5,948 research outputs found

    A dynamic field approach to goal inference, error detection and anticipatory action selection in human-robot collaboration

    Get PDF
    In this chapter we present results of our ongoing research on efficient and fluent human-robot collaboration that is heavily inspired by recent experimental findings about the neurocognitive mechanisms supporting joint action in humans. The robot control architecture implements the joint coordination of actions and goals as a dynamic process that integrates contextual cues, shared task knowledge and the predicted outcome of the user's motor behavior. The architecture is formalized as a coupled system of dynamic neural fields representing a distributed network of local but connected neural populations with specific functionalities. We validate the approach in a task in which a robot and a human user jointly construct a toy 'vehicle'. We show that the context-dependent mapping from action observation onto appropriate complementary actions allows the robot to cope with dynamically changing joint action situations. More specifically, the results illustrate crucial cognitive capacities for efficient and successful human-robot collaboration such as goal inference, error detection and anticipatory action selection.FCT grants POCI/V.5/A0119/2005 and CONC-REEQ/17/2001 / fp6-IST2 EU-IP Project JAST (proj. nr. 003747

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    A dynamic neural field approach to natural and efficient human-robot collaboration

    Get PDF
    A major challenge in modern robotics is the design of autonomous robots that are able to cooperate with people in their daily tasks in a human-like way. We address the challenge of natural human-robot interactions by using the theoretical framework of dynamic neural fields (DNFs) to develop processing architectures that are based on neuro-cognitive mechanisms supporting human joint action. By explaining the emergence of self-stabilized activity in neuronal populations, dynamic field theory provides a systematic way to endow a robot with crucial cognitive functions such as working memory, prediction and decision making . The DNF architecture for joint action is organized as a large scale network of reciprocally connected neuronal populations that encode in their firing patterns specific motor behaviors, action goals, contextual cues and shared task knowledge. Ultimately, it implements a context-dependent mapping from observed actions of the human onto adequate complementary behaviors that takes into account the inferred goal of the co-actor. We present results of flexible and fluent human-robot cooperation in a task in which the team has to assemble a toy object from its components.The present research was conducted in the context of the fp6-IST2 EU-IP Project JAST (proj. nr. 003747) and partly financed by the FCT grants POCI/V.5/A0119/2005 and CONC-REEQ/17/2001. We would like to thank Luis Louro, Emanuel Sousa, Flora Ferreira, Eliana Costa e Silva, Rui Silva and Toni Machado for their assistance during the robotic experiment

    Knowledge-based vision and simple visual machines

    Get PDF
    The vast majority of work in machine vision emphasizes the representation of perceived objects and events: it is these internal representations that incorporate the 'knowledge' in knowledge-based vision or form the 'models' in model-based vision. In this paper, we discuss simple machine vision systems developed by artificial evolution rather than traditional engineering design techniques, and note that the task of identifying internal representations within such systems is made difficult by the lack of an operational definition of representation at the causal mechanistic level. Consequently, we question the nature and indeed the existence of representations posited to be used within natural vision systems (i.e. animals). We conclude that representations argued for on a priori grounds by external observers of a particular vision system may well be illusory, and are at best place-holders for yet-to-be-identified causal mechanistic interactions. That is, applying the knowledge-based vision approach in the understanding of evolved systems (machines or animals) may well lead to theories and models that are internally consistent, computationally plausible, and entirely wrong

    Affective Motivational Collaboration Theory

    Get PDF
    Existing computational theories of collaboration explain some of the important concepts underlying collaboration, e.g., the collaborators\u27 commitments and communication. However, the underlying processes required to dynamically maintain the elements of the collaboration structure are largely unexplained. Our main insight is that in many collaborative situations acknowledging or ignoring a collaborator\u27s affective state can facilitate or impede the progress of the collaboration. This implies that collaborative agents need to employ affect-related processes that (1) use the collaboration structure to evaluate the status of the collaboration, and (2) influence the collaboration structure when required. This thesis develops a new affect-driven computational framework to achieve these objectives and thus empower agents to be better collaborators. Contributions of this thesis are: (1) Affective Motivational Collaboration (AMC) theory, which incorporates appraisal processes into SharedPlans theory. (2) New computational appraisal algorithms based on collaboration structure. (3) Algorithms such as goal management, that use the output of appraisal to maintain collaboration structures. (4) Implementation of a computational system based on AMC theory. (5) Evaluation of AMC theory via two user studies to a) validate our appraisal algorithms, and b) investigate the overall functionality of our framework within an end-to-end system with a human and a robot

    Proceedings of the International Workshop on EuroPLOT Persuasive Technology for Learning, Education and Teaching (IWEPLET 2013)

    Get PDF
    "This book contains the proceedings of the International Workshop on EuroPLOT Persuasive Technology for Learning, Education and Teaching (IWEPLET) 2013 which was held on 16.-17.September 2013 in Paphos (Cyprus) in conjunction with the EC-TEL conference. The workshop and hence the proceedings are divided in two parts: on Day 1 the EuroPLOT project and its results are introduced, with papers about the specific case studies and their evaluation. On Day 2, peer-reviewed papers are presented which address specific topics and issues going beyond the EuroPLOT scope. This workshop is one of the deliverables (D 2.6) of the EuroPLOT project, which has been funded from November 2010 – October 2013 by the Education, Audiovisual and Culture Executive Agency (EACEA) of the European Commission through the Lifelong Learning Programme (LLL) by grant #511633. The purpose of this project was to develop and evaluate Persuasive Learning Objects and Technologies (PLOTS), based on ideas of BJ Fogg. The purpose of this workshop is to summarize the findings obtained during this project and disseminate them to an interested audience. Furthermore, it shall foster discussions about the future of persuasive technology and design in the context of learning, education and teaching. The international community working in this area of research is relatively small. Nevertheless, we have received a number of high-quality submissions which went through a peer-review process before being selected for presentation and publication. We hope that the information found in this book is useful to the reader and that more interest in this novel approach of persuasive design for teaching/education/learning is stimulated. We are very grateful to the organisers of EC-TEL 2013 for allowing to host IWEPLET 2013 within their organisational facilities which helped us a lot in preparing this event. I am also very grateful to everyone in the EuroPLOT team for collaborating so effectively in these three years towards creating excellent outputs, and for being such a nice group with a very positive spirit also beyond work. And finally I would like to thank the EACEA for providing the financial resources for the EuroPLOT project and for being very helpful when needed. This funding made it possible to organise the IWEPLET workshop without charging a fee from the participants.
    • …
    corecore