11,867 research outputs found

    Understanding how high-tech entrepreneurs successfully pivot as part of the entrepreneurial journey

    Get PDF
    Purpose: In their entrepreneurial journey, high-tech entrepreneurs continuously face a need to devise a competitive value proposition for the startup company and leverage emerging technology to strengthen the proposition. Entrepreneurial pivoting addresses this challenge by allowing startups to validate and refine both their strategy and business model. Therefore, the research study has investigated two theories: the Lean Startup Approach and Technology Entrepreneurship. Consequently, the study has provided an empirical investigation of the pivoting concept examined in the context of the Lean Startup approach (LSA) and Technology Entrepreneurship to improve the understanding of the entrepreneurial journey for high-tech entrepreneurs. The research also focused on understanding how the life cycle stage of an emerging technology impacts the high-tech entrepreneurs’ entrepreneurial journey. The Lean Startup Approach, the technology S-curve, and the technology readiness level (TRL) framework were investigated to address the above question. The study has provided an empirical investigation of the pivoting concept, which has been explained in the context of the lean startup approach (LSA), the technology S-curve and the technology readiness level to improve the understanding of the entrepreneurial journey for high-tech entrepreneurs leading tech startups. Apart from investigating how high-tech entrepreneurs develop competitive value propositions and how emerging technologies impact their entrepreneurial journey, the research study also investigated leadership styles and their influence on tech entrepreneurs. For this, the study has empirically investigated pivoting from the Lean Startup Approach and six different leadership styles. Due to studying pivoting from the Lean Startup Approach and investigating technology entrepreneurship, technology S-curve and technology readiness levels, this research study is titled ‘Understanding how high-tech entrepreneurs successfully pivot their startups as part of the entrepreneurial journey’. Methodological Approach: A qualitative research method was adopted by interviewing hightech entrepreneurs across the United Kingdom to validate the theories associated with the LSA and identify new insights on entrepreneurial pivoting. The interviews are divided into two stages. Firstly, thirty primary interviews were conducted to understand pivoting and the factors that trigger pivoting; the influence of the phases of technology entrepreneurship on pivoting; and the impact of stages of technology maturity in the technology S-curve on pivoting. Secondly, longitudinal interviews were conducted in three phases with nine high-tech entrepreneurs who were also involved in the thirty primary interviews. The purpose of the longitudinal interviews was to collect further data on the above-mentioned topics and understand in more detail and build up a richer picture on how high-tech startups successfully pivot as part of the entrepreneurial journey. Findings: The research study has validated the existing types of pivots and identified two new pivots (giving 16 in total). The study has validated 11 factors that trigger a tech startup to change direction and identified three new factors (giving 14 in total). The research study also determined that there can be a domino effect in pivoting, and the value proposition can be created and sustained through pivoting. The study has established the influence of the phases of technology entrepreneurship on pivoting and the impact of the stages of technology maturity in the technology S-curve on pivoting. Originality: The study provides empirical evidence on pivots and the factors associated with pivots. Moreover, the study significantly helps to improve the understanding of the influence of the phases of technology entrepreneurship on pivoting. The study has developed a new conceptual framework for TE. Furthermore, the study helped in understanding the impact of the stage of technology in the technology S-curve and technology readiness level on pivoting. The study also discusses the challenges faced by tech startups while pursuing pivots; the domino effect in pivoting; and has found evidence that pivoting leads to achieving the desired results

    Mobile virtual communities for telemedicine: research challenges and opportunities

