14 research outputs found

    Towards Odor-Sensitive Mobile Robots

    Get PDF
    J. Monroy, J. Gonzalez-Jimenez, "Towards Odor-Sensitive Mobile Robots", Electronic Nose Technologies and Advances in Machine Olfaction, IGI Global, pp. 244--263, 2018, doi:10.4018/978-1-5225-3862-2.ch012 VersiĂłn preprint, con permiso del editorOut of all the components of a mobile robot, its sensorial system is undoubtedly among the most critical ones when operating in real environments. Until now, these sensorial systems mostly relied on range sensors (laser scanner, sonar, active triangulation) and cameras. While electronic noses have barely been employed, they can provide a complementary sensory information, vital for some applications, as with humans. This chapter analyzes the motivation of providing a robot with gas-sensing capabilities and also reviews some of the hurdles that are preventing smell from achieving the importance of other sensing modalities in robotics. The achievements made so far are reviewed to illustrate the current status on the three main fields within robotics olfaction: the classification of volatile substances, the spatial estimation of the gas dispersion from sparse measurements, and the localization of the gas source within a known environment

    Chemical source localization fusing concentration information in the presence of chemical background noise

    Get PDF
    We present the estimation of a likelihood map for the location of the source of a chemical plume dispersed under atmospheric turbulence under uniform wind conditions. The main contribution of this work is to extend previous proposals based on Bayesian inference with binary detections to the use of concentration information while at the same time being robust against the presence of background chemical noise. For that, the algorithm builds a background model with robust statistics measurements to assess the posterior probability that a given chemical concentration reading comes from the background or from a source emitting at a distance with a specific release rate. In addition, our algorithm allows multiple mobile gas sensors to be used. Ten realistic simulations and ten real data experiments are used for evaluation purposes. For the simulations, we have supposed that sensors are mounted on cars which do not have among its main tasks navigating toward the source. To collect the real dataset, a special arena with induced wind is built, and an autonomous vehicle equipped with several sensors, including a photo ionization detector (PID) for sensing chemical concentration, is used. Simulation results show that our algorithm, provides a better estimation of the source location even for a low background level that benefits the performance of binary version. The improvement is clear for the synthetic data while for real data the estimation is only slightly better, probably because our exploration arena is not able to provide uniform wind conditions. Finally, an estimation of the computational cost of the algorithmic proposal is presente

    Chemical Plume Tracing by Discrete Fourier Analysis and Particle Swarm Optimization

    Get PDF
    A novel methodology for solving the chemical plume tracing problem that utilizes data from a network of stationary sensors has been developed in this study. During a toxic chemical release and dispersion incident, the imperative need of first responders is to determine the physical location of the source of chemical release in the shortest possible time. However, the chemical plume that develops from the source of release may evolve into a highly complex distribution over the entire contaminated region, making chemical plume tracing one of the most challenging problems known to date. In this study, the discrete Fourier series method was applied for re-construction of the contour map representing the concentration distribution of chemical over the contaminated region based on point measurements by sensors in a pre-installed network. Particle Swarm Optimization was then applied to the re-constructed contour map to locate the position of maximal concentration. Such a methodology was found to be highly successful in solving the chemical plume tracing problem via the sensor network approach and thus closes a long-standing gap in the literature. Furthermore, the nature of the methodology is such that a visual of the entire chemical dispersion process is made available during the solution process and this can be beneficial for warning purposes and evacuation planning. In the context of such chemical release scenarios, the algorithm developed in this study is believed to be able to play an instrumental role towards national defense for any country in the world that is subjected to such threats

    Greedy Methods in Plume Detection, Localization and Tracking

    Get PDF
    Greedy method, as an efficient computing tool, can be applied to various combinatorial or nonlinear optimization problems where finding the global optimum is difficult, if not computationally infeasible. A greedy algorithm has the nature of making the locally optimal choice at each stage and then solving the subproblems that arise later. It iteratively make

    Multi-Robot Odor Distribution Mapping in Realistic Time-Variant Conditions

    Get PDF
    This paper tackles the problem of multi-robot odor distribution mapping through time series analysis. Considering the conditions of real world environments where the chemical concentration distribution is patchy, intermittent and time-variant, we propose a method to incorporate the temporal and spatial aspect of sensory data into the problem of odor distribution mapping. Despite the previous works in this field, the method gives more importance to the recent acquired measurements and also to the measurements which have been spatially closer to the place of the sensors (at the time of their acquisition). Real experiments were done in a realistic small scale controlled environment (designed for systematic olfactory tests), considering up to five real robots and two different navigation algorithms. Experiments show that the generated odor maps are remarkably more accurate than the results of the conventional spatial interpolation method. Studying various spatio-temporal neighborhoods in the time series analysis concluded that a proper definition of the neighborhood (in time and space) provides accurate results in gas distribution mapping

    A 3-D Bio-inspired Odor Source Localization and its Validation in Realistic Environmental Conditions

    Get PDF
    Finding the source of gaseous compounds released in the air with robots finds several applications in various critical situations, such as search and rescue. While the distribution of gas in the air is inherently a 3D phenomenon, most of the previous works have downgraded the problem into 2D search, using only ground robots. In this paper, we have designed a bio-inspired 3D algorithm involving cross-wind Levy Walk, spiralling and upwind surge. The algorithm has been validated using high-fidelity simulations, and evaluated in a wind tunnel which represents a realistic controlled environment, under different conditions in terms of wind speed, source release rates and odor threshold. Studying success rate and execution time, the results show that the proposed method outperforms its 2D counterpart and is robust to the various setup conditions, especially to the source release rate and the odor threshold

    Collective Odor Source Estimation and Search in Time-Variant Airflow Environments Using Mobile Robots

    Get PDF
    This paper addresses the collective odor source localization (OSL) problem in a time-varying airflow environment using mobile robots. A novel OSL methodology which combines odor-source probability estimation and multiple robots’ search is proposed. The estimation phase consists of two steps: firstly, the separate probability-distribution map of odor source is estimated via Bayesian rules and fuzzy inference based on a single robot’s detection events; secondly, the separate maps estimated by different robots at different times are fused into a combined map by way of distance based superposition. The multi-robot search behaviors are coordinated via a particle swarm optimization algorithm, where the estimated odor-source probability distribution is used to express the fitness functions. In the process of OSL, the estimation phase provides the prior knowledge for the searching while the searching verifies the estimation results, and both phases are implemented iteratively. The results of simulations for large-scale advection–diffusion plume environments and experiments using real robots in an indoor airflow environment validate the feasibility and robustness of the proposed OSL method

    Design and Performance Evaluation of an Infotaxis-Based Three-Dimensional Algorithm for Odor Source Localization

    Get PDF
    In this paper we tackle the problem of finding the source of a gaseous leak with a robot in a three-dimensional (3-D) physical space. The proposed method extends the operational range of the probabilistic Infotaxis algorithm [1] into 3-D and makes multiple improvements in order to increase its performance in such settings. The method has been tested systematically through high-fidelity simulations and in a wind tunnel emulating realistic conditions. The impact of multiple algorithmic and environmental parameters has been studied in the experiments. The algorithm shows good performance in various environmental conditions, particularly in high wind speeds and different source release rates

    Towards 3-D distributed odor source localization: An extended graph-based formation control algorithm for plume tracking

    Full text link
    corecore