Eq. (3.33)

implies
lim ¢(z, ug) = 0. (3.34)
k—o00

Since ¢(z,u) > 0 for all z # 0,,, and u # 0,,,, we can see xj and

uy converge to the origin as & — oo from Eq. (3.34), and thus J;
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converges to zero. O

The stability of semi-explicit move blocked MPC can be proved
by establishing that J* is a Lyapunov function. Since the positivity
and decreasing property are followed from the definition of J* and
Eq. (3.31), respectively, we only need to prove the continuity of J* at

the origin.

Lemma 1. Consider the optimal control problem P3. If s* € §,, and
Xr =Cos,then Xy = X = --- = Xy_1 = Cs, Where A is the set of

states at time ¢ for which P3 is feasible:

X; = {x € X | Ju € U such that Az + Bu € X1},
fort=0,---,N—1
Xy = Xp.

Proof) The problem is always feasible by Theorem 1. When X,
is control invariant, by the definition of CI set, X;,; C AX;. Then,
since there always exists © € U such that Az + Bu € X, for all
r € X;, A, is also a CI set. Therefore, X is control invariant for all
1=1,--- ,N—1land &y O &} D --- O X holds. From this and the
definition of MCI set C,, wecansee Xy = X} = -+ = Ay_; = Co
when Xp = Co. [l

Lemma 2. Consider the offset blocking controller with the fixed block-

ing position set s, = {N} yielding the same form of solution and

resulting state sequence in Egs. (3.24) and (3.25). If X1 = C,, then
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Eq. (3.36) holds:

vp = argmin ¢, (Tn_1jk, Vk)- (3.35)
VkEZ/{,ENMEXT

Proof) Let J:(z, U, s,) denote the optimal cost of the controller with
s,. Then, we can describe J; ;. as Eq. (3.37) in a similar manner with
deriving Eq. (3.28):

vk = Sy = O(@h1; Uho1) + Oan (Tn-1k, V) (3.36)

Since Zy_1; € Cx, we can reformulate Eq. (3.37) as

:,k = :k—l - ¢('Tk—lauk—l) + H~11n ¢AN (%N,Hk, I/k).
7 vEEUT N | EXT

(3.37)

From this, we can see Eq. (3.36) holds. Il

Theorem 3. Consider the optimal cost J* of the optimal control prob-
lem P3 with s* € Sy and X = Cy. J* is continuous at the origin

under the assumption of Eq. (3.26).

Proof) Consider the controller in Lemma 2. Since the controller only
updates the last component of U , the entire input sequence and result-

ing state sequence for £ > N — 1 can be written as

U(k) = [V nsri e Vi1 V7] (3.38)

X*(k) = [@Np-nt1i TN =13 Til- (3.39)
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Then, we can describe /7, as the sum of stage costs using U *(k) and
X*(k) in Egs. (3.39) and (3.40):

To = T QY T + Z (@Nji-1, V) (3.40)
i=k—N+1

where %}‘VVC_N = xj. Substituting ¢, in Eq. (3.26) into Eq. (3.41)
yields

k
L= QYo+ D day @) (3.41)

i=k—N+1

From Lemma 2, Eq. (3.42) can be rewritten as

k= m,:Qika + Z min__ ¢,y (i}ﬁ\fﬁ—h vi). (3.42)

Vi, EU,T N, EX
imk— N1 NS

Since s, € Sy and X7 = C., we can see a?}kwfl € Xr for all
1 =k—N+1,--- .,k from Lemma 1. Therefore, we can have the

inequality in Eq. (3.44) by applying the assumption in Eq. (3.26):
ok S Quae Yy, € Xp. (3.43)

Since s, C s* when s* € Sy, move blocked MPC with s* al-
ways provides a superior solution to that with s,. Therefore, it can be

readily shown that

0< J*x,U,5) < J:(x,U, s,). (3.44)
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Applying the inequality in Eq. (3.44) to Eq. (3.45) yields
0< Jz,U,s") <a2'QNa Vae Xy (3.45)

Since x" QY x is continuous at the origin, J*(x, U, s*) must be con-

tinuous at the origin with suitable U. [

From Theorem 3, we can conclude that semi-explicit move bloc-
ked MPC can steer 2 € Xy to a level set of J*(z, U, s*) contained in
X1 where the convergence to and stability of the origin is guaranteed

under the conditions of s* € Sy and X = C., with suitable U.

3.5 Numerical examples

In this section, we demonstrate the efficacy of the semi-explicit
move blocked MPC through the examples comparing the closed-loop
trajectories and on-line computation time of MPC with the time-
varying blocking structure from the proposed semi-explicit approach
and an arbitrary time-invariant blocking structure.

Simulations are performed using MATLAB® R2019a with Intel®
Core™ i7-6700 CPU @ 3.40GHz, 32 GB RAM.
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3.5.1 Example 1 (Regulation problem)

Consider the ball-plate system in [[14]]:

01 0 0 0
0 0 =700 0 0

i(t) = (t) + u(t).
00 0 1 0
00 0 3318 3.7921

x = [ly, vy, P, vy] is the state vector where [, and v, denote the po-
sition and velocity of the ball, and ¢ and v4 denote the angle and
angular velocity of the plate, respectively. The input u is the voltage
to the motor of the plate that makes the plate rotate. The operational

constraints are given by

—20<1, <20, —30 <1, <30, —10 < ¢ < 10

—2< v, <2, —10 < u < 10.

The discrete time model with the sampling time of 0.03s is de-
rived using zero-order hold. The prediction horizon and the number
of blocks are N = 15 and N = 4, and the blocking position set s =
{1,6,11,15} is used in the time-invariant blocking structure case.
The initial state and base sequence are z(0) = [5;7;0.1;0.77] and
U(0) = 0y5. The control parameters are (), = diag{6,0.1,500,100},
Q) = Py, and , = 1 where P is the solution of the discrete Alge-
braic Riccatie Equation. The terminal MCI set was calculated using
the MPT?3 toolbox [32].

Figure 3.2 shows the results of MPC with semi-explicit approach,

time-invariant blocking structure with s = {1,6, 11,15}, and non-
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Blocking position

0 10 20 30 40 50 60 70 80
sampling instant

Figure 3.3: Time-varying blocking positions from the move blocked MPC
with semi-explicit approach in the ball-plate system.
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blocking case in a regulation problem at the ball-plate system. We
can see the move blocked MPC with semi-explicit approach shows
much better optimality performance than the case with time-invariant
blocking structure. Figure 3.3 illustrates the applied time-varying
blocking positions for each sampling instant in move blocked MPC
with semi-explicit approach. s, is fixed as 15 to ensure the recursive
feasibility.

Since obtaining the solution by offset blocked MPC, which pa-
rameterizes the input sequence in terms of deviations from the shifted
previous input solution as the base sequence, is identical with up-
dating the retained previous input solution with a reduced number
of decision variables given by the blocking structure, the selection
of blocking structure has a significant influence on the optimality
performance of the controller. This is why the move blocked MPC
with the proposed semi-explicit approach which selects the appro-
priate blocking structure according to the current state shows supe-
rior performance than that with an arbitrary time-invariant blocking
structure.

In addition, we can see the proposed move blocked MPC with
semi-explicit approach takes slightly more amount of on-line com-
putation time than the conventional time-invariant blocking structure
case. Since both semi-explicit approach and time-invariant blocking
structure case solve the optimal control problem with the same num-
ber of variables and structure, this difference in computational costs
mainly comes from the critical region search in Algorithm 3.1. In
conclusion, the proposed semi-explicit approach effectively improves
the optimality performance of move blocked MPC by providing a

proper blocking position set for the parameter change with compar-
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atively negligible additional computation cost compared to the con-
ventional time-invariant blocking structure case.

Since the initial condition of the system is commonly given be-
fore starting the control system, we can derive the optimal solution
at the initial point U*(0) over the entire optimization window before
the control starts, and then use U*(0) as the initial base sequence,
U(0) = U*(0) and terminal cost as Q) = 3Q).. At later time steps,
move blocking scheme is applied. By this pre-computation technique,
we can provide the fully matured initial base sequence to the con-
troller instead of the simple zero vector Oy,

Figure 3.4 shows the results of MPC with semi-explicit approach,
time-invariant blocking structure with s = {1,6, 11,15}, and non-
blocking case in regulation problem in the ball-plate system with the
initial base sequence as U*(0). We can see the performance of move
blocked MPC with semi-explicit approach and time-invariant block-
ing structure is improved compared to the results in Figure 3.2. This
is because the optimality of the entire input sequence and the effi-
ciency of input sequence update by offset blocking are improved by
the superior initial base sequence.

Particularly, the move blocked MPC with semi-explicit approach
shows similar trajectories to the nominal non-blocking case. From
this, we can see the move blocking with only four blocks is sufficient
to appropriately update the input sequence with the horizon of 15
in this system when the proper initial base sequence and the proper
blocking structure according to the parameter change are provided
through the pre-computation and the semi-explicit approach, respec-

tively.
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3.5.2 Example 2 (Tracking problem)

The objective function of the tracking problem is commonly de-
scribed as a sum of quadratic errors of the predicted output from the
reference and input variation:

N
J(-To, U) = Z (Tsz‘ - yi)TQy(TSi - yz) + 6UIQdu6ui (3.46)

i=1
where rs; € R™ and du; denote the reference signal and the input
variation at sampling instant ¢, respectively.