    Get PDF
    Today’s mobile devices have become increasingly powerful with enhanced features such as increased CPU power and memory, internet connectivity in multiple ways (multi-homing) and interfacing with external peripheral devices (for instance GPS receiver, medical sensors). The proliferation of these mobile devices combined with an increasing willingness of users to share information available on and around mobile device (e.g. location, user activity) has given rise to Mobile Virtual Communities (MVC). This way, social interaction is now feasible anywhere and anytime. In another paradigm referred to as telemedicine, information and communication technologies are being investigated and employed in areas such as health maintenance and alleviation, cure and prevention of diseases. In general, (mobile) virtual communities have been explored in the telemedicine domain where they were found to be promising in many cases. However, evidence for their effectiveness has yet to be established. With this background and based on our expertise with MVCs and telemedicine, we address a number of aspects including: 1) basic concepts in telemedicine and MVC and analysis of effectiveness and success factors of MVCs in the telemedicine domain; 2) a prototype architecture addressing mobility issues for the MVC in the telemedicine domain; and 3) reflection on the opportunities and research challenges involved in using MVCs in the telemedicine domain

    Evaluating presentation formats of local climate change in community planning with regard to process and outcomes

    Get PDF
    This study synthesizes two evaluations of a local climate change planning process in a rural town in British Columbia (Canada), which was supported through landscape visualizations. First, the impact of the visualizations, based on scientific environmental modeling and presented in three different presentation formats, verbal/visual presentation, posters and a virtual globe, was evaluated with regard to immediate impacts during the process. Second, the long-term impacts on decision-making and actual outcomes were evaluated in a retrospective evaluation 22 months after the end of the initial planning process. Two results are highlighted: according to the quantitative pre-/post-questionnaires, the visualizations contributed to increased awareness and understanding. Most importantly, the retrospective evaluation indicated that the process informed policy, operational and built changes in Kimberley, in which the landscape visualizations played a role. The post interviews with key decision-makers showed that they remembered most of the visualizations and some decision-makers were further using them, particularly the posters. The virtual globe seemed to be not a "sustainable" display format suitable for formal decision-making processes such as council meetings though. That may change with the further mainstreaming of visualization technologies or mobile devices. Until then, we recommend using display formats that can be re-used following a specific planning event such as an Open House, to ensure on-going support for effective decision-making over the longer-term

    A National Dialogue on Health Information Technology and Privacy

    Get PDF
    Increasingly, government leaders recognize that solving the complex problems facing America today will require more than simply keeping citizens informed. Meeting challenges like rising health care costs, climate change and energy independence requires increased level of collaboration. Traditionally, government agencies have operated in silos -- separated not only from citizens, but from each other, as well. Nevertheless, some have begun to reach across and outside of government to access the collective brainpower of organizations, stakeholders and individuals.The National Dialogue on Health Information Technology and Privacy was one such initiative. It was conceived by leaders in government who sought to demonstrate that it is not only possible, but beneficial and economical, to engage openly and broadly on an issue that is both national in scope and deeply relevant to the everyday lives of citizens. The results of this first-of-its-kind online event are captured in this report, together with important lessons learned along the way.This report served as a call to action. On his first full day in office, President Obama put government on notice that this new, more collaborative model can no longer be confined to the efforts of early adopters. He called upon every executive department and agency to "harness new technology" and make government "transparent, participatory, and collaborative." Government is quickly transitioning to a new generation of managers and leaders, for whom online collaboration is not a new frontier but a fact of everyday life. We owe it to them -- and the citizens we serve -- to recognize and embrace the myriad tools available to fulfill the promise of good government in the 21st Century.Key FindingsThe Panel recommended that the Administration give stakeholders the opportunity to further participate in the discussion of heath IT and privacy through broader outreach and by helping the public to understand the value of a person-centered view of healthcare information technology

