9,576 research outputs found

    Plant invasions in China : an emerging hot topic in invasion science

    Get PDF
    China has shown a rapid economic development in recent decades, and several drivers of this change are known to enhance biological invasions, a major cause of biodiversity loss. Here we review the current state of research on plant invasions in China by analyzing papers referenced in the ISI Web of Knowledge. Since 2001, the number of papers has increased exponentially, indicating that plant invasions in China are an emerging hot topic in invasion science. The analyzed papers cover a broad range of methodological approaches and research topics. While more that 250 invasive plant species with negative impacts have been reported from China, only a few species have been considered in more than a handful of papers (in order of decreasing number of references: Spartina alterniflora, Ageratina adenophora, Mikania micrantha, Alternanthera philoxeroides, Solidago canadensis, Eichhornia crassipes). Yet this selection might rather reflect the location of research teams than the most invasive plant species in China. Considering the previous achievements in China found in our analysis research in plant invasions could be expanded by (1) compiling comprehensive lists of non-native plant species at the provincial and national scales and to include species that are native to one part of China but non-native to others in these lists; (2) strengthening pathways studies (primary introduction to the country, secondary releases within the country) to enhance prevention and management; and (3) assessing impacts of invasive species at different spatial scales (habitats, regions) and in relation to conservation resources

    Insights into invasion and restoration ecology : time to collaborate towards a holistic approach to tackle biological invasions

    Get PDF
    The aim of our study is to provide an integrated framework for the management of alien plant invasions, combining insights and experiences from the fields of invasion and restoration ecology to enable more effective management of invasive species. To determine linkages between the scientific outputs of the two disciplines we used an existing data base on restoration studies between 2000 and 2008 and did a bibliometric analysis. We identified the type of restoration applied, determined by the aim of the study, and conducted a content analysis on 208 selected studies with a link to biological invasions (invasion-restoration studies). We found a total of 1075 articles on ecosystem restoration, with only eight percent of the studies having the main objective to control alien invasions. The content analysis of 208 invasion-restoration studies showed that the majority of the studies focused on causes of degradation other than alien invasions. If invaders were referred to as the main driver of degradation, the prevalent cause for degradation was invaders outcompeting and replacing native species. Mechanical control of alien plant invasions was by far the most common control method used. Measures that went beyond the removal of alien plants were implemented in sixty-five percent of the studies. Although invasion control was not as common as other types of restoration, a closer look at the sub-group of invasion-restoration studies shows a clear link between restoration and invasion ecology. Concerns, as identified in the literature review, are firstly that restoration activities mostly focus on controlling the invader while other underlying causes for degradation are neglected, and secondly that the current approach of dealing with alien invasions lacks a combination of theoretical and practical aspects. We suggest that closer collaboration between invasion and restoration ecologists can help to improve the management of alien plant invasions. We conclude with a framework and a case study from Perth Western Australia integrating the two disciplines, with the aim of informing restoration practice

    Plant invasions differentially affected by diversity and dominant species in native- and exotic-dominated grasslands

    Get PDF
    Plant invasions are an increasingly serious global concern, especially as the climate changes. Here, we explored how plant invasions differed between native- and novel exotic-dominated grasslands with experimental addition of summer precipitation in Texas in 2009. Exotic species greened up earlier than natives by an average of 18 days. This was associated with a lower invasion rate early in the growing season compared to native communities. However, invasion rate did not differ significantly between native and exotic communities across all sampling times. The predictors of invasion rate differed between native and exotic communities, with invasion being negatively influenced by species richness in natives and by dominant species in exotics. Interestingly, plant invasions matched the bimodal pattern of precipitation in Temple, Texas, and did not respond to the pulse of precipitation during the summer. Our results suggest that we will need to take different approaches in understanding of invasion between native and exotic grasslands. Moreover, with anticipated increasing variability in precipitation under global climate change, plant invasions may be constrained in their response if the precipitation pulses fall outside the normal growing period of invaders