The objective function in Eq. (3.47) can be rewritten as a quadratic

function of the input sequence U:

J(z,U)=U"H,U+2U" f, +¢c, (3.47)
Hy:=V,Q,V,+C;Q,Co

fy =0, Q, (24 — Rs) = Cy Q19

¢y = (Rs — ®,2) " Q, (Rs — ®,7) + 1y Qg

D, = (Iy2C)0, VU, :=(IyxC)¥

1 00--00
~110---00
Coi=|0-11---00]|®I,,

0 00---—11

Rs = [Tsl;rsg; T ;TSN]

ug = [u;0;--- ;0]

where ©~ denotes the implemented input at the previous sampling

instant.
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Then, we can construct the semi-explicit move blocked MPC for
the tracking problem using the same formulation in Section 3.4 by
replacing H and f with H, and f,,.

We consider a chemical semi-batch reactor where exothermic

series-parallel first order reactions take place:

A+B4 C, 71 =kCsCp
B—i-OE)D, TQZk’QCBCC.

The control objective is to track the reference trajectories of the re-
actor temperature (7") and the concentration of reactant A (C'4) while
suppressing the concentration of byproduct D (Cp) by directly ma-
nipulating the temperature of the jacket (7}) and the feed flow rate of
the reactant B (Q) fecq). The following equations describe the dynam-
ics of the reactor [33, 45]]:

AT Qfeeq UA Al 5
ar_ Tteed — T) — T-Tj) — —Fk CaC
i~y e T) VpCp( 2 pC, 00 AT
AH 2
— 2]{72067%0300
pCp
dC ee %
th = —Q(/ dCA — 1{3106 RT CACB
dC ee — 5= " RT
dtB - Q(/ d(CB,feed — Cp) — ke h CaCp — ke it CpCo
d
ZG — _Q(;ed Ce + ke 7 CaClp — kage™ 7t CpCl
ac ce -2
dtD = —Q{/ dCD + koge R%OBCC
av
E - Qfeed-

We consider T', C4, Cg, Cc, Cp, V as the state and assume that all

78 :



the states are measurable. We used the following parameters in this

system:

Tfeeqd = 308 K, Cp feea = 0.9 mol/L

UA/pC, = 3.75 L/min, kjs = 5.0969 x 10'° L/mol - min,
kg = 2.2391 x 10'" L/mol - min, FE;/R = 12305 K,
Ey/R=13450 K, AH,/(pC,) = —28.5 K - L/mol,
AH,/(pC,) = —20.5 K - L/mol.

The linearized model is derived at the initial point:
xo = [298.15;1;0;0;0;50], wug = [0;298.15].

We obtained the linear discrete time model with sampling instant of

1min. The operational constraints are given by

0<Cp<01, 0<Cs<1, 0<Cp<0.01
203 <T <313, 200 <T; <315, 0<V <50, 0< Qreea <08,

The prediction horizon and the number of blocks were N = 24
and N = 3, and the blocking position set s = {1, 12,24} was used in
the time-invariant blocking structure case. The initial base sequence
was set as U (0) = U*(0) from the pre-computation. The control pa-
rameters were (), = diag{10, 700, 1} and Q4, = diag{1,0.01}. The
terminal MCI set was calculated using the MPT3 toolbox [32].

Figure 3.5 shows the results of MPC with the semi-explicit ap-
proach, time-invariant blocking structure with s = {1,12,24}, and

non-blocking case in a tracking problem. Figure 3.6 illustrates the
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Figure 3.6: Time-varying blocking positions from the move blocked MPC
with semi-explicit approach in the chemical semi-batch system.
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applied time-varying blocking positions for each sampling instant in
move blocked MPC with semi-explicit approach. sz is fixed as 24 to
ensure the recursive feasibility.

The closed-loop objective values of both move blocking results
with semi-explicit approach and time-invariant blocking structure sh-
ow considerable disparity from that of the nominal non-blocking case.
From this, we can see the move blocking with only three blocks is in-
sufficient to appropriately update the input sequence with the horizon
of 24 in this system, despite we implemented a fully matured initial
base sequence on the controller by pre-computation technique. This is
because the mismatch between the nonlinear dynamics of the system
and the linearized model implemented on MPC leads to prediction
error. Although the state of the controller is continually updated with
the measured plant state, the degradation in optimality of the base
sequence U is inevitable.

Nonetheless, we can see the move blocked MPC with semi-explicit
approach tracks the reference trajectory well while showing much
better optimality performance than the case with time-invariant block-
ing structure with a slight increase in the on-line computation time.
From this, we confirm that the proposed semi-explicit approach effec-
tively improves the optimality performance of move blocked MPC in

reference tracking problem.

82 :



Chapter 4

Model-plant mismatch learning offset-free

model predictive control

4.1 Introduction

There are two main types of optimal control methods. Model
based approach predicts the propagation of physical system with kno-
wn model. Model predictive control (MPC) which derives finite hori-
zon optimal solution in receding horizon manner is one of the most
representative model-based approach. MPC effectively derives a re-
liable solution based on the model. Therefore, the closed-loop per-
formance of MPC is directly related to the accuracy of model. Since
model-plant mismatch and unmeasured disturbance always exist in
real systems, MPC usually cannot achieve optimal performance. On
the other hand, data-based machine learning (ML) approach predicts
the system behavior such as dynamics and reward from the real plant
data (e.g. reinforcement learning (RL) directly derives optimal con-
trol policy from data). Thus, ML does not require any given model
or prior assumption about the system, and can implicitly manage un-
certainties. However, this model-free pure learning approach without
any prior knowledge of the system is often restricted because it re-

quires a large amount of data and exploratory policies can damage
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the system.

Since model and data based approaches are complementary to
each other, combination of MPC and ML is an emerging area of re-
search. [46, 47] derive a reliable policy by approximating a nominal
MPC policy through supervised learning method such as guided pol-
icy search. [48] approximate a policy of the robust MPC by learning
a neural network from robust MPC sample. [49, |50] improve MPC
performance by continuously updating the dynamic model approxi-
mated with multi-layer neural network from sampled data, and [S51]
improve MPC performance with dynamic model updated by sparse
identification of nonlinear dynamics (SINDY). [52] learns both ap-
proximate MPC policy and system dynamics with recurrent neural
network and multi-layer perceptron, respectively. [S3] learns a direct
compensatory control action for MPC which improves the closed-
loop performance of the combined controller using RL with the same
performance measure of MPC.

These existing studies consider the combination of nominal MPC
with ML method. However, researches for model-plant mismatch com-
pensation have already been studied actively in MPC field to over-
come the limitation of model based approach. Offset-free MPC achieves
offset-free tracking in the presence of model-plant mismatch or un-
measured disturbance in two ways. One method exploited integration
of tracking error in the a compensator block as in [54, 55, 156, I57].
However, since the integrated error is independent to controller, this
method may cause windup problem. Therefore, disturbance estimator
approach discussed in [58}, 159, 160, 61, 162, 163]] is the most standardly
used method to accomplish offset-free tracking in MPC. This ap-

proach tracks the reference trajectory in the presence of plant-model
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mismatch and unmeasured disturbances by augmenting the distur-
bance model to the nominal model and deriving compensatory dis-
turbance by the estimator.

Therefore, we propose model-plant mismatch learning offset-
free MPC combining data based ML and offset-free MPC. In this
scheme, the general regression neural network (GRNN) proposed in
[64]] learns the intrinsic model-plant mismatch from the estimated dis-
turbance data at steady-state for each set-point by supervised learn-
ing, and applies the learned model-plant mismatch into the offset-free
MPC scheme. The proposed scheme also uses the nominal distur-
bance estimator to derive the supplementary compensating signal to
exploit both learned model-plant mismatch information and stabiliz-
ing property of the nominal disturbance estimator. By this, the pro-
posed scheme effectively improves the closed-loop performance of
offset-free MPC. Moreover, we examine the robust asymptotic sta-
bility of the proposed scheme by exploiting the learned model-plant
mismatch information, which has not been done in almost all offset-
free MPC studies due to the difficulty in handling the combined dis-
turbance estimator/target calculator/optimizer system ([63]).

The rest of the chapter is organized as follows. We introduce the
standard offset-free MPC formulation with disturbance estimator, tar-
get calculator, and finite-horizon optimal control problem and offset-
free tracking condition in Section 4.2. In Section 4.3, we propose the
model-plant mismatch learning offset-free MPC scheme and exam-
ine the robust asymptotic stability of the proposed scheme. In Section
4.4, we present the numerical examples to demonstrate the efficiency
of model-plant mismatch learning offset-free MPC compared to nom-

inal offset-free MPC in various conditions.

85



4.2 Offset-free MPC: Disturbance estimator approach

We present the standard linear offset-free MPC design flow in
[59]; Pannocchia and [63]].

4.2.1 Preliminaries

Consider the discrete time-invariant plant in the form:

wp(k + 1) = fplap(k), u(k))
Yp(k) = gp(zp(K)) 4.1)
Zp<k) = Hyp(k)

with constraints
weU, z,€X (4.2)

where z, € R'», u € R"™, y, € R", and 2, € R"* are the plant state,
input, output, and controlled variables, respectively. Without loss of
generality, the matrix H is assumed to have full row rank. / and X
are constraint sets presented as compact polyhedral region.