    Sustainable seabed mining: guidelines and a new concept for Atlantis II Deep

    No full text
    The feasibility of exploiting seabed resources is subject to the engineering solutions, and economic prospects. Due to rising metal prices, predicted mineral scarcities and unequal allocations of resources in the world, vast research programmes on the exploration and exploitation of seabed minerals are presented in 1970s. Very few studies have been published after the 1980s, when predictions were not fulfilled. The attention grew back in the last decade with marine mineral mining being in research and commercial focus again and the first seabed mining license for massive sulphides being granted in Papua New Guinea’s Exclusive Economic Zone.Research on seabed exploitation and seabed mining is a complex transdisciplinary field that demands for further attention and development. Since the field links engineering, economics, environmental, legal and supply chain research, it demands for research from a systems point of view. This implies the application of a holistic sustainability framework of to analyse the feasibility of engineering systems. The research at hand aims to close this gap by developing such a framework and providing a review of seabed resources. Based on this review it identifies a significant potential for massive sulphides in inactive hydrothermal vents and sediments to solve global resource scarcities. The research aims to provide background on seabed exploitation and to apply a holistic systems engineering approach to develop general guidelines for sustainable seabed mining of polymetallic sulphides and a new concept and solutions for the Atlantis II Deep deposit in the Red Sea.The research methodology will start with acquiring a broader academic and industrial view on sustainable seabed mining through an online survey and expert interviews on seabed mining. In addition, the Nautilus Minerals case is reviewed for lessons learned and identification of challenges. Thereafter, a new concept for Atlantis II Deep is developed that based on a site specific assessment.The research undertaken in this study provides a new perspective regarding sustainable seabed mining. The main contributions of this research are the development of extensive guidelines for key issues in sustainable seabed mining as well as a new concept for seabed mining involving engineering systems, environmental risk mitigation, economic feasibility, logistics and legal aspects

    Model-based resource analysis and synthesis of service-oriented automotive software architectures

    Get PDF
    Context Automotive software architectures describe distributed functionality by an interaction of software components. One drawback of today\u27s architectures is their strong integration into the onboard communication network based on predefined dependencies at design time. The idea is to reduce this rigid integration and technological dependencies. To this end, service-oriented architecture offers a suitable methodology since network communication is dynamically established at run-time. Aim We target to provide a methodology for analysing hardware resources and synthesising automotive service-oriented architectures based on platform-independent service models. Subsequently, we focus on transforming these models into a platform-specific architecture realisation process following AUTOSAR Adaptive. Approach For the platform-independent part, we apply the concepts of design space exploration and simulation to analyse and synthesise deployment configurations, i. e., mapping services to hardware resources at an early development stage. We refine these configurations to AUTOSAR Adaptive software architecture models representing the necessary input for a subsequent implementation process for the platform-specific part. Result We present deployment configurations that are optimal for the usage of a given set of computing resources currently under consideration for our next generation of E/E architecture. We also provide simulation results that demonstrate the ability of these configurations to meet the run time requirements. Both results helped us to decide whether a particular configuration can be implemented. As a possible software toolchain for this purpose, we finally provide a prototype. Conclusion The use of models and their analysis are proper means to get there, but the quality and speed of development must also be considered

    Managing knowledge for capability engineering

    Get PDF
    The enterprises that deliver capability are trying to evolve into through-life businesses by shifting away from the traditional pattern of designing and manufacturing successive generations of products, towards a new paradigm centred on support, sustainability and the incremental enhancements of existing capabilities from technology insertions and changes to process. The provision of seamless through-life customer solutions depends heavily on management of information and knowledge between, and within the different parts of the supply chain enterprise. This research characterised and described Capability Engineering (CE) as applied in the defence enterprise and identified to BAE Systems important considerations for managing knowledge within that context. The terms Capability Engineering and Through Life Capability Management (TLCM), used synonymously in this thesis, denote a complex evolving domain that requires new approaches to better understand the different viewpoints, models and practices. The findings and novelty of this research is demonstrated through the following achievements: Defined the problem space that Requirements Engineers can use in through-life management projects. Made a contribution to the development of models for Systems Architects to enable them to incorporate ‘soft’ systems within their consideration. Independently developed a TLCM activity model against which BAE Systems validated the BAE Systems TLCM activity model, which is now used by UK Ministry of Defence (MoD). Developed, and published within INCOSE1, the INCOSE Capability Engineering ontology. Through the novel analysis of a directly applicable case study, highlighted to Functional Delivery Managers the significance of avoiding the decoupling of information and knowledge in the context of TLCM. Through experimentation and knowledge gained within this research, identified inadequacies in the TechniCall (rapid access to experts) service which led to the generation of requirements for an improved service which is now being implemented by BAE Systems. The results showed that managing knowledge is distinct when compared to information management. Over-reliance on information management in the absence of tacit knowledge can lead to a loss in the value of the information, which can result in unintended consequences. Capability is realised through a combination of component systems and Capability Engineering is equivalent to a holistic perspective of Systems Engineering. A sector-independent Capability Engineering ontology is developed to enable semantic interoperability between different domains i.e. defence, rail and information technology. This helped to better understand the dependencies of contributing component systems within defence, and supported collaboration across different domains. Although the evaluation of the ontology through expert review has been accomplished; the ontology, KM analysis framework and soft systems transitioning approach developed still need to undergo independent verification and validation. This requires application to other case studies to check and exploit their suitability. This Engineering Doctorate research has been disseminated through a number of peer reviewed publications