    Plant invasions in high-UV-B environments: Patterns, mechanisms and projections in the context of Global Change

    Get PDF
    Progressive globalization and continuing human-mediated transports of plant material over long distances facilitated the introduction of a large number of non-native plant species all over the world. The resulting successful plant invasions might have substantial negative impacts on native natural ecosystems and cultural landscapes and, therefore, imply significant ecological and economic harms. To better predict and limit these consequences for humans and ecosystems, a deeper understanding of mechanisms underlying plant invasions is important. Thus, one central question of invasion ecology research refers to traits and conditions that facilitate plant invasion success of species. Environmental matching of non-native species with novel habitats is known to be strongly dependent on macroclimatic conditions as they predominantly determine the species’ physiological niche. Especially temperature and precipitation have been previously discussed as most important abiotic filters for species distribution. Radiation, however, displays a so far neglected abiotic environmental factor in the context of plant invasions, although fundamental differences occur at a global scale and plant metabolism strongly relies on light conditions. Nevertheless, biologically active high-energy UV-B radiation might even have negative effects on plant growth and development and, thus, might act as limiting environmental factor during plant invasions. Local surface UV-B radiation intensities mainly depend on elevation, latitude, daytime and season. Beside the seasonal differences between hemispheres, higher maximum and annual mean UV-B intensities are measured in comparable latitudes of the southern hemisphere. This difference results from the elliptical Earth’s orbit around the sun leading to a smaller Sun-Earth distance during the southern hemisphere summer. Several hotspots of plant invasions are located on the southern hemisphere and consequently offer suitable conditions to investigate plant invasions in high UV-B environments. Moreover, UV-B radiation intensity is also affected by human impact and ongoing climate change that will further change local UV-B levels worldwide. This thesis investigates the importance of high UV-B radiation for plant invasions based on 27 invasive species of New Zealand grasslands. The conducted studies contain common garden experiments comparing native and invasive origins in different UV-B environments, as well as macroecological approaches including species distribution data, trait data and global UV-B satellite data. All approaches aimed at assessing the importance of UV-B as selective force during plant invasions and tested for potential UV-B preadaptation of native population, as well as local adaptation of invasive populations as consequence of evolutionary processes in the invaded range. The results revealed no evidence for genetic post-introduction adaptation to UV-B in high-UV-B environments. However, both origins of the study species responded to UV-B with quantifiable physiological and phenotypic changes that hint at a pronounced plasticity maintaining plant growth in response to UV-B. Moreover, higher UV-B intensities in the native range turned out to be of advantage for alien species under UV-B exposure in novel habitats and indicate an existing UV-B preadaptation of some study species by previous UV-B experience. There was only a medium directly limiting effect of UV-B radiation in comparison to other common environmental stressors of grasslands, e.g. drought. Nevertheless, greater importance of UV-B during plant invasions might originate from the ability to induce physiological crossprotection to oxidative stress caused by other biotic and abiotic environmental factors. This effect constitutes the relevance of UV-B for invasion processes in the context of predicted global and climate change. Therefore, consideration of UV-B radiation in future species distribution models might be especially recommendable for predictions of potential suitable habitats and associated risk assessment

    A systematic review of arthropod community diversity in association with invasive plants

    Get PDF
    Invasive plants represent a significant financial burden for land managers and also have the potential to severely degrade ecosystems. Arthropods interact strongly with plants, relying on them for food, shelter, and as nurseries for their young. For these reasons, the impacts of plant invasions are likely strongly reflected by arthropod community dynamics including diversity and abundances. A systematic review was conducted to ascertain the state of the literature with respect to plant invaders and their associated arthropod communities. We found that the majority of studies did not biogeographically contrast arthropod community dynamics from both the home and away ranges and that studies were typically narrow in scope, focusing only on the herbivore feeding guild, rather than assessing two or more trophic levels. Importantly, relative arthropod richness was significantly reduced on invasive plant species. Phylogenetic differences between the invasive and local plant community as well as the plant functional group impact arthropod diversity patterns. A framework highlighting some interaction mechanisms between multiple arthropod trophic levels and native and invasive plants is discussed and future research directions relating to these interactions and the findings herein are proposed

    Alien plants in urban nature reserves : from red-list species to future invaders?