The objective of offset-free linear MPC is to make the plant con-
trolled variables z track the reference signal r with the linear time-

invariant plant model in Eq. (4.3).

x(k+1) = Az(k) + Bu(k)
y(k) = C(k)

(4.3)

where z € R" and y € R" are the model state and output, respec-
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tively. The reference signal 7 (k) is assumed to converge to a constant
value 7, as k — oo. The pair (A, B) and (C, A) are assumed to be

controllable and observable, respectively.

4.2.2 Disturbance estimator and controller design

The most standard method to compensate the mismatch between
the plant in Eq. (4.1) and model in Eq. (4.3), and achieve offset-free
reference tracking at steady-state is to augment the nominal plant
model with additional integrating state so-called disturbance as in Eq.
4.4).

x(k +1) = Az(k) + Bu(k) + Bad(k)
d(k+1) =d(k) (4.4)
y(k) = Ca(k) + Cud(k)

where d € R is disturbance vector, and B; € R"**" and C; € R

"vXNd gre disturbance model matrices.

Proposition 1. The augmented system is observable if and only if

the pair (C, A) is observable and

A—1 By

rank =N, + Ny 4.5)

Cq

([63D).

The appropriate matrices By and C; which satisfy the condition

in Eq. (4.5) can exist if and only if the number of disturbances n is
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equal or smaller than the number of measured output n,, ng < n,

([61D).

In the assumption that B, and C, are chosen to satisfy the condi-
tion in Proposition 1, the state and disturbance estimator is designed
as in Eq. (4.6).

pk+ D) A Bap i) 1B g
d(k + 1) 0 I [dk)] [0
+ i (—yp(k) + Ci(k) + Cad(k)) (4.6)

where L, € R"™>*™ and L; € R"*" are estimator gains for state
and disturbance, respectively, chosen to make the estimator stable.
The following finite-horizon optimal control problem Py is solved

in receding horizon manner.

N-1

Po: JO(ig) = min  ¢,(F,an)+ Y 6T, T, 15, u;)

W0, N1 g
s.t. xg =1, d=d
Tir1 = Ax; + Bu; + Bgd
u €U, i1 € X, xn € X

i=0,...,N

with target state  and input u are derived from Eq. (4.7).

A—1 Bl |z —Byd
— ) 4.7
HC 0] |a r— HCyud
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where ¢(Z, @, x5, u;) = ||z; — Z|[3), + |[us — ][5, and ¢(T, ) :=
llzn — f”éy denote the single-stage cost and terminal cost with
||z[|3) := 2" Qz, respectively, and X; denotes the terminal constraint
set. ), € R"™ and (), € R"™ are weighting matrices with diago-
nal form. » € R"™* denotes the reference signal which is assumed to

converge to a constant, (k) — r, as k — oo.

4.2.3 Offset-free tracking condition

By rearranging Eq. (4.6), we can see the disturbance estimator

satisfies Eq. (4.8) at steady-state.

A-I1+L,C B

(4.8)
L,C 0

j\joo . Lacyp,oo - (Bd + LJ:Cd) Aoo
Ldyp,oo — LiCados

Uoo

where oo denotes steady-state values.

Let k., denote the unconstrained MPC controller gain of Py.
Since we assume constraints are not active at the equilibrium point,
Kun 18 optimal and feasible. Therefore, the input u., and target input

U+, at steady-state satisfies Eq. (4.9).
Uso — Uoo = Kun(Too — Too)- 4.9)

Define steady-state output prediction error and controlled vari-
able offset as in Egs. (4.10) and (4.11).

A

.00 = Ypoo — Clog — Cydoe. (4.10)
€r00 = HYp oo — Too- 4.11)
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Then, the offset-free tracking condition can be represented as in Propo-

sition 2.

Proposition 2. If following condition in Eq. (4.12) is satisfied, then

offset-free tracking is achieved.
N(Ly) CN(H(I —C(I — A— Bry,) 'Ly) (4.12)
where NV denotes null spaces ([63]]).

Proof). By combining and rearranging Egs. (4.7)—(4.11), we can de-
rive Eq. (4.13).

La Cyoo = | | €200 (4.13)
H(I — C(I = A— Bky,) ' Ly) I

We can see that following condition in Eq. (4.14) should be satisfied
to achieve offset-free tracking, i.e., e, ., = 0, for all e,  satisfying

Ldey,oo = 0.
H(I — C(I — A — Bkyn) 'Lyey oo =0 (4.14)

Then, this condition can be reformulated into the null space condition
in Eq. (4.12). [

Remark 1. To construct the L, and L, satisfying the condition in

Eq. (4.12), [59] suggests the following estimator gain structure in Eq.
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(4.15).

LO

T

2

Crpoo =1 — A — BRyp.

L,
NV H(I - Cey,y o 'LY) (4.15)
Ly

When the number of disturbance n, and the number of measured out-
put n, is identical, ng = n,, by Proposition 2 in [39], L, is nonsingu-
lar. In this case, e,  1s naturally become O at steady-state, therefore,
a simple gain structure, where L = 0 and L,, L4 are chosen to sta-
bilize the estimator in Eq. (4.6), can satisfy the offset-free tracking
condition in Propesition 2. In case of ny < n,, L2, L,, and L, can
be constructed according to the procedures suggested in Algorithm
4.2 and Algorithm 4.3 in [59].

4.3 Model-plant mismatch learning offset-free MPC

Estimated disturbance d in Eq. (4.6) makes the predicted output
from model be identical to the plant output by compensating the ef-
fect of model-plant mismatch. This compensating disturbance signal
has the intrinsically given value for each state and input pair (z,u)
with proper disturbance model matrices, B4, Cy, and is naturally 0,
when the model-plant mismatch does not exist. Therefore, we pro-
pose a perspective to regard this compensating disturbance value for
each (z,u) pair as the intrinsic model-plant mismatch itself and the
scheme to learn and exploit this model-plant mismatch.

Though the nominal offset-free MPC in Section 4.2 has its own

model-plant mismatch compensating property, it basically estimates
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the proper disturbance from the occurred measurement error. There-
fore, there exists some delay to estimate proper compensating signal.
However, since the model-plant mismatch compensating property of
nominal offset-free MPC is sensitive to the estimator performance,
considerable performance degradation can occur in system transition
such as set-point change.

To overcome this limitation, we propose to learn the intrinsic
model-plant mismatch from the past estimated steady-state distur-
bance data and apply the learned model-plant mismatch to the dis-
turbance estimator, target calculator, and model-based finite-horizon
optimal control problem to improve the closed-loop performance of
offset-free MPC.

4.3.1 Model-plant mismatch learning

If we could obtain the entire model-plant mismatch map for ev-
ery state and input pair (z,u) € R"**™_ we can derive the actual
optimal solution for real plant. However, since obtaining the entire
model-plant mismatch map is consequently identical to obtaining the
exact entire plant dynamics, it needs massive data and computation.

Therefore, we propose to learn and utilize a reduced model-plant
mismatch map only for steady-state pairs (Z ., o ) for each set-point.
This reduced model-plant mismatch map is a tiny partial manifold on
the entire model-plant mismatch map for every (z, u) pair. Therefore,
we can derive this reduced model-plant mismatch map from consider-
ably smaller amount of data and computation than those for the entire

map.
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Lemma 1. Suppose that the estimator in Eq. (4.6) is stable. Then, the

matrix

A-T1+L,C B;+ L,Cy

is nonsingular.
LyC LyCy

Proof). Rearranging Eq. (4.6) follows Eq. (4.16).

#(k+1)| [A+L,C Ba+ L,Cq| (k)
d(k+1) L,C I+ LyCy | |d(k)
B Ly
+ | | ulk) - yp(k (4.16)
0 (k) Ld] p(k)

Since we assumed the estimator is stable, it has no poles at (1,0).

Therefore, following Eq. (4.17) is satisfied.

A+ L,C B;+ L,C,
det * (] IS R 4.17)
L,C I+ L,Cy
A-I1+L,C B;+ L, C
Thus, the matrix * ‘7 s nonsingular. [
L,C Lq.Cy

With Lemma 1, we can show the existence of state and distur-

bance estimate pair at steady-state for each set-point.

Theorem 1. If a set-point 7 is achievable, i.e., there exist a steady-
state plant output and input pair (Y, ~, %) Which achieves 7, then
an estimated state and disturbance pair of the model (2, cfoo) at that

steady-state always exists.

Proof). If a set-point 7 is achievable, we can see Eqs. (4.18) and
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(4.19) are satisfied at that steady-state from the estimator in Eq. (4.6).

Foo = (A4 LyC)ioo + (By + LyCl)do
+ Bus — LyYpoo (4.18)
doo = LqC oo + (I + LaCa)doo — Layp.se (4.19)

where y, o, denotes the steady-state plant output which satisfies 7 =
Hyp 0, U denote the steady-state input, and 2, and cioo denote the
state and disturbance estimates at steady-state, respectively. By rear-
ranging Egs. (4.18) and (4.19), we can derive Eq. (4.20).

