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Abstract  20 

In this chapter we present results of our ongoing research on efficient and 21 

fluent human-robot collaboration that is heavily inspired by recent 22 

experimental findings about the neurocognitive mechanisms supporting 23 

joint action in humans. The robot control architecture implements the joint 24 

coordination of actions and goals as a dynamic process that integrates 25 

contextual cues, shared task knowledge and the predicted outcome of the 26 

user's motor behavior. The architecture is formalized as a coupled system of 27 

dynamic neural fields representing a distributed network of local but 28 

connected neural populations with specific functionalities. We validate the 29 

approach in a task in which a robot and a human user jointly construct a toy 30 

'vehicle'. We show that the context-dependent mapping from action 31 
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observation onto appropriate complementary actions allows the robot to 32 

cope with dynamically changing joint action situations. More specifically, 33 

the results illustrate crucial cognitive capacities for efficient and successful 34 

human-robot collaboration such as goal inference, error detection and 35 

anticipatory action selection.  36 

 37 

1. Introduction 38 

 39 

As robot systems are moving as assistants into human everyday life, the 40 

question how to design robots capable of acting as sociable partners in 41 

collaborative joint activity becomes increasingly important (Breazeal, 2004; 42 

Fong, Nourbakhsh and Dautenhahn, 2003). Useful and efficient human-43 

robot collaboration requires that both teammates coordinate and synchronize 44 

their actions and decisions in a shared task. In order to decrease the 45 

workload of the human and to increase user satisfaction, the robot should 46 

equally contribute to this coordination effort. This necessarily means that 47 

the robot should be endowed with cognitive capacities such as action 48 

understanding, action monitoring and goal inference. Humans achieve their 49 

remarkable fluent organization of joint action by anticipating the motor 50 

intentions of others (Sebanz, Bekkering and Knoblich, 2006). In our 51 

everyday social interactions we continuously monitor the actions of our 52 

partners, interpret them effortlessly in terms of their outcomes and use these 53 

predictions to select adequate complementary behaviours. Very often this 54 

happens without the need for explicit verbal communication. Imagine for 55 

the instance the joint action task of preparing a dinner table. The way that a 56 

partner grasps a certain object, e.g., a coffee cup, transmits to the observer 57 

important information about the ultimate goal of the action. Depending on 58 

the grip type, the partner may want to place the cup on the table or, 59 

alternatively, has the intention to hand it over to the co-actor. Being able to 60 

predict the goal of the whole action sequence at the time of the grasping 61 

allows the observer to timely prepare for receiving the cup, or to initiate the 62 

selection of another object for the dinner table. However, even in routine 63 

joint activity the co-actor may perform actions that are in some way 64 

incorrect or inappropriate. The partner may for instance want to hand over a 65 

second spoon for the sugar bowl or may pick a cup without having already 66 

placed the saucer on the table. Being able to evaluate the predicted 67 

outcomes of the co-actor's actions with respect to the (sub)goals of the 68 

shared task is thus a fundamental capacity for efficient  and successful joint 69 

action. It allows the observer to overrule a familiar response (e.g., accepting 70 

the spoon) or to initiate an adequate corrective behaviour (e.g., quickly 71 

grasping a saucer for placing it on the table). 72 
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This chapter presents results of our ongoing research towards creating 73 

socially intelligent robots that are able to flexibly adjust their goal-directed 74 

behaviours depending on the predicted outcomes of actions of their human 75 

partners. For the experiments we used a more complex version of a joint 76 

assembly task introduced in our previous work (Bicho et al., 2009; Bicho et 77 

al., 2010)  in which the human-robot team has to assemble a toy object from 78 

its components. The focus is on implementing and testing in the robot 79 

context-sensitive action monitoring and anticipatory action selection 80 

capacities. Our approach is heavily inspired by recent experimental and 81 

theoretical findings about the neurocognitive mechanisms underlying joint 82 

action in humans (Bekkering et al., 2009; Sebanz, Bekkering and Knoblich, 83 

2006). We believe that designing cognitive control architectures on the basis 84 

of these mechanisms defines a very promising research direction to reduce 85 

the significant imbalance in social and cognitive skills between human and 86 

robot that still exists today. Ultimately, implementing a human-like joint 87 

action model in the robot will contribute to more natural human-robot 88 

collaboration since the teammates will become more predictable to each 89 

other. This in turn will increase the acceptance by humans. 90 

An impressive body of experimental evidence from behavioural and 91 

neurophysiological studies investigating action and perception in a social 92 

context shows  that when we observe others' actions, corresponding motor 93 

representations in our motor system become activated (for reviews see 94 

(Wilson and Knoblich, 2005; Rizzolatti and Craighero, 2004). These 95 

findings have been interpreted as supporting the hypothesis that the mere 96 

perception of actions automatically increases the likelihood of the 97 

performance of those actions, without the person's conscious awareness. 98 

During the last decade, the idea of an obligatory and direct perception-99 

action link has inspired robotics work mainly in the domain of learning by 100 

imitation and social development (Billard et al., 2008; Erlhagen et al., 2006; 101 

