36,817 research outputs found

    Vehicle platoons with ring coupling

    Get PDF
    We design a control strategy for platoons of identical vehicles. It is assumed that each vehicle measures the distance with its immediate forward neighbor. The lead vehicle in the platoon only receives information on the position of the last vehicle in the platoon. The resulting behavior of the system is a platoon of vehicles moving at a constant velocity with constant distance between pairs of consecutive vehicles. For a class of identical controllers this solution is asymptotically stable for sufficiently small coupling strength. The concept of string stability of a platoon is discussed and applied to the proposed interconnection. Simulations show the system is well-behaved with respect to string stability. To improve the behavior, integral action is added between the first and last vehicle of the platoon. The resulting behavior is determined and its stability properties are discussed

    Vehicle platoons through ring coupling

    Get PDF
    In this paper, a novel strategy for the control of a string of vehicles is designed. The vehicles are coupled in a unidirectional ring at the interaction level: each vehicle is influenced by the position of its immediate forward neighbor; the first vehicle in the platoon is influenced by the position of the last vehicle. Through these interactions a cooperative behavior emerges and a platoon of vehicles moving at a constant velocity with constant inter-vehicle spacings is formed. This contrasts with more traditional control schemes where an independent leader vehicle is followed by the remaining vehicles. For this control structure, stability properties are established. The concept of string stability of a platoon is discussed and applied to the ring interconnection. Design rules are presented, showing how an appropriate choice of parameter values leads to a constant spacing or constant time headway policy. Furthermore, the scheme has a characteristic property: it maintains the platoon structure when subject to malfunctioning vehicles

    Synthesis of Distributed Longitudinal Control Protocols for a Platoon of Autonomous Vehicles

    Get PDF
    We develop a framework for control protocol synthesis for a platoon of autonomous vehicles subject to temporal logic specifications. We describe the desired behavior of the platoon in a set of linear temporal logic formulas, such as collision avoidance, close spacing or comfortability. The problem of decomposing a global specification for the platoon into distributed specification for each pair of adjacent vehicles is hard to solve. We use the invariant specifications to tackle this problem and the decomposition is proved to be scalable.. Based on the specifications in Assumption/Guarantee form, we can construct a two-player game (between the vehicle and its closest leader) locally to automatically synthesize a controller protocol for each vehicle. Simulation example for a distributed vehicles control problem is also shown

    Cooperative look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning

    Full text link
    The operation of groups of heavy-duty vehicles (HDVs) at a small inter-vehicular distance (known as platoon) allows to lower the overall aerodynamic drag and, therefore, to reduce fuel consumption and greenhouse gas emissions. However, due to the large mass and limited engine power of HDVs, slopes have a significant impact on the feasible and optimal speed profiles that each vehicle can and should follow. Therefore maintaining a short inter-vehicular distance as required by platooning without coordination between vehicles can often result in inefficient or even unfeasible trajectories. In this paper we propose a two-layer control architecture for HDV platooning aimed to safely and fuel-efficiently coordinate the vehicles in the platoon. Here, the layers are responsible for the inclusion of preview information on road topography and the real-time control of the vehicles, respectively. Within this architecture, dynamic programming is used to compute the fuel-optimal speed profile for the entire platoon and a distributed model predictive control framework is developed for the real-time control of the vehicles. The effectiveness of the proposed controller is analyzed by means of simulations of several realistic scenarios that suggest a possible fuel saving of up to 12% for the follower vehicles compared to the use of standard platoon controllers.Comment: 16 pages, 16 figures, submitted to journa
    • …
    corecore