7
doc

A-I1+L,C By+ L,.Cy
L,C L,Cy

(4.20)

B Lo Yp.oo — B
Ldyp,oo

A—-I1+L,C By+ L,Cy
L,C LqCy

Lemma 1, we can see the pair (2., d,) always exists whenever a

Since the matrix is nonsingular from

steady-state plant output and input pair (¥, ., Us) achieving 7 ex-

ists. ]

By rearranging Eq. (4.20), the (2, dso) pair can be derived di-

rectly from the (yp, 0, Uoo) pAir.

A-T1+L,C B;+ L,Cy
L,C L,C,

-1
L, —B
L; O

Yp,o0
Uoo
4.21)

Remark 2. We can see the (2, cfoo) pair is derived by the linear
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transformation from the corresponding (¥, ., o) pair as in Eq. (4.21).
Therefore, the uniqueness of the (7, czoo) pair for each set-point is
not confirmed when more than one (Y, o, %) pairs can achieve the
set-point 7. In this study, we focus on the case where the only one
(Yp,00> Uoo) Pair achieves each 7, and thus, the uniqueness of (2, czoo)

for each 7 is ensured.

Since the existence and uniqueness of (Z.,, ds) for each 7 are
ensured by Theorem 1 and Remark 2, we can define an intrinsic

relation between 7 and afoo as Eq. (4.22).

doo = fa(7) (4.22)

The function f; : R™ — R™ implies the intrinsic model-plant
mismatch of the system.

We approximate the unknown function f,; in Eq. (4.22) from the
estimated disturbance data by GRNN. GRNN is a variation to ra-
dial basis function (RBF) based neural networks for non-parametric
regression proposed by [64] which approximates the probability den-
sity function using Parzens non-parametric estimator with Gaussian
activation function.

GRNN can be interpreted as a normalized RBF network with
hidden units centered at every training sample. The predicted output
o(i) from input ¢ by GRNN is a weighted average of outputs in the

training set:

Zf;l 0sw(i, i)

4.23
SN (i i) (*:29

o(i) =
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where NV, is the number of training samples, and w(i, i5) denotes the
weight. Each weight is an RBF output which is the exponential of the
negatively scaled distance between the new pattern and each given

training pattern:
wi,iy) = e (i7%) (imis)/20° (4.24)

where o is the smoothing factor which represents the width of RBF
[66].

Remark 3. GRNN is a single-pass learning network with no train-
ing parameters while the back-propagation neural network (BPNN)
needs forward and backward pass training. The only adjustable pa-

rameter in GRNN is smoothing factor p.

From Remark 3, GRNN needs significantly less time for train-
ing than BPNN. By this notable advantage on rapid training, GRNN
is suitable for on-line systems or systems which require minimal
computation [67]].

However, since the number of the neurons in hidden layer is
equal to the number of the training samples, the size of GRNN can
be huge. We overcome this limitation by using only a few recent data
in receding data-window manner for regression. This strategy is rea-
sonable, since the characteristics of the system can change during

operation.
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4.3.2 Application of learned model-plant mismatch

Now, we can utilize the learned model-plant mismatch map d
for each set-point 7 derive by GRNN in Eq. (4.25).

d' = fu(7) (4.25)

where fd is the approximated function of f; in Eq. (4.22). As de-
scribed in Section 4.3.1, this reduced model-plant mismatch map is
reasonably obtainable. However, since this learned model-plant mis-
match map is only a tiny manifold on steady-state pairs (Z oo, Uso ), We
can figure out the target equilibrium point but cannot reach that point
only with this map.

Therefore, we propose to incorporate the learned model-plant
mismatch into the nominal disturbance estimator to exploit the sta-
bilizing property and achieve the offset-free tracking property. For
this, we introduced an additional supplementary disturbance d* and

combine it with the learned model-plant mismatch dt:
d* =d' +d°. (4.26)

The supplementary signal ds is continually updated by the es-
timator. The revised disturbance estimator estimates the state 2 and

the supplementary disturbance d including the influence of learned
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model-plant mismatch d’ as in Eq (27).

~l,s ~l,s

d*(k+1) 0 I d*(k) 0 0

+ Ls (—yp(k) + C24 (k) 4+ Cy(d' (k) + d*(k))) (4.27)
d

The stability of the estimator in Eq. (4.27) can be simply proved in

Theorem 2.
Theorem 2. If L, and L, are chosen to make the nominal disturbance
estimator in Eq. (4.6) stable, then proposed disturbance estimator in

Eq. (4.27) is also stable with the same L, and L.

Proof). Rearranging Eq. (4.27) follows Eq. (4.28).

ik +1)]  [A+L,C Ba+ LiCy| |25 (k) 4.28)
d5(k+1) LiC I+ LgCy | | d*(k) |
B L, By + L,Cq|
| ulk) = | k) + d' (k)
0 Ly Lq,Cq

Let x and d° denote the exact model state and supplementary

disturbance:
k+1 A B k B
vk 1) _ l R I e e (4.29)
d*(k+1) 0 I d*(k) 0
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These exact values satisfy Eq. (4.30).
yp(k) = Ca(k) + Ca(d® (k) + d*(k)). (4.30)

By substituting Eq. (4.30) into Eq. (4.28) and subtracting Eq. (4.29)
from Eq. (4.28), we obtain the error dynamics in Eq.(4.31).

ei(k-+»1)
ejs(k+1)

A+ L,C Byg+ L,Cy
L,C I+ L;Cy

6£<k)

egs (k)

] 4.31)

where e; == & — &% and e, := d* — d°.
A+ L.C B;+ L,Cy

L,C I+ L,Cy
the nominal disturbance estimator in Eq. (4.6), we can see the pro-

Since the matrix is the same as that of

posed estimator is stable with the same L, and L, of the nominal

estimator. ]

From the stability of the revised disturbance estimator proved in
Theorem 2, we can exploit the learned model-plant mismatch while
exploiting the stabilizing property of the disturbance estimator in Eq.

(4.27) with the supplementary signal de.

Remark 4. Even when the d’ from GRNN is not properly learned
or the intrinsic model-plant relation is changed by system transfor-
mation or unknown disturbance injection, the supplementary signal
d* from disturbance estimator in Eq. (4.27) compensates the model-

plant mismatch and achieve the offset-free tracking property.

Then, we apply #%* and d** to the finite-horizon optimal control
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problem F, and target calculation problem in Eq. (4.7) to improve the
closed-performance of the offset-free MPC by improving prediction
accuracy.

The offset-free tracking property of the proposed model-plant

mismatch learning offset-free MPC is proved in Theorem 3.

Theorem 3. The same estimator gain constructed as in Remark 1
achieves the offset-tracking property in proposed model-plant mis-

match learning offset-free MPC.

Proof). By rearranging Eq. (4.27), we obtain Eqs. (4.32) and (4.33)

at steady-state.

B4 = A2l + Bulf + Budlp — Laely?, (4.32)
0= Laey®, (4.33)
e, = =yt + CEl + Cady. (4.34)

where eif)o denotes the output reconstruction error of P“* at steady-
state. From the target calculator in Eq. (4.7), we can derive Egs. (4.35)
and (4.36).

74 = Az + Bub + Bud% (4.35)
7= HCZY + HCyd% (4.36)

The steady-state input can be derived from the unconstrained optimal
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gain K, of Py:

Ul — 05 = k(255 — 259). (4.37)

Subtracting Eq. (4.35) from Eq. (4.32) and substituting Eq. (4.37)
yields

B =2 = —(I — A= Bhuy) ' LoelS,. (4.38)

[e.9] o0

Now, let eﬁ:‘fm denote the offset vector of the controlled variables

at steady-state:

s, == Hyys, —T. (4.39)

2,00

Substituting Eq. (4.36) into Eq. (4.39) and rearranging yields

s = H(ys, — Cily — Cd + O(@% — %)), (4.40)

2,00

Then, substituting Egs. (4.34) and (4.38) into (4.40) yields

¢S, =H[I — C(I — A— Brun) ' Loley’,. (4.41)

2,00

Finally, combining and rearranging Eqs. (4.33) and (4.41), we obtain

Ld l,s 0 l,s
Cyoo = €, - (4.42)
H(I — C(I — A— Bry,) 'Ly) I

Since Eq. (4.42) is identical to Eq. (4.13) in Proposition 2, the

proposed scheme achieves offset-free tracking property with the same
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estimator gain as that of nominal scheme. O

4.3.3 Robust asymptotic stability of model-plant mis-
match learning offset-free MPC

In order to show the closed-loop asymptotic stability of offset-
free MPC, we have to examine the closed-loop behavior of the com-
bined system consisting of disturbance estimator / target calculator
/ optimizer. Since it is known to be difficult to examine the closed-
loop behavior of the combined system, almost all offset-free MPC
schemes only show the offset-free tracking property when the stable
equilibrium has been reached as in Theorem 3 ([l65]]).

The most crucial threshold for this problem is that the nominal
offset-free MPC could not specify an equilibrium point and Lyapunov
function candidate until the system reaching the steady-state, since
the target state and input in P, are continually updated from the target
calculator. However, in the proposed model-plant mismatch learning
offset-free MPC scheme, we can specify the equilibrium point from
the learned model-plant mismatch and provide the Lyapunov function
candidate as the value function of Py with the fixed target as the spec-
ified equilibrium point. By this, we can handle the above-mentioned
threshold of nominal offset-free MPC and examine the robust asymp-
totic stability of the proposed scheme.