Demiris and Johnson, 2003; Alissandrakis et al., 2002; Schaal, 1999). A 102 

major insight of this work is that the matching between action observation 103 

and action execution has to solve the correspondence problems that exist 104 

between agents with dissimilar embodiment. Moreover, the metrics of the 105 

mapping should be highly task-dependent and may range from the level of 106 

movement kinematics to the level of desired end states or action goals. 107 

While an automatic facilitation of corresponding motor representations 108 

during action observation may support social learning, it is normally not 109 

beneficial for cooperative joint action tasks that require the facilitation of 110 

complementary motor programs. An alternative proposal for a functional 111 

role of the automatic action resonance mechanism suggests that it 112 

contributes to understanding the actions of other individuals during social 113 

interactions (Rizzolatti and Craighero, 2004; Wilson and Knoblich, 2005). 114 
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The key idea is that the observer performs an internal motor simulation to 115 

predict the consequences of perceived actions using knowledge of his or her 116 

actions and motor intentions. During joint action, the representation of the 117 

inferred goal of the co-actor together with representations of prior task 118 

knowledge may then automatically bias the observer's decision process 119 

towards selecting an adequate complementary behaviour. In line with this 120 

hypothesis, the findings of a recent behavioural study suggest that the 121 

perception-action coupling appears to be indeed to some extent under the 122 

control of task and goal representations. By comparing motor planning in an 123 

imitative and a cooperative setting van Schie et al. (2008) demonstrated the 124 

reversal of the automatic action congruency effect. In the cooperative 125 

setting, people were faster to respond to an observed action with a 126 

complementary behaviour compared to the matching behaviour. 127 

The robot control architecture for human-robot collaboration implements 128 

such a context-sensitive, i.e. flexible, mapping between action observation 129 

and action execution. The coordination of actions and decisions among the 130 

teammates is modeled as a dynamic process that builds on the continuous 131 

integration of input from representations of the inferred goal of observed 132 

actions (obtained through motor simulation), contextual cues (e.g., location 133 

of objects in the scene) and shared task knowledge (e.g., assembly plan). 134 

The representation of the complementary action that gets the strongest 135 

support will win the dynamic competition process among all possible 136 

complementary behaviours. As a theoretical framework we have used the 137 

Dynamic Neural Field (DNF) approach to robotics (Erlhagen and Bicho, 138 

2006). Originally introduced as a simplified mathematical model for pattern 139 

formation in neural populations (Amari, 1977; Wilson and Cowan, 1973), 140 

DNFs have been later generalized and applied to the cognitive domain (for a 141 

recent review see Schöner, 2008). The architecture of DNFs reflects the 142 

hypothesis that strong recurrent interactions in local populations of neurons 143 

form a basic mechanism of cortical information processing. These 144 

interactions support the existence of self-stabilized representations that 145 

allow the cognitive agent for instance to compensate for temporally missing 146 

sensory input, or to anticipate future environmental inputs that may inform 147 

the decision about a specific goal-directed behaviour. 148 

The DNF-model of joint action forms a complex dynamical system 149 

consisting of a distributed network of reciprocally connected neural 150 

populations that integrate and represent in their activation patterns task-151 

relevant information. For the experimental validation of the model in the 152 

joint construction task we assume that both agents share the knowledge of 153 

the assembly plan representing the sequential execution of subgoals. Since 154 

the construction work cannot be performed alone, each agent has to 155 

continuously monitor and evaluate the co-actor's actions in order to 156 
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guarantee success.  The results reported here extend our previous work to a 157 

more realistic and complex joint action context which includes situations in 158 

which the co-actor's behaviour is only partially observable (due to occluding 159 

surfaces) and the robot has to select among several possible complementary 160 

actions. The focus of the study is on the dynamic interactions within the 161 

DNF network that support the selection of an appropriate action in 162 

anticipation of the co-actor's current goal. The anticipatory action control 163 

includes situations in which the predicted effect of the observed action is 164 

inconsistent with an efficient team performance and thus requires a 165 

corrective response. The timely decision for such a response is possible 166 

since the action planning process integrates continuously in time the activity 167 