    A holistic approach for ameliorating the effect of ‘valley of death’ in technology assimilation

    Get PDF
    Technology assimilation is an increasingly important topic in modern manufacturing industries. Successful technology assimilation not only supports the development of better products, but also can provide a competitive edge in fast-moving markets, such as the automotive industry. Technology assimilation is a complex process, with a high failure rate, with technologies that seem promising in the research phase, failing to be assimilated into the final product. This high failure rate for technology assimilation is costly, in both time and other resources, and so has resulted in the effect of the Valley of Death . Tools and methods for technology assessment are essential enablers of successful product development, a process that requires collaboration from both engineering and business professionals to be successful.This thesis presents research that was aimed at ameliorating the Valley of Death effect during technology assimilation, particularly in the environment of the automotive Original Equipment Manufacturers (OEMs). The research was undertaken in close collaboration with Jaguar Land Rover Limited. Such collaboration provided first-hand information and direct engagement that supported and enabled this research.A review of the relevant theoretical concepts and the process of technology assimilation was undertaken, with a focus on the tools and methods that have been applied. The literature review resulted in an identification of the gaps and challenges among current technology assimilation approaches. This work also resulted in a conceptual model being developed to represent three different viewpoints that it is argued are essential to understand for successful technology assimilation, namely: Natural Technological Viewpoint, Social Technological Viewpoint and Human Technological Viewpoint. These three viewpoints were then further elaborated in a Hexahedron Model of Technology, alongside consideration of technology assimilation complexity, capability of technology and the contribution of a potential technology, allowing six different perspectives to be considered during the process of assessing if a specific technology is suitable for assimilation into a complex product.In this thesis, the Hexahedron Model of Technology, as the name suggests, allows consideration of six different facets for successful technology assimilation, and can be further elaborated to include more aspects of technology based on the future work. This model can also support an enterprise to understand how to develop the technology in a direction that might increase the likelihood of successful assimilation.The approach to technology assimilation presented in the thesis first sets out a Technology Assessment Framework and methods for populating and applying it. The Hexahedron Model of Technology provides a structural platform for assessing the subjective factors that need to be considered during technology assimilation in a structured way. This process helps to reduce the number of technologies that are considered for assimilation; by pre-eliminating some relatively weak technologies and taking forward only those more likely to succeed. A Technology Refinement and Modification Algorithm was then developed that provides suggestions, at a high-level, for the direction for technology improvement to help make the technology better match the requirements. This algorithm hence helps to further increase the chances of successful technology assimilation.The Technology Assessment Framework and Technology Refinement and Modification Algorithm were applied to two case studies. One of these cases was conducted to demonstrate the process of the proposed approach whereas the other one was part of a real-world project in collaboration with the Jaguar Land Rover Limited. Overall, this research demonstrates a two-step holistic approach to technology assimilation that first reduces the number of technologies considered for assimilation and then establishes the direction for development of new technology to improve the likelihood of successful technology assimilation.</div
    corecore