With the specified equilibrium point and Lyapunov function can-
didate from the learned model-plant mismatch, we examine the closed-
loop robust asymptotic stability of model-plant mismatch learning
offset-free MPC based on the framework in [[68] and [69]] which show

the closed-loop robust asymptotic stability of the combined estima-

102



tor/optimizer system.
[69] define the robust asymptotic stability as the input-to-state
stability (ISS) stability ([/0]]) on a robust positive invariant set.

Definition 1. (Robust positive invariance) A set O C ) is said to
be robust positive invariant for an autonomous system y* = g(y, €)
with perturbation e if there exists some . > 0 such that g(y,e) C O
for all y € O and e satisfying ||e|| < J. where ||v|| denotes the
supremum norm ||v|| = sup,,|v(k)| and e denotes the sequence of
e ([69]).

Definition 2. (Robust asymptotic stability) The equilibrium point y
of a perturbed system y™ = g(y, e) is robust asymptotically stable in
O if there exists some d > 0 such that for all perturbation sequence
e, |le|]| < 0, O is robust invariant and there exist a class L function

B(-) and a class K function ~(-) satisfying

i (y.e) — gl < By —al, k) +~v(llel]) (4.43)

for each y € O and for all k € I, where y; (y, e) is the open-loop
solution of the perturbed system for given step k and I is the set of
non-negative integers ([69]]).

Then, [68]] show the robust asymptotic stability of the origin of
the combined system by establishing that the value function of the
finite-horizon optimal control problem is an ISS Lyapunov function

for the combined system and applying Proposition 3.

Definition 3. (ISS Lyapunov function) V() is an ISS Lyapunov func-
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tion in the robust positive invariant set O for the difference inclusion
y* € g(y, e) if there exists §. > 0, class K, functions o (+), aa(+), as(+),
and class K function o, (-) such that forall y € O and ||e|| < J. which
satisfy Eqgs. (4.44) and (4.45).

ar(ly = 71) < V(y) < aaly — 7 (4.44)
sup V(y*) < V() —as(ly — gl) + oelllel).  (445)

yteg(y.e)

where ¥ is the equilibrium point ([[71]).

Proposition 3. If there exist an ISS Lyapunov function for the per-
turbed system y* = g(y, e) for all ||e|| < 0 for some § > 0 on a
robust positive invariant set O, then the origin of the system is ro-

bustly asymptotically stable in O for all ||e|| < § ([68]).

4.3.3.1 Specification of equilibrium point and Lyapunov

function candidate

We examine the closed-loop behavior of the combined system

under the assumption:

Assumption 1. The approximated model-plant mismatch function fd

in Eq. (4.25) for each set-point 7 is completely learned.
Let d (7) denotes the disturbance value from this completely

learned fd which achieves offset-free tracking of set-point 7 at steady-

state. Then, we can think of the target state and input z* and @*
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derived by substituting d*" into the target calculator in Eq. (4.7):

zt
at

Target z°° and @’ are the state and input pair which achieves offset-

— Byd”
F— HCd"

A-1 B

(4.46)
HC 0

free tracking of set-point 7 at steady-state. Let 7 denote the aug-

mented state of at this steady-state:

o
Ty =1 ..1|- 4.47)

7Y is the equilibrium point of the proposed model-plant mismatch
learning offset-free MPC. Therefore, we can analyze the closed-loop
stability of the proposed scheme by examining the stability of the
point z .

Then, we can consider the ideal optimal control problem P, with
the ideally fixed target pair (z° , 4" ) excluding target calculator in

Eq. (4.7).

N-1
Py Jp(Za) = min ¢ (zn) + Z o (i, us)
o N i=0
s.t. 19 =17, d=d
i1 = Ax; + Bu; + Byd
u €U, T €X, xy € X

i=0,...,N

where ¢ (2, u;) = ||x; — 7%

b, llui — (|3, and ¢; (zy) =
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||z — % [|Z, - The terminal constraint set &; is chosen as a sublevel

set of the terminal cost ¢! :
X ={reX|e(z) <p} (4.48)

for some p; > 0. We specify the value function J{. of Py as a Lya-

punov function candidate.

4.3.3.2 Perturbation in combined system

We define the perturbation in the combined system of model-
plant mismatch learning offset-free MPC for further robustness anal-
ysis. Let e, denote the measurement error due to the intrinsic model-

plant mismatch:
ey =1y, — . (4.49)

Let e;, denote the estimate error between real augmented state x4 :=

[z7,d"]" which achieves the current plant measurement y,, and esti-

A~ A 7
mated augmented state ;" := [25°7, 5T T .

o 4.50
€zy = d - j&s . ( )

Since we can consider the model-plant mismatch as a kind of process

disturbance, we assume the estimate error bound.

Assumption 2. There exists the measurement error bound J, such
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that for all ||e,|| < 6, and k& < 0, the Eq. (4.51) holds.

lezq(F)] < B(lez. (0)], k) + oy (|ley]]) (4.51)

where [ is a class KL function and o is a class K function.

Not as the combined estimator/optimizer system in [68]], the com-
bined system of proposed model-plant mismatch learning offset-free
MPC additionally has the target calculator. Therefore, we define and
examine the influence of target error 0; ; from the ideal target pair
(z",u"") as in Eq. (4.52):

a—:f* ‘,EZ,S
eiaa = g - sl (4.52)
u u”

Remark 5. Substituting Eq. (4.26) into the right-hand side of Eq.
(4.46) and rearranging yields

— Byd®

A (4.53)
—HCyd®

—Bdczgvs .
r— HCdCZE’S

— Byd”
F— HCd"

Then, we can derive Eq. (4.54) by substituting Egs. (4.7), (4.52) and
(4.53) into Eq. (4.46) and rearranging.

A-1 B By | -
€z.u = d®. (454)
HC 0 HCy
We can see e; 5 is mainly dependent on ds.
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By Remark 5, we examine e; ; by analyzing behavior of d*. In
the proposed scheme, d’ acts as an warm-start signal in disturbance
estimator. Therefore, since the completely learned d’ asin Assump-
tion 1 can guarantee considerable prediction accuracy, supplementary
signal d* has sufficiently small value. Therefore, we assume that ds
is bounded (We can see d° is actually bounded near the origin in nu-
merical examples in Section 4.4), and thus, we also assume that ez
is bounded.

Now, we examine the influence of e; ; on the closed-loop behav-
ior of the combined system. Let x| and £%* denote the control laws
of Py and Py, respectively. Then, we can define the error of control
law as:

Cr, 1= Hf;’s — /sf;*. (4.55)

Since we assume that ez ; is bounded, we can also assume that e, is
bounded:

Assumption 3. There exists d* bound 4 ;, such that for all ||d*|| < 4,
and k£ < 0, the Eq. (4.56) holds.

e, (K)] < 0. (11d°]]) (4.56)

where o is a class K function.
In Assumption 3, we consider the d° as a kind of error source, since
ez .z mainly depends on d° as in Remark 5.

Then, we can denote the estimate of evolved state Z; through the
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proposed combined system with perturbation in estimate, target, and

measurement:
it = f(Zq+ es,, /ef;* (Ta) +ex,) + 65 — e;{d (4.57)
A By B
f(zg,u) = ; Tq+ . (4.58)

L Ly
where ¢, := ey
Ly

4.3.3.3 Robust asymptotic stability of model-plant mis-
match learning offset-free MPC

In this section, we show the robust asymptotic stability of the
equilibrium point 7 by establishing that JJ. is an ISS Lyapunov
function for the proposed combined system.

We can easily show that J{. satisfies the upper and lower bound-

ing inequality in Eq. (4.44) with Proposition 4:

) < Jo(z4) < aa(jzg — 75 |) (4.59)

ap(|xg — jfl*

Proposition 4. Suppose V' : R" — R to be a continuous positive
definite function defined on R" and radially unbounded. Then, there
exist class K, functions «; and a, which satisfy the lower and upper

bounding inequality in Eq. (4.60).

ar(ly —9l) < V(y) < ax(ly —9l) (4.60)
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where ¥ is the equilibrium point. The proof is provided in Appendix
C.4 of [72].

Now, let Z} denote the expected evolved state with the control

law ) of the ideal problem P.:

*

By = f(da, kp (2a))- (4.61)

We first suggest a standard feasible solution u™ for Z; and show that
ut is robustly feasible for 7. And then, we prove that J& (7)) sat-

isfies the inequality in Eq. (4.45) using u™" under the assumptions:

Assumption 4. The model-plant mismatch is not severe, so that dbs

is always in a compact set D € R,

Assumption 5. Let X" := X, xD, ¢4 (zq) := ¢" (Sx4), and ¢f,(zq) :=
¢ (Sz4) where S := [I,,., 0, xn,]. Forall z; € X", there exist a lo-

cal control law r; : X;” — U satisfying

f(xa, ki(zq)) € XP (4.62)
b0 (f (x4, 5e(2a))) < 54 (2a) — B (Ta, ke(4)).- (4.63)

Assumption 6. Let X := X x D. There exists a K, function

satisfying the inequality in Eq. (4.64) for all z; € XP and u € U.