from connected populations representing a mismatch between the inferred 168 

goal and the desired action effect in a specific joint action context. 169 

 170 

The chapter is organized as follows: Section 2 introduces the joint 171 

construction task and the robotic platform. Section 3 gives an overview 172 

about the cognitive control architecture. Section 4 presents the basic 173 

concepts of the dynamic field framework. The results of the human-robot 174 

interactions are described in section 5. The chapter ends with a discussion of 175 

concepts and results in section 6 and conclusions and outlook in section 7. 176 

 177 

 178 

2. Joint construction task 179 

 180 

----------------Insert Figure 1 around here ------------- 181 

 182 

To test the dynamic field architecture for human-robot collaboration we 183 

have chosen the joint construction of a toy „vehicle‟ from components that 184 

are initially distributed on a table (see Figure 1).  The toy object consists of 185 

a round platform with an axle on which two wheels have to be attached and 186 

each fixed with a nut. Subsequently, 4 different columns have to be plugged 187 

into specific holes in the platform. The placing of another round object on 188 

top of the columns finishes the task. The components were designed to limit 189 

the workload for the vision and the motor system of the robot. Thus, the task 190 

is completely symmetric in that both the human and the robot can make 191 

assembly actions. It is assumed that each teammate is responsible to 192 

assemble one side of the toy. Since the working areas of the human and the 193 

robot do not overlap, the spatial distribution of components on the table 194 

obliges the team to coordinate handing-over sequences. In addition, some 195 

assembly steps require that one actor helps the other by holding still a part 196 

in a certain position. It is further assumed that both partners know the 197 
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construction plan and keep track of the subtasks which have been already 198 

completed by the team.  The prior knowledge about the sequential execution 199 

of the assembly work is represented in the DNF-architecture by pre-defined 200 

connections between populations encoding subsequent assembly steps. 201 

Since the desired end state does not uniquely define the logical order of the 202 

construction, at each stage of the construction the execution of several 203 

subtasks may be simultaneously possible.  204 

The main challenge for the team is thus to efficiently coordinate in space 205 

and time the decision about actions to be performed by each of the 206 

teammates.  The task is complex enough to show the impact of goal 207 

inference, action understanding and action monitoring and evaluation on 208 

complementary action selection.  209 

The robot (ARoS) used in the experiments has been built in our lab (Silva, 210 

Bicho and Erlhagen, 2008). It consists of a stationary torus on which a 7 211 

DOFs AMTEC arm (Schunk GmbH) with a 3-fingers dexterous gripper 212 

(Barrett Technology Inc.) and a stereo camera head are mounted. A speech 213 

synthesizer (Microsof Speech SDK 5.1) allows the robot to communicate 214 

the result of its reasoning to the human user. For the control of the arm-hand 215 

system we applied a global planning method in posture space that allows us 216 

to integrate optimization principles derived from experiments with humans 217 

(Costa et Silva et al, submitted). The goal is to guarantee robot motion that 218 

is perceived by the human user as smooth and goal-directed. 219 

The information about object class, position and pose is provided by the 220 

vision system. The object recognition combines color-based segmentation 221 

with template matching derived from earlier learning examples (Westphal el 222 

al., 2008). The same technique is also used for the classification of object-223 

directed, static hand postures such as grasping and communicative gestures 224 

such pointing and demanding an object. 225 

 226 

 227 

 228 

3. Cognitive architecture for joint action 229 

 230 

----------------Insert Figure 2 around here ------------- 231 

 232 

Figure 2 presents a sketch of the multi-layered robot control architecture. It 233 

reflects neurocognitive mechanisms that are believed to support human joint 234 

action (Bekkering et al., 2009). Each layer contains several neural 235 

populations encoding information relevant for the joint assembly task. 236 

Every population can receive input from multiple connected populations 237 

that may be located in different layers. Rather than describing in detail the 238 

schema of the hand-coded connections for the concrete assembly task (for 239 
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an example see the supplementary material in Bicho, Louro and Erlhagen, 240 

2010) we give here an overview about the functional role of the different 241 

layers and discuss the flow of information between layers with respect to 242 

experimental findings that have inspired our work.  243 

Ultimately, the architecture implements a context-dependent mapping 244 

between observed action and executed action (Poljac, van Schie and 245 

Bekkering, 2009; van Schie, Waterschoot and Bekkering, 2008; Erlhagen, 246 

Mukovskiy and Bicho, 2006). The fundamental idea is that the mapping 247 

takes place on the level of abstract motor primitives defined as whole 248 

object-directed motor acts like reaching, grasping, placing, attaching or 249 

plugging. These primitives encode the motor act in terms of an observable 250 

end state or goal rather than in terms of a detailed description of the 251 

movement kinematics (Rizzolatti and Craighero, 2004; Schaal, 1999).  An 252 

observed hand movement that is recognized by the vision system as a 253 

particular primitive (e.g., top grip or side grip) is represented in the action 254 