    Get PDF
    Urban reserves, like other protected areas, aim to preserve species richness but conservation efforts in these protected areas are complicated by high proportions of alien species. We examined which environmental factors determine alien species presence in 48 city reserves of Prague, Czech Republic. We distinguished between archaeophytes, i.e. alien species introduced since the beginning of Neolithic agriculture up to 1500 A. D., and neophytes, i.e. modern invaders introduced after that date, with the former group separately analysed for endangered archaeophytes (listed as C1 and C2 categories on national red list). Archaeophytes responded positively to the presence of arable land that was in place at the time of the reserve establishment, and to a low altitudinal range. In addition to soil properties, neophytes responded to recent human activities with the current proportion of built-up area in reserves serving as a proxy. Endangered archaeophytes, with the same affinity for past arable land as other archaeophytes, were also supported by the presence of current shrubland in the reserve. This suggests that for endangered archaeophytes it may have been difficult to adapt to changing agricultural practices, and shrublands might act as a refugium for them. Forty-six of the 155 neophytes recorded in the reserves are classified as invasive. The reserves thus harbour 67% of the 69 invasive neophytes recorded in the country, and particularly worrisome is that many of the most invasive species are shrubs and trees, a life form that is known to account for widespread invasions with high impacts. Our results thus strongly suggest that in Prague nature reserves there is a high potential for future invasions

    Potential phytotoxic and shading effects of invasive Fallopia (Polygonaceae) taxa on the germination of dominant native species

    Get PDF
    Two species of the genus Fallopia (F. sachalinensis, F. japonica, Polygonaceae) native to Asia, and their hybrid (F. ×bohemica), belong to the most noxious plant invaders in Europe. They impact highly on invaded plant communities, resulting in extremely poor native species richness. The low number of native species in invaded communities points to the possible existence of mechanisms suppressing their germination. In this study we assessed, under laboratory conditions, whether there are phytotoxic effects of the three Fallopia congeners on seed germination of three target species: two native species commonly growing in habitats that are often invaded by Fallopia taxa (Urtica dioica, Calamagrostis epigejos), and Lepidium sativum, a species commonly used in allelopathic bioassays as a control. Since Fallopia taxa form dense stands with high cover, we included varying light conditions as an additional factor, to simulate the effects of shading by leaf canopy on germination. The effects of aqueous extracts (2.5%, 5.0%, and 0% as a control) from dry leaves and rhizomes of the Fallopia congeners on germination of the target species were thus studied under two light regimes, simulating full daylight (white light) and light filtered through canopy (green light), and in dark as a control regime. Rhizome extracts did not affect germination. Light treatments yielded inconclusive results, indicating that poor germination and establishment of species in invaded stands is unlikely to be caused by shading alone. However, we found a pronounced phytotoxic effect of leaf extracts of Fallopia taxa, more so at 5.0% than 2.5% extract concentration. Fallopia sachalinensis exerted the largest negative effect on the germination of Urtica dioica, F. ×bohemica on that of C. epigejos, and F. japonica had invariably the lowest inhibitory effect on all test species. The weak phytotoxic effect of F. japonica corresponds to the results of previous studies that found this species to be generally a weaker competitor than its two congeners. Although these results do not necessarily provide direct evidence for allelopathic effects in the field, we demonstrate the potential phytotoxic effect of invasive Fallopia taxa on the germination of native species. This suggests that allelopathy may play a role in the impact of Fallopia invasion on species diversity of invaded communities

    Potential phytotoxic and shading effects of invasive Fallopia (Polygonaceae) taxa on the germination of dominant native species