Ga (ta,u) = ag(lza — 77 ). (4.64)

110 d



Proposition 5. Let ) compact metric space and g : )V — R” continu-

ous. Then, there exists a class K function o such that |g(p) — g(q)| <
o(lp—ql) forall p,q € Y.

Proof). Since ¢ is uniformly continuous on ) by Theorem 4.19 in
[73]], for every ¢ there exists 6 > 0 such that |g(p) — g(q)| < ¢
for all p,q € Y for which |p — ¢| < 4. Then, we can see there ex-
ists a local overbounding class XC function & and 6 > 0 such that
l9(p) — 9(q)| < (|p — q]) forall p,q € Y for which [p — g < & by
Proposition 5 in [[/4]]. Finally, as the similar manner in the third part
of proof in Proposition 20 in [68]], we can find the global overbound-
ing class K function o such that |g(p) — g(q)| < o(|p — ¢|) for all
p,q €. O

Proposition 6. Let e. denotes the perturbations in state transition for
the combined disturbance estimator/target calculator/optimizer sys-

tem:

€c 1= (eidu elipu 657 ejﬁ_d)' (465)

Then, for # and 2}, there exists a class K function o,+ satisfying

the inequality:

it —Ir| < o+ (lee]). (4.66)
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Proof). From Egs. (4.57) and (4.61), we have

iy — Ty | = |f(Za+ sy iy (2a) +ex,) ey —ef
— [ (&4, 5, (2a))]
< |f(Za+ esy, 5y (2a) + ex,) = [, 5, (24))]
+ley |+ led, (4.67)

Since X'P and U are compact sets in metric space and f(xq,u) is
continuous, from Propeosition 5, there exists a class K function such

that

|f (24 + €3y, 5y (£a) + €x,)—f (24, Ky (2a))]
< 0(|(esgr€,)])- (4.68)

By substituting Eq. (4.68) into Eq. (4.67) and applying Eq. (4.65), we
can derive Eq. (4.69).

< o+ (lee]) (4.69)
where 0,+(z) 1= 0(z) + 2=z. O
Lemma 2. Let u® := [u", w97, ;48" ,]" denote the optimal so-
lution sequence from Py for &4, and x§ := [23}, 295, -, 23 }y]" de-

note the resultant augmented state sequence where 20 ar =Nk, Tq, u?)

and 7n(k, x4, u) denotes the open-loop solution of Eq. (4.58) for given
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step k from x4 with input sequence u. We suppose a standard feasible

solution for z with a local control law r; in Assumption 4:
~ 0T , 0T 0T 0 \TIT
ut =) uy s uy g k(B ) ] 4.70)

Then, u' is robustly feasible for Z;; when the perturbation |e,| is suf-

ficiently small.

Proof). Since &3y € X, Eq. (4.71) holds from Eqs. (4.63) and
(4.64) in Assumption 5, 6.

g:t(f('rng “t(de))) < ¢dt< ) - 0‘¢>(‘£2,N - ng 4.71)

Let :%Ik = n(k,z;,0"), and :ijk := n(k,z},a"). Since jzzlLN L=
:%27]\, and :Z’IN = f(a:dN, Iit(did ~)) from Eq. (4.61), Eq. (4.72) holds.

g:t(fzjv) < fl*t( dN) - O‘<z>(|f2,N - jfﬂ) (4.72)

From ¢, (zf) = 0 and Proposition 5, there exists a class Ko func-

tion «y; such that

(@) < ay(|za — 27 ) (4.73)

for all z; € XP. Substituting Eq. (4.73) into Eq. (4.72) yields:

o (Tg ) < gl y — 77 |) (4.74)
* )

O‘t«b(’xd,N —zh]) = at(’de T4 Ty

) — 0‘¢(|~%2,N Lg
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Now, from Proposition 5, there exists a class I function o; such

that

| fltt(jj(—;,N) fl*t(xd N < Ut(‘de ;itN|)' 4.75)

Since 0, > 0, Eq. (4.76) holds in both cases where ¢, (2, ) —

4.:(Z ) is positive or negative.

Gar(Thn) < bap(Thn) +oull2fy — Tinl)- (4.76)

Substituting Eq. (4.69) in Proposition 6 into Eq. (4.76) yields:

¢f1t(xd n) < ¢dt(xd N) o x+(\ec|) 4.77)

e+ (lec]) = or(oat (lec]))-

Then, substituting Eq. (4.74) into Eq. (4.77) yields:

Ou(Egn) < ang(|89 y — Ty |) + ovar (lec)). (4.78)

Therefore, since we set X = {z4| ¢! (z4) < p;}, we can see if Eq.

(4.79) holds, then 2§ € X" implies 2 € A",

leel < oy pi (o — gy — T4

). (4.79)

]

Lemma 3. Suppose 24 € AP = {x4| J2(x4) < ps}. Then, XP

is robustly positive invariant and J¢ satisfies Eq. (4.80) with a class
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Ko function «v and a class K function o.
Tp,. (@7) < Jp,. (2a) — a(|al) + o (|lec]]) (4.80)
where e, is the sequence of combined error e, in Eq. (4.65).

* N-1
Proof). Let xqy, := 1(k, 24, 1) and Jp (24, 1) := @5, (zan) + D isg
gzﬁf; (744, u;) denote the resultant cost sum from x; with solution se-

quence u. Then, we can derive Eq. (4.81).

Jo(B,0T) = T (Za) + 65 (Za, Ky (2a))

= ¢y (Tn: Fe(Tqy)) + Ga, (i y) — Ga(Eqn) (4.81)
Substituting Eq. (4.81) into Eq. (4.63) and rearranging yields:
Jo (@5, u%) < TR (&) — 85 (2a, kL (2a)) (4.82)
Then, by substituting Eq. (4.64) into Eq. (4.82), we can derive:

Jee (T, ut) < R (8a) — ag(|Ea — 75

) (4.83)

Now, since Jy (x4, u) is continuous, there exists a class K func-

tion o ; from Proposition 5.
e (i uh) = Je (Efu0) < oplif —3fD). (484)

We can drop the absolute value as similar manner in the proof of
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Lemma 2:
Jp (@, ut) < Je (2, ub) + o2 — T5)). (4.85)

Since Jp (2}, ut) > JL(2)) and |e.] < ||e.||, substituting Egs.

(4.49) and (4.83) into Eq. (4.85) and rearranging yields:
Jp (@) < J(@a) = ag(|Za — 2 ) + oy (lecl]). (4.86)

where 0.+ (|e.|) := os(0.+(|ec])) is a class K function. Therefore,
we can see that JJ. (-) satisfies the Eq. (4.45).
Additionally, we can see if Eq. (4.87) holds, then #; € X'P im-

plies &} € xXP.
e < 071 (ps — I G0+ aullia— D). 48D
]

Theorem 4. We have established that the value function of the ideal
optimal control problem Jp. from the perfectly learned steady-state
model-plant mismatch is an ISS Lyapunov function in the robust in-
variant set X' of the combined disturbance estimator/target calcula-
tor/optimizer system of the proposed model-plant mismatch learning
offset-free MPC through Lemma 2, 3. Finally, by Proposition 3, we
can see the equilibrium point 74 of the combined system is robustly

asymptotically stable.
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4.4 Numerical example

In this section, we demonstrate three numerical simulation re-
sults to demonstrate the performance of the proposed model-plant
mismatch learning offset-free MPC. The first case shows the model-
plant mismatch learning and tracking performance for a randomly
changing set-point, the second case shows the learning efficacy with
data window strategy when the plant deformation occurs during op-
eration, and the third case shows the performance with two randomly
changing set-points.

We consider a continuous stirred-tank reactor (CSTR) where the
first-order reaction, A — B takes place in the liquid phase, and the
reactor temperature is controlled with the external cooling jacket in
[69].

The control objective is to track the reference trajectories of the
outlet concentration of reactant (c) while regulating the reactor tem-
perature (1) as a fixed value by directly manipulating the temperature
of the jacket (7}.) and the outlet flow rate (/). The following equations

describe the dynamics of the reactor.

(de  Fy(co —c) E
L0\ TE g _
it~ wr2h 0 exp(— )
AT Fy(Ty—T) AH E
— = 5 - ko exp(——=)c
dt mr2h pCy RT (4.88)
2U (T, —1T) )
rpC
dh R~ F
\ dt N wr?

The parameters are given in Table 4.1.
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Parameter | Nominal value | Units

F 0.1 m? /min
To 350 K

o 1 kmol /m?
T 0.219 m

ko 7.2x1010 min~!
E/R 8750 K

U 54.94 kJ/min - m? - K
p 1000 kg/m3
Cp 0.239 kJ/kg - K
AH -5x10* kJ /kmol

Table 4.1: Parameters of the CSTR.

The linear model is derived at the steady-state:

¢® = 0.878 kmol/m®, T°=3245K, h*®=0.659m
T5 =300 K, F*®=0.1m?/min

The discretized linear model in Eq. (4.89) with sampling instant

1min is used for MPC.

y(k) = Cx(k) (4.89)
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0.2681  —0.00338 —0.00728
A= 19703 0.3279 —25.44 |,
0 0 1

[0.00537 0.1655

B=| 1207 97091 |,
0 —6.637
1 0 0 oo
C = OlO,H: .
010
00 1

The following operational constraints are applied to the system:

0.83 <c<0.92, 320 <T <330, 04<h <12,
205 < T, < 310, 0.07 < F < 0.13

The prediction horizon and weights in optimal control problem
are N = 10, Q, = diag{50;0.001;1}, QY = 10Q,} and Q, =
diag{0.01;0.01}, respectively.