observation layer (AOL). The action simulation layer (ASL) implements the 255 

idea that by automatically matching the co-actor's action onto its own 256 

sensorimotor representations without executing it, the robot may simulate 257 

the ongoing action and its consequences.  The neural populations in ASL 258 

represent entire chains of action primitives that are in the motor repertoire of 259 

the robot (e.g., reaching-grasping-placing/plugging or reaching-grasping-260 

holding out). These chains are linked to representations of specific goals or 261 

end states (e.g., attach wheel to base) which are represented by populations 262 

in the intention layer (IL). Here the action chains are pre-coded, but in our 263 

previous work we have addressed how they may autonomously develop 264 

(Erlhagen, Mukovski and Bicho, 2006; Erlhagen et al., 2007). This chained 265 

organization of motor primitives is motivated by recent findings of specific 266 

neural populations in the inferior parietal lobe of monkey which is known to 267 

be part of the matching system in monkey. Fogassi and colleagues (2005) 268 

described neurons that fire at the time of a specific motor act (e.g., grasping) 269 

in dependence of the ultimate goal of the action sequence in which the act is 270 

embedded (e.g., grasping for placing versus grasping for eating). If a chain 271 

may become activated by the mere observation of the first act of the chain, 272 

the observer is able to predict future motor behaviour and the consequences 273 

of the whole action sequence before its execution, i.e. the co-actor's motor 274 

intention. However, since a single motor act may be part of several chains, 275 

or may not be directly observable, the integration of additional contextual 276 

information is necessary to disambiguate the simulation (Erlhagen et al., 277 

2007). For the assembly task, an important input comes from layer OML 278 

representing the memorized world knowledge about the location of the 279 

different parts in the two working areas.  A second source of information 280 

that may sustain the simulation process is the shared task knowledge about 281 



8 

 

what the human partner could do in a particular joint action situation 282 

(Sebanz, Knoblich and Bekkering, 2006). The subgoals of the assembly 283 

work, that are currently available for the team, are represented by 284 

populations in the common subgoal layer (CSGL). They are continuously 285 

updated in accordance with the assembly plan based on visual feedback 286 

about the state of the construction and the inferred goal of the co-actor 287 

(represented in the IL). The input from the IL to the CSGL is of particular 288 

importance for pro-active behaviour since an updating of subgoals based on 289 

anticipated action outcomes allows the robot to plan ahead of time a 290 

complementary behaviour that best serves the user's future needs.  The 291 

CSGL contains two sublayers each containing populations representing all 292 

possible subgoals of the assembly task. The sequential order of task 293 

execution is encoded by the connections between populations in the two 294 

layers. Input signalling the achievement  (or predicted achievement) of a 295 

certain subtask activates the respective population representation in the first 296 

layer which in turn drives automatically through the connections the 297 

populations in the second layer representing the next possible assembly 298 

steps (e.g., attaching first a wheel and subsequently fixing it with a nut). The 299 

action execution layer (AEL) contains the same goal-directed action 300 

sequences as the ASL. The different populations integrate input from the IL, 301 

OML and CSGL to select among all possible actions the most appropriate 302 

complementary behaviour.  303 

The implemented context-sensitive mapping from observed actions on to-be 304 

executed complementary actions guarantees a fluent team performance if no 305 

errors occur (Bekkering et al., 2009). To cope in an efficient manner also 306 

with unexpected or erroneous behaviour of the co-actor, populations in the 307 

error monitoring layer (EML) are sensitive to a mismatch on the goal level 308 

(integrating input from CSGL and IL, e.g., the co-actor reaches a part that 309 

has to be attached only later) or on the level of action means to achieve a 310 

valid sub-goal (integrating input from OML and ASL, e.g., the co-actor 311 

requests a certain part versus reaching the part directly in his/her 312 

workspace).  Through direct connections to the AEL, population activity in 313 

the EML may bias the robot's planning and decision process by inhibiting 314 

the representations of complementary actions normally linked to the inferred 315 

goal and exciting the representations of a corrective response. Importantly, 316 

to efficiently communicate detected errors to the human partner a corrective 317 

response may consist of a manual gesture like pointing or a verbal comment 318 

to attract the co-actor's attention (Bicho, Louro and Erlhagen, 2010). 319 

 320 

 321 

4. Basic concepts of the dynamic field framework 322 

 323 
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The dynamics of each population in the various layers of the control 324 