    Get PDF
    Two species of the genus Fallopia (F. sachalinensis, F. japonica, Polygonaceae) native to Asia, and their hybrid (F. ×bohemica), belong to the most noxious plant invaders in Europe. They impact highly on invaded plant communities, resulting in extremely poor native species richness. The low number of native species in invaded communities points to the possible existence of mechanisms suppressing their germination. In this study we assessed, under laboratory conditions, whether there are phytotoxic effects of the three Fallopia congeners on seed germination of three target species: two native species commonly growing in habitats that are often invaded by Fallopia taxa (Urtica dioica, Calamagrostis epigejos), and Lepidium sativum, a species commonly used in allelopathic bioassays as a control. Since Fallopia taxa form dense stands with high cover, we included varying light conditions as an additional factor, to simulate the effects of shading by leaf canopy on germination. The effects of aqueous extracts (2.5%, 5.0%, and 0% as a control) from dry leaves and rhizomes of the Fallopia congeners on germination of the target species were thus studied under two light regimes, simulating full daylight (white light) and light filtered through canopy (green light), and in dark as a control regime. Rhizome extracts did not affect germination. Light treatments yielded inconclusive results, indicating that poor germination and establishment of species in invaded stands is unlikely to be caused by shading alone. However, we found a pronounced phytotoxic effect of leaf extracts of Fallopia taxa, more so at 5.0% than 2.5% extract concentration. Fallopia sachalinensis exerted the largest negative effect on the germination of Urtica dioica, F. ×bohemica on that of C. epigejos, and F. japonica had invariably the lowest inhibitory effect on all test species. The weak phytotoxic effect of F. japonica corresponds to the results of previous studies that found this species to be generally a weaker competitor than its two congeners. Although these results do not necessarily provide direct evidence for allelopathic effects in the field, we demonstrate the potential phytotoxic effect of invasive Fallopia taxa on the germination of native species. This suggests that allelopathy may play a role in the impact of Fallopia invasion on species diversity of invaded communities

    Alien plant invasions and native plant extinctions: a six-threshold framework

    Get PDF
    CITATION: Downey, P. O. & Richardson, D. M. 2016. Alien plant invasions and native plant extinctions : a six-threshold framework. AoB PLANTS, 8:1-21, doi:10.1093/aobpla/plw047.The original publication is available at https://academic.oup.com/aobplaBiological invasions are widely acknowledged as a major threat to global biodiversity. Species from all major taxonomic groups have become invasive. The range of impacts of invasive taxa and the overall magnitude of the threat is increasing. Plants comprise the biggest and best-studied group of invasive species. There is a growing debate; however, regarding the nature of the alien plant threat—in particular whether the outcome is likely to be the widespread extinction of native plant species. The debate has raised questions on whether the threat posed by invasive plants to native plants has been overstated. We provide a conceptual framework to guide discussion on this topic, in which the threat posed by invasive plants is considered in the context of a progression from no impact through to extinction. We define six thresholds along the ‘extinction trajectory’, global extinction being the final threshold. Although there are no documented examples of either ‘in the wild’ (Threshold 5) or global extinctions (Threshold 6) of native plants that are attributable solely to plant invasions, there is evidence that native plants have crossed or breached other thresholds along the extinction trajectory due to the impacts associated with plant invasions. Several factors may be masking where native species are on the trajectory; these include a lack of appropriate data to accurately map the position of species on the trajectory, the timeframe required to definitively state that extinctions have occurred and management interventions. Such interventions, focussing mainly on Thresholds 1–3 (a declining population through to the local extinction of a population), are likely to alter the extinction trajectory of some species. The critical issue for conservation managers is the trend, because interventions must be implemented before extinctions occur. Thus the lack of evidence for extinctions attributable to plant invasions does not mean we should disregard the broader threat.https://academic.oup.com/aobpla/article/2609604/Alien-plant-invasions-and-native-plant-extinctions?searchresult=1Publisher's versio
    corecore