For disturbance estimator, following disturbance model and gain
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matrices are applied:

10

Ba= {0 1|, Cq=04,xn,,

0 0

06141 —0.0034  —0.0071
Ly, = [9.7056 0.7346 —25.4413] ,
0 0 0.2800

0.3420 0 0
0 0.4026 0

Lg=

We also suppose that the outlet concentration is 3% higher than
the average concentration in reactor, ' — 1.03 F', to apply additional
error and increase the model-plant mismatch.

Simulations are performed using MATLAB® R2019a with Intel®
Core™ i7-6700 CPU @ 3.40GHz, 32 GB RAM.

4.4.1 System with random set-point

We applied the random set-point of ¢ along [0.84, 0.91] with fixed
set-point of 1" for every 15 sampling instance, and approximate in-
trinsic model-plant mismatch f; in Eq. (4.22) using GRNN from the
estimated disturbance data at steady-state for each c set-point.

Figure 4.1 illustrates the results of function approximation for f;
from 10 and 50 steady-state disturbance data, respectively, for each
random c set-point, c¢,.r. We can see the estimated disturbance data
and set-point shows a certain relation which indicates the steady-

state model-plant mismatch for each set-point between Eqgs. (4.88)
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Approximation from 10 set-point data

Steady state disturbance data
— Approximated function by GRNN

4 .
3 -
2 -

[}

N

©

Approximation from 50 set-point data

Steady state disturbance data
— Approximated function by GRNN

0.01
ss
d1

0.88

0.86
ref

Figure 4.1: Approximated model-plant mismatch by GRNN from 10 and 50
disturbance data at steady-state for each random set-point.
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and (4.89). The approximated function by GRNN follows the trend
of the data well with sufficient data.

Figure 4.2 shows the reference tracking results of the nominal
offset-free MPC and the proposed model-plant mismatch learning
offset-free MPC which applies learned disturbance value for each set-
point ¢ approximated by GRNN with 50 steady-state data in Figure
4.1. Though all the schemes achieve offset-free tracking, the nominal
scheme arouses considerable error when the set-point changes be-
cause the nominal method gradually estimates the model-plant mis-
match for each set-point only from occurred measurement error. On
the other hand, the proposed scheme tracks the reference trajectory
with only tiny error at the transition state and shows much better
performance compared to the standard method. The reason is that
the proposed scheme learns the intrinsic model-plant mismatch from
data and applies the learned information into the estimator and finite-
horizon optimal control problem.

From Figure 4.3 which describes the estimated disturbance val-
ues of each scheme, we can examine how the proposed scheme im-
proved the controller performance in more detail. ‘Nominal D’ and
‘Combined D’ imply the estimated disturbance from the nominal
offset-free MPC and the proposed model-plant mismatch learning
offset-free MPC, respectively. We can see the proposed scheme shows
considerably superior performance in disturbance estimation. ‘Com-
bined D’ is the sum of learned steady-state disturbance from GRNN
‘Learned D’ and supplementary disturbance estimated from the esti-
mator in Eq. (4.27) ‘Supple. D’. We can see the learned disturbance
acts as a warm-start signal so that the supplementary disturbance only

changes in much smaller range than the fully estimated disturbance
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Figure 4.2: Reference tracking results of offset-free MPC for the random
set-point of c and fixed 7.
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Figure 4.3: Estimated disturbance of offset-free MPC schemes.
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of the nominal scheme. By this, the proposed scheme effectively im-
proves the model-plant mismatch compensating performance of the
disturbance estimator and prediction accuracy in finite-horizon opti-

mal control problem.

4.4.2 Transformed system

In this section, we examine the model-plant mismatch learning
performance with data-window strategy and reference tracking per-
formance when system transformation occurs. We changed the re-
action rate constant ko in Table 1 from 7.2 x 10'°min~! to 6.2 x
10*min~! to implement the system transformation into the plant.
Then, we applied the random set-point of ¢ along [0.84,0.91] with
fixed set-point of 7" for every 15 sampling instance as similar in the
previous section, and approximate the intrinsic model-plant mismatch
fa using GRNN for each c set-point with data-window strategy.

Figure 4.4 illustrates the result of approximation for the steady-
state model-plant mismatch for each set-point of ¢ applying data-
window strategy which replaces the old data into the recent data.
We can see the approximated function fa gradually transforms from
that of original system to that of transformed system as the sampled
data from the original system is replaced into the data from the trans-
formed system.

Figure 4.5 describes the reference tracking result of nominal and
proposed offset-free MPC schemes where ‘Learned ori.” and ‘Learned
trs.” imply the closed-loop results with learned model-plant mismatch
from the 50 original system data and the 50 transformed system data

as in Figure 4.4, respectively. The proposed scheme with learned dis-
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Figure 4.5: Reference tracking results of offset-free MPC for the random
set-point of c and fixed T in the transformed system.
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turbance from the transformed system data shows superior perfor-
mance than that from the original system data. Therefore, we can see
the proposed scheme with data-window strategy works fine under the
system transformation.

Figure 4.6 shows the estimated disturbance values of each scheme.
We can see the learned disturbance value from the transformed the
system data matches the steady-state disturbance well than that from
the original system data, so that the scheme based on the transformed
data can compensate the model-plant mismatch using smaller amount
of supplementary disturbance than that based on the original system
data. By this, the proposed scheme with data-window strategy can
handle the system transformation well.

Additionally, even the scheme based on the original system data
shows considerably superior performance than that of the nominal
scheme in Figure 4.5. Though the learned disturbance signal from
the original data does not match the steady-state value of the trans-
formed system, it can work as a proper warm-start signal for the dis-
turbance estimator. This implies that even the learned model-plant
mismatch without information of system transformation can improve
the closed-loop performance of the controller in the circumstance

where the transformation is not that considerable.

4.4.3 System with multiple random set-points

In this section, we examine the closed-loop behavior of offset-
free MPC schemes in system with multiple random set-points. We ap-
plied the random set-point of ¢ along [0.84, 0.91] and 7" along [321, 329]

for every 15 sampling instance, and approximate intrinsic model-
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plant mismatch f; using GRNN from the estimated disturbance data
at steady-state for each (¢, T') set-point pair.

Figure 4.7 illustrates the approximation result of the steady-state
model-plant mismatch f; by GRNN. Since the disturbance pair (dj*,d5°)
depends on each (¢, 5. f) pair, di* and d5° for each (¢,cf,T,cy) pair
are illustrated separately. We can see the approximated function fd by
GRNN follows the trend of the data well in the system with multiple
random set-points.

Figure 4.8 shows the reference tracking results of nominal and
proposed offset-free MPC schemes with learned model-plant mis-
match from 100 and 400 steady-state data, respectively. The both
proposed schemes applying learned model-plant mismatch from 100
and 400 data show considerably superior performance than that of the
nominal scheme. Though the approximated function with 400 data is
more exact and smooth than that of 100 data, the closed-loop perfor-
mances of controllers with these approximated functions are almost
identical. Therefore, we can see the scattered 100 data is sufficient to
learn a proper approximation of model-plant mismatch.

Figure 4.9 shows the estimated disturbance values of nominal
and proposed scheme with 100 steady-state disturbance data in Fig-
ure 4.7. The learned disturbance value matches the steady-state dis-
turbance properly, but there are some deviations near 40", 80", and
160" sampling instants. This implies that the model-plant mismatch
map is not perfectly learned near the related set-points. However, the
proposed scheme achieves the offset-free tracking performance and
efficiently improves the closed-loop performance as in Figure 4.8 by
exploiting the supplementary disturbance values in the system with

multiple random set-points.
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Chapter 5

Concluding remarks

5.1 Move-blocked model predictive control with linear

interpolation of base sequences

This study presented the analysis of existing offset blocking sche-
mes that are commonly used in the field of constrained move blocked
MPC. The offset blocking schemes make it possible to guarantee
recursive feasibility and overcome the drawbacks of input blocking
schemes by utilizing the valuable properties from the base sequence.
However, since existing schemes are trapped in formulations that use
only a fixed base sequence and do not fully exploit valuable prop-
erties from various base sequences, they have limitations in terms of
optimality and could degrade the performance of the controller. Thus,
we analyzed existing offset blocking schemes from the viewpoint of
cost optimality and proposed the interpolated solution based offset
blocking strategy to address these limitations.

The interpolated solution based offset blocking strategy param-
eterizes the input sequence in terms of deviations from the convex
combination of the infinite-horizon LQR solution and the retained
optimal solution from the previous sampling instant. The proposed

interpolated solution based move blocked MPC always guarantees
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recursive feasibility and stability by utilizing the feasibility of the
shifted previous solution with considerably larger feasible region than
the existing LQR solution based move blocked MPC, and also effi-
ciently improves the optimality performance of the controller by uti-
lizing the closed-loop optimality of the LQR solution compared to the
existing previous solution based move blocked MPC. Moreover, the
interpolated solution based move blocked MPC can further improve
the optimality performance by applying the concept of dual-mode
control.