architecture is governed by a neural field equation (Wilson and Cowan, 325 

1973; Amari, 1977). Dynamic neural field (DNF) architectures implement 326 

the idea that task-relevant information is encoded by means of activation 327 

patterns of local pools of neurons (Erlhagen and Bicho, 2006). These 328 

patterns are initially triggered by input from connected populations and 329 

sources external to the network (e.g., vision system, speech input). They 330 

may become self-stabilized in the absence of any external input due to the 331 

recurrent interactions within the population.  Figure 3 shows an example of 332 

a self-sustained activity pattern (dashed-dotted line) representing a grasping 333 

behaviour. Importantly, there exists an instability of the field dynamics. The 334 

self-stabilized pattern coexists with a stable homogenous activation 335 

distribution (solid line) that represents the absence of specific information 336 

about the motor primitive (resting level). Only sufficiently strong input may 337 

activate the self-sustaining forces within the population.  Weaker external 338 

stimuli lead to a subthreshold, input-driven activation pattern (dashed line). 339 

This preshaping of local populations by relative weak input signals may 340 

nevertheless play an important role for the processing in the joint action 341 

circuit. It brings populations closer to the threshold for triggering the self-342 

sustaining interactions and thus biases the decision processes linked to 343 

behaviour (Erlhagen and Schöner, 2002). 344 

 345 

----------------Insert Figure 3 around here ------------- 346 

 347 

We employed a particular form of a DNF first analyzed by Amari (1977). In 348 

each model layer i the activity ui(x,t) at time t of a neuron at field location x 349 

is described by the following integro-differential equation (for a discussion 350 

of  analytical results see Erlhagen and Bicho, 2006): 351 

  iiiii

i

i hdxtxufxxwtxStxu
t

txu
  '),'()'(),(),(

),(




               (1) 352 

where the constants i >0 and hi<0 define  the time scale and the resting 353 

level  of the field dynamics, respectively. The integral term describes the 354 

intra-field interactions. It is assumed that (1) the interaction strength, 355 

wi(x,x'), between any two neurons x and x’ depends only on the distance 356 

between locations, and that (2) nearby cells excite each other, whereas 357 

separated pairs of cells have a mutually inhibitory influence. For the present 358 

implementation we used the following integral kernel of lateral-inhibition 359 

type: 360 

 
iinhibiii wxAxw

,

22 )2/(exp)(       (2) 361 
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where winhib,i>0 is a constant and Ai>0 and i>0 describe the amplitude and 362 

the standard deviation of a Gaussian, respectively. Only sufficiently 363 

activated neurons contribute to interaction.  The threshold function fi(ui) is 364 

chosen of sigmoidal shape with slope parameter  and threshold u0: 365 

  oi

ii
uu

uf



exp1

1
)( .     (3) 366 

Normally, summed input from several connected populations is necessary to 367 

create a self-stabilized activity pattern in a target population. Each 368 

connected population contributes a Gaussian input signal of certain strength 369 

whenever its activity level is above threshold.  The total input from all 370 

connected populations in the various layers of the dynamic field architecture 371 

layer ui can thus be mathematically described by 372 

    22
2/exp)(),( mlj

m j

mjl xxtcaKtxS       (4) 373 

where clj(t) is a function that signals the existence or evolution of a self-374 

sustained activation pattern in subpopulation j in layer ul, and amj is the 375 

inter-field synaptic connection between subpopulation j in ul to 376 

subpopulation m in ui. The parameter K scales the total input to the target 377 

population relative to the threshold for triggering a self-sustained pattern. 378 

This guarantees that the inter-field coupling is weak and the field dynamics 379 

is dominated by the recurrent interactions. 380 

The existence of a single, self-stabilized pattern of activation in a dynamic 381 

field can not only be used to implement a working memory function but is 382 

also closely linked to decision making. In layers ASL, IL, AEL and AML 383 

subpopulations encoding different action chains (ASL), goals (IL), 384 

complementary actions (AEL) and detected errors (EML), respectively, 385 

interact through lateral inhibition. These inhibitory interactions lead to the 386 

suppression of activity below resting level in competing neural pools 387 

whenever a certain subpopulation becomes activated above threshold. 388 

Figure 4 shows an example of the temporal evolution of activity in a field 389 

encoding different actions. The population for which the summed input 390 

from connected populations is highest wins the competition process. Note 391 

that at the beginning all subpopulations appear to be activated to some 392 

extent, that is, all action alternatives receive input from suprathreshold 393 

activity in connected pools. At time t=0 an additional input to the 394 

population encoding action A2 drives the activity beyond the critical level 395 

for a self-stabilized pattern.  396 

 397 

----------------Insert Figure 4 around here ------------- 398 

 399 
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To represent and memorize simultaneously (1) the location of several 400 

objects, and (2) multiple common subgoals, the spatial ranges of the lateral 401 

interactions in layers OML and CSGL were adapted to avoid a direct 402 

competition between different populations.  The updating of the memorized 403 

information is performed by defining a proper dynamics for the inhibition 404 

parameter, hi<0, of the population dynamics (Bicho, Mallet and Schöner, 405 

2000). A sufficiently large global inhibition destabilizes an existing activity 406 

