18,372 research outputs found

    Multi-scale space-variant FRep cellular structures

    Get PDF
    Existing mesh and voxel based modeling methods encounter difficulties when dealing with objects containing cellular structures on several scale levels and varying their parameters in space. We describe an alternative approach based on using real functions evaluated procedurally at any given point. This allows for modeling fully parameterized, nested and multi-scale cellular structures with dynamic variations in geometric and cellular properties. The geometry of a base unit cell is defined using Function Representation (FRep) based primitives and operations. The unit cell is then replicated in space using periodic space mappings such as sawtooth and triangle waves. While being replicated, the unit cell can vary its geometry and topology due to the use of dynamic parameterization. We illustrate this approach by several examples of microstructure generation within a given volume or along a given surface. We also outline some methods for direct rendering and fabrication not involving auxiliary mesh and voxel representations

    Attracting and repelling Lagrangian coherent structures from a single computation

    Full text link
    Hyperbolic Lagrangian Coherent Structures (LCSs) are locally most repelling or most attracting material surfaces in a finite-time dynamical system. To identify both types of hyperbolic LCSs at the same time instance, the standard practice has been to compute repelling LCSs from future data and attracting LCSs from past data. This approach tacitly assumes that coherent structures in the flow are fundamentally recurrent, and hence gives inconsistent results for temporally aperiodic systems. Here we resolve this inconsistency by showing how both repelling and attracting LCSs are computable at the same time instance from a single forward or a single backward run. These LCSs are obtained as surfaces normal to the weakest and strongest eigenvectors of the Cauchy-Green strain tensor.Comment: Under consideration for publication in Chaos/AI

    The existence of thick triangulations -- an "elementary" proof

    Get PDF
    We provide an alternative, simpler proof of the existence of thick triangulations for noncompact C1\mathcal{C}^1 manifolds. Moreover, this proof is simpler than the original one given in \cite{pe}, since it mainly uses tools of elementary differential topology. The role played by curvatures in this construction is also emphasized.Comment: 7 pages Short not

    Parametric Surfaces for Augmented Architecture representation

    Get PDF
    Augmented Reality (AR) represents a growing communication channel, responding to the need to expand reality with additional information, offering easy and engaging access to digital data. AR for architectural representation allows a simple interaction with 3D models, facilitating spatial understanding of complex volumes and topological relationships between parts, overcoming some limitations related to Virtual Reality. In the last decade different developments in the pipeline process have seen a significant advancement in technological and algorithmic aspects, paying less attention to 3D modeling generation. For this, the article explores the construction of basic geometries for 3D model’s generation, highlighting the relationship between geometry and topology, basic for a consistent normal distribution. Moreover, a critical evaluation about corrective paths of existing 3D models is presented, analysing a complex architectural case study, the virtual model of Villa del Verginese, an emblematic example for topological emerged problems. The final aim of the paper is to refocus attention on 3D model construction, suggesting some "good practices" useful for preventing, minimizing or correcting topological problems, extending the accessibility of AR to people engaged in architectural representation
    corecore