The numerical examples show that the proposed interpolated so-
lution based move blocked MPC efficiently enlarge the feasible re-
gion and improve the optimality performance compare to the existing
move blocked MPC schemes. In conclusion, the interpolated solution
based move blocked MPC can be a useful alternative in the field of

move blocking for computationally-efficient MPC.

5.2 Move-blocked model predictive control with time-

varying blocking structure by semi-explicit approach

This study proposed the semi-explicit approach for move blocked
MPC to improve the optimality performance of the controller by se-
lecting an appropriate time-varying blocking structure for the system
state while moving the on-line computational complexity for deriving
the suitable blocking structure to off-line by solving multiparametric
program.

Since the optimal control problem of move blocked MPC is an
MIP, we have to consider all the combinations of admissible block-

ing structure and the active constraint set to explicitly specify the
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optimizer of the problem. Therefore, we proposed the semi-explicit
approach to move the on-line computational cost for deriving the ap-
propriate blocking structure to off-line. By this, we can considerably
reduce the on-line computation complexity by converting the MIP to
a simple convex optimization problem while avoiding to derive an
excessive number of critical regions.

The numerical examples show that the proposed semi-explicit
move blocked MPC achieves better closed-loop performance than the
commonly used time-invariant blocking structure case. In conclusion,
semi-explicit move blocked MPC can be an effective alternative to
improve the optimality performance of the controller while achieving
computational-efficiency. Moreover, it is expected to be more valu-
able in the situation where MPC is directly implemented at the actu-

ator level with the recent development of Internet of Things technol-

ogy.

5.3 Model-plant mismatch learning offset-free model

predictive control

We propose a novel offset-free MPC scheme which learns the in-
trinsic steady-state model-plant mismatch from data and applies the
learned information into the offset-free model predictive controller
with supplementary signal estimated from the revised disturbance es-
timator. Though we learn only the steady-state so that the learned
model-plant mismatch map is not perfect, we can achieve the offset-
free tracking property by utilizing the stabilizing property of the sup-
plementary signal estimator. Naturally, we could further improve the

closed-loop performance of the controller with the entirely learned
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model-plant mismatch map, but it would be required as enormous
data and computation as for learning the entire dynamics of the sys-
tem. Therefore, only learning and utilizing a tiny manifold on the
entire model-plant mismatch map, steady-state mismatch, we can ef-
ficiently improve the closed-loop performance of offset-free MPC.

In addition, we could mathematically examine the robust asymp-
totic stability of the combined system in offset-free MPC consisting
of disturbance estimator/target calculator/optimizer. Though the sta-
bility analysis of offset-free MPC have not been done yet due to the
difficulty in specifying the equilibrium point and Lyapunov function
candidate with nominal scheme, the proposed scheme makes it pos-
sible by providing the equilibrium point and Lyapunov function can-
didate based on the learned model-plant mismatch.

Moreover, since we combine machine learning and model based
control based on standard offset-free MPC manner, we can exploit its
own model-plant mismatch compensating property in estimator de-
sign. Therefore, proposed method can effectively improve the MPC
performance without enormous data, unlike existing schemes improv-
ing model-based control performance by updating entire dynamics or
learning entire model-plant mismatch compensating signal directly.

In this study, we learn and utilize the model-plant mismatch at
steady-state for each set-point in tracking problem, but there are also
many regulation problems in chemical processes such as regulating
the concentration or temperature of continuous stirred-tank reactor. In
case of regulation problem, set-point change does not exist. However,
if the change of measured disturbance exists, we can apply the pro-
posed model-plant mismatch learning offset-free MPC scheme, since

the influence of measured disturbance change is basically identical as
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the influence of the set-point change to the system.

5.4 Conclusions

In this thesis, we improve the optimality performance of move
blocked MPC, which fixes the decision variables over arbitrary time
intervals to reduce computational load for on-line optimization in
MPC, in two ways. The first scheme provides a superior base se-
quence by linearly interpolating complementary base sequences, and
the second scheme provides a proper time-varying blocking structure
with semi-explicit approach. In these days, though the computation
power of computers is getting increasing, there always exist cases
where the computation capability is limited, for instance, MPC is di-
rectly implemented in the on-board controller such as engine control
units of cars or planes and embedded controller in chemical plants.
Therefore, needs for computationally efficient control schemes al-
ways exists, and proposed move blocking MPC schemes can be valu-
able alternatives in these situations.

We also improve the optimality performance of disturbance esti-
mator based offset-free MPC, which accomplish offset-free tracking
in MPC with additional disturbance signal, by learning and utiliz-
ing the learned model-plant mismatch signal from steady-state distur-
bance data with the supplementary signal from disturbance estimator.
This scheme also valuable in viewpoint of providing a successful and
efficient combining method for the model and data based method.
This scheme would be one of useful starting points of machine learn-
ing based MPC study.
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5.5 Future work

In Chapter 2, we parameterized the input sequence in terms of
deviations from the linear interpolation of the infinite-horizon LQR
solution and the shifted version of previous optimal solution. We for-
mulated the base sequence with linear interpolation because we can
reach with both base sequence with only one additional variable, in-
terpolation parameter. Additionally, if we have sufficient computation
capability, we can assign weights for each shifted previous solution
and LQR solution. By this, we can expand the space of constructible
base sequence as the range space of two basis vector, shifted previ-
ous solution and LQR solution, and formulate the base sequence as
the result from a linear operator with the assigned weights. Therefore,
studying and developing the extended version of offset-blocked MPC
based on this linear operator would be a useful research.

In Chapter 4, we learned and utilized the intrinsic model-plant
mismatch based on only one model. However, when the operating
range of the plant becomes extensive, since control performance can
considerably degraded only with one model, we usually apply model-
bank approach which builds multiple model and utilizes each model
according to current state. In this case, we also have to learn mul-
tiple model-plant mismatch map for each model, since the intrinsic
model-plant mismatch are different for each model. Therefore, when
we change the model during operation, we also have to change the
model-plant mismatch map and apply the different learned distur-
bance signal according to the current state. However, this procedure is
not that simple. Since the learned signal is derived from the set-point,

in case where the current point and set-point are in different regions,
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we have to transform the learned disturbance signal from the region
including the set-point into the suitable signal for the region includ-
ing current point. Therefore, studying and developing the model-plant
mismatch learning offset-free MPC for model-bank approach would

be a valuable research.
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Nomenclature

d: Disturbance

ez . larget error

es,: Estimate error of disturbance-augmented state
€x,: Brror in control law

ey.00: Steady-state output prediction error

€..00: Steady-state offset of controlled variable
e.. Combined error

e,: Measurement error

fa: Steady-state disturbance map from each set-point
g: Parameter vector

i*: Corresponding index of s*

J: Objective function

J*: Optimal objective value

k: Discrete-time index

L4: Estimator gain for disturbance vector

L,: Estimator gain for state vector

N Prediction horizon

n.: Number of inequalities

nq: Dimension of disturbance vector

ns: Number of admissible blocking position sets
n,: Dimension of input vector

n,: Dimension of state vector

n,: Dimension of output vector

Y
Ow: Maximal positive invariant

P;: Blocking matrix from blocking position set s
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() : Weighting matrix for the terminal state vector
(2..: Weighting matrix for the input vector
(.: Weighting matrix for the state vector
r: Reference signal

s: Blocking position set

s;: Blocking position

U: Future input sequence

u: Input

U*: Optimal solution sequence

Up: Base sequence

U;;_,: Optimal solution sequence of the previous sampling instant
Uror: LQR solution sequence

U Steady-state input

x: State

x4: Disturbance-augmented state

xp: Plant state

y: Output

Ypoo: Steady-state plant output

yp: Plant output

zp: Plant controlled variable

7: Set-point

u: Target input

x: Target state

z"": Target input derived from d-

z'": Target state derived from d*"

A©: Offset variation sequence

Aw: Input variation

AU Input variation sequence
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A®: Parameterized offset variation sequence

Aé:: Unconstrained optimal offset variation sequence with blocking
position s

d: Disturbance estimate

d"": Learned disturbance signal from completely learned fd
d’: Learned disturbance signal

d*: Estimated supplementary disturbance signal

d..: Disturbance estimate at steady-state

fd: Approximated function of f,

Z: State estimate

#%%: Combined disturbance signal

Too: State estimate at steady-state

Z4: Disturbance-augmented state estimate

&7 Expected evolved state with perturbation

Kun: Unconstrained MPC controller gain

A: Interpolation parameter

Z>(: Set of non-negative integers

C: Control invariant set

C~: Maximal control invariant set

Ig("i’;% Set of indices j that form the dominant boundaries for C' Ry
Z,: Set of indices for each admissible blocking position set
N: Null space

S: Set of admissible blocking position sets

S Collection of admissible s with sz = N

Xr: Terminal constraint set

®: Kronecker product

O: Parameterized offset sequence

N: Number of blocks
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P: Blocking matrix

¢ : Single-stage cost

¢;: Terminal cost

O: Offset sequence

Z7: Expected ideally evolved state

U: Shifted version of previous solution

j;‘ : Unconstrained value function with blocking position s

s*: Blocking position set minimizing j:;“

s*: Proper blocking position set

By j): Boundary between the critical regions C'R,(;y and C R,

C R,;): Critical region associated with s(%)
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