peak. As a consequence, the population activity decays back to the stable 407 

resting state. 408 

 409 

 410 

5. Results 411 

 412 

In the following we validate the dynamic field architecture by presenting 413 

snapshots of the human-robot interactions in the assembly task. The 414 

examples illustrate the impact of action observation on decision making in 415 

varying context from the perspective of the robot. The focus is on showing 416 

and explaining the goal inference, error detection and anticipatory action 417 

selection capacities.  In all examples here reported the sequential order of 418 

sub-tasks for the construction of the „toy vehicle‟ is the following: First, 419 

mount wheels and fix them with nuts; second, insert column 1; third, insert 420 

column 2 and column 4; fourth, insert column 3, and finally mount the top 421 

floor. 422 

The videos of the human-robot interaction and the associated dynamics of 423 

the fields can be found at  424 

http://dei-s1.dei.uminho.pt/pessoas/estela/JASTvideosBookIS.htm.  425 

Alternatively, the videos may be seen at 426 

http://www.youtube.com/watch?v=A0qemfXnWiE (video 1) and 427 

http://www.youtube.com/watch?v=7t5DLgH4DeQ (video 2). 428 

 429 

 430 

5.1 Pro-active behavior and goal inference based on an anticipatory 431 

model of action observation 432 

 433 

----------------Insert Figure 5 around here ------------- 434 

----------------Insert Figure 6 around here ------------- 435 

----------------Insert Figure 7 around here ------------- 436 

----------------Insert Figure 8 around here ------------- 437 

----------------Insert Figure 9 around here ------------- 438 

 439 

An important prerequisite for successful and fluent interaction is that both 440 

team members must be committed to the fulfillment of the joint task. For the 441 

http://dei-s1.dei.uminho.pt/pessoas/estela/JASTvideosBookIS.htm
http://www.youtube.com/watch?v=A0qemfXnWiE
http://www.youtube.com/watch?v=7t5DLgH4DeQ
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robot this means that it should be able to initiate the assembly work and take 442 

initiative whenever the human partner is taking too long to act. Moreover, 443 

the robot should be able to show its commitment to the team by selecting an 444 

action in anticipation of the consequences of the co-actor‟s action.  445 

Anticipation of action effects is possible since the robot simulates the co-446 

actor‟s motor intentions using its own knowledge about goal-directed action 447 

sequences in the assembly task. The two capacities are tested in the 448 

experiment illustrated in Figure 5. The robot‟s camera view shows that all 449 

components are distributed on the table (Fig. 6, panel B). The activity 450 

patterns in the OML represent the knowledge about the corresponding 451 

distribution of the components in the two working areas (Fig. 6, panels A 452 

and C).  The robot takes the initiative to start the assembly work while the 453 

co-actor is still reading the instructions and thus does not show any object-454 

directed action.  Since the robot has no wheel within its reach, it decides to 455 

request a wheel to mount it on its side of the platform (Fig.5, snapshots S1-456 

S2). This decision is possible because the information about the available 457 

subgoals (see the CSGL, Fig.7) and the location of parts in the two working 458 

areas (see the OML, Fig.6) creates sufficient input to the AEL to trigger a 459 

self-stabilized activation peak centered at the action „request wheel‟ (see 460 

Panel B in Fig.8, time interval T1-T2).  461 

The user then grasps a wheel. However, her intention is not to transfer it to 462 

the robot but to mount it on her side.  As can be seen, at the moment of 463 

grasping the wheel (Fig.5, snapshots S2-S3) the robot is able to anticipate 464 

the partner‟s motor intention and immediately prepares for holding  the base  465 

in order to help the user while she inserts the wheel on the axle (Fig.5, 466 

snapshots S4-S5). The capacity to infer the goal of the user at the time of 467 

grasping is possible because of the way in which the partner grasps an 468 

object conveys information about what she intends do with it. The robot has 469 

sequences of motor primitives in its motor repertoire that associate the type 470 

of grasping with specific final goals. A grasping from above is used to 471 

attach a wheel to the axle whereas using a side grip is the most comfortable 472 

and secure way to hand the wheel over to the co-actor. The observation of 473 

an above grip (represented in the AOL) together with information about the 474 

currently active subgoal(s) (attach wheel on the user‟s side) trigger an 475 

activation peak in ASL that represents the simulation of the corresponding 476 

„reaching-grasping-inserting‟ chain (see Panel A in Fig.8, time interval T2-477 

T3), which automatically activates the underlying goal in the intention layer 478 

(see Fig.9, T2-T3). The evolving activation pattern in the AEL (panel B, 479 

Fig.8, T2-T3) reflects the decision to stabilize the base.  The robot‟s 480 

decision to give up its own intention to attach a wheel is a result of slight 481 

differences in the connection strengths between representations in the CSGL 482 
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and the AEL. These differences favor the realization of the user‟s subtasks 483 

over the subtasks that are under the control of the robot.    484 

When the user has attached the wheel the corresponding activation peak in 485 

CSGL disappears and an activation pattern representing the subsequent 486 

subgoal („insert nut on user‟s side‟ to fix the wheel) automatically evolves 487 

(see Fig.7, T3-T4).  The second subgoal „insert wheel on robot‟s side‟ 488 

remains active.  489 

The user again takes long to act, this time because she is interrupted by a 490 

colleague entering the room (see video 1). The robot again takes the 491 

initiative and demands a wheel (Fig.5, snapshots S6-S7)  since as before the 492 

information represented in the CSGL and the OML is sufficient to trigger 493 

the corresponding action representation  in the AEL (Panel B in Fig.8, T3-494 

T4). Next, the user grasps a wheel with a „side grip‟ and the robot 495 

anticipates that she is going to hand it over (see ASL in Panel A in Fig.8, 496 

T4-T5).  The robot prepares to receive the wheel in order to mount it on its 497 

side of the platform (see snapshots S7-S9 in Fig.5, and the AEL activation 498 

in Fig.8, T4-T5). 499 

 500 

 501 

5.2 Understanding partially occluded actions and anticipating the user’s 502 

future needs 503 

 504 

----------------Insert Figure 10 around here ------------- 505 

----------------Insert Figure 11 around here ------------- 506 

----------------Insert Figure 12 around here ------------- 507 

----------------Insert Figure 13 around here ------------- 508 

 509 

In the previous example we have seen that the robot could infer through 510 

motor simulation the co-actor‟s motor intention from the way the object is 511 

grasped.  But what happens when the robot cannot directly observe the 512 

hand-object interaction?  In natural environments with multiple objects and 513 

occluding surfaces this is a realistic scenario. The capacity to discern the 514 

user‟s motor intention and to select an appropriate complementary behavior 515 

should of course not be disrupted by missing information about the grip type 516 

used. Information about the context in which the action is executed may 517 

sustain the motor simulation process. This is illustrated in the following 518 

interaction scenario in which only the „reaching‟ part of the user‟s action 519 

sequence can be observed. The robot sees the hand disappearing behind an 520 

occluding surface but knows that there is a wheel behind (Fig.10) since the 521 

occluder has been introduced into the scene only after the robot could 522 

memorize the position of the wheel in the workspace.  Figure 11 illustrates 523 

the goal inference mechanism in this situation.  The AOL (not shown) only 524 
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codes the reaching behavior. The currently possible subgoals represented in 525 

CSGL are „insert wheel on user‟s side‟ and „insert wheel on robot‟s side‟ 526 

(Fig.11, Panel A). The inputs from the AOL and the CSGL to the ASL are 527 

thus compatible with two competing chain representations and thus should 528 

only pre-activate these representations. The additional input necessary for 529 

goal inference comes from the information about the location of the wheel 530 

in the user‟s workspace represented in the OML (see Panel B in Fig. 11). 531 

This input triggers the evolution of a self-stabilized activation peak in the 532 

ASL representing the action sequence „reach wheel-grasp-insert‟ (see Panel 533 

C in Fig.11). This activation in turn induces a suprathreshold pattern in the 534 

IL representing the underlying goal „insert wheel‟ (see Panel B in Fig.12; 535 

see also snapshot S4 in Fig.10). When the activation pattern in IL rises 536 

above threshold it initiates a dynamic updating process in the second layer 537 

of the CSGL, representing the next possible subgoal(s) for the user (Panel 538 

C, Fig.12; see also snapshot S5 in Fig. 10). This representation allows the 539 

robot to select a complementary action that serves user‟s future needs.  540 

In summary, in this example „insert wheel on robot side‟ and „insert wheel 541 

on user‟s side‟ are two currently available subgoals, the robot infers that the 542 

user is grasping a wheel with the intention to mount it.  The next possible 543 

subgoal for the user is „insert nut‟ in order to fix the wheel. All the nuts and 544 

one wheel are located in the robot‟s workspace.  As a consequence, three 545 

complementary actions in AEL are supported by input from connected 546 

populations and thus compete for expression in the robot‟s overt behavior 547 

(see Fig.13): „insert wheel‟, „give nut‟ and „hold the base‟. As can be seen 548 

when comparing the pattern of activation that evolves in the AEL, the robot 549 

decides to serve the human by grasping a nut for handing it over (see Fig.10, 550 

snapshots S5-S6). 551 

 552 

 553 

5.3 Error detection and context-sensitive interpretation of a request  554 

gesture  555 

 556 

----------------Insert Figure 14 around here ------------- 557 

----------------Insert Figure 15 around here ------------- 558 

----------------Insert Figure 16 around here ------------- 559 

 560 

Even in known tasks the user can easily become confused and make errors 561 

that should be corrected by the co-actor before failure becomes manifested. 562 

For example, the user may get confused with the different columns (labeled 563 

as C1 to C4) and tries to insert a certain column in the wrong whole or tries 564 

to manipulate the columns in a wrong sequential order. The example shown 565 

in Fig.14, illustrates two cases in which the robot‟s error monitoring layer 566 
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detects mismatches between the inferred intention of the user and the state 567 

of the construction, that is, between the intention and possible subgoals. In 568 

the two cases, the robot reports the error to the user and explains what needs 569 

to be done. This interaction scenario also allows illustrating the robot‟s 570 

ability to infer the goal of a request gesture.  571 

As illustrated by snapshot S16 (in Fig.14), the robot observes the user 572 

grasping column C4 with a top grip  which it interprets via action simulation 573 

as belonging to a „grasping to insert sequence‟ (see Fig.15, time interval T7-574 

T8). However, the activation pattern in the DNF of the CSGL representing 575 

present available subgoal(s) indicates a conflict. The correct subtask is to 576 

„insert column C1 on the robot‟s side‟ (Panel A in Fig.16, time interval T7-577 

T8). Input from this field together with input from IL (Panel B in Fig.16, 578 

time interval T7-T8) triggers a suprathreshold peak of activation in a 579 

population encoding the error in user‟s intention (see Panel C in Fig.16, 580 

time interval T7-T8). The error related activity is linked to a subpopulation 581 

in AEL that represents a corrective response. In this case, suprathreshold 582 

activity initiate speech output to report the mismatch and to explain what 583 

needs to be done (see snapshot S17-S18 in Fig.14, and field activity in the 584 

AEL depicted in Panel D of Fig.16). The content of the speech combines the 585 

information coded in the activation patterns that have initially triggered the 586 

error related activity, i.e. intention layer (IL) and possible active sub-goals 587 

represented in CSGL, respectively (“You cannot insert column 4 yet. First, 588 

we need to insert column 1”).  Subsequently, the user proceeds by grasping 589 

column C1 (snapshot S19, Fig.14) which the robot interprets as belonging to 590 

a „grasp to handover‟ chain (see Fig. 15, time interval T8-T9). An activation 591 

pattern starts to evolve in AEL (Panel D in Fig. 16, time interval T8-T9) that 592 

represents  the robot‟s  decision to receive column 1 for inserting it in the 593 

corresponding whole of the platform (snapshots S20-S21, Fig.14).  594 

Next the user opens up her empty hand as it moves towards the robot 595 

(snapshot 22, Fig.14). The robot has this gesture associated with „request 596 

object‟ in its motor repertoire.  The observation of this unspecific gesture 597 

activates to some extent all action chains in the ASL linked to requesting the 598 

components of the toy vehicle  that are in the robot‟s workspace (in this 599 

example nut and column C3). The nuts have already been attached (working 600 

memory about already achieved subtask is represented by self-stabilized 601 

activation patterns in the “past” layer of the CSGL, not shown).   Thus the 602 

robot interprets the user‟s gesture as a request for column C3 (see snapshot 603 

S22 in Fig14, and field activity in ASL in Fig.15, time interval T9-T10).  604 

The bimodal activation pattern in CSGL (panel A, Fig.16) indicates that the 605 

currently available subgoals are inserting columns C2 and C4 on the user‟s 606 

side of the platform. Hence similar to the preceding example, input from 607 

this field together with input from IL induces a suprathreshold peak of 608 
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activation in a population of the error layer representing that „inserting 609 

column C3‟ is an error in intention (see snapshot S23 in Fig.14, and panel D 610 

in Fig.16, in the interval T9-T10). The robot verbally signals the error and 611 

explains what sub-goals are currently possible (snapshot S24, Fig.14). 612 

Subsequently, the user grasps and inserts column C4 while the robot assists 613 

the human user by stabilizing the base.   614 

 615 

 616 

6. Discussion 617 

 618 

We presented a robot control architecture for human-robot collaboration that 619 

is inspired by neurocognitive theories about how humans perceive and act in 620 

a social context. The results of the validation in a joint assembly task show 621 

that the implementation of a human-like joint action model in the robot 622 

supports a fluent and flexible task execution. The ease with which humans 623 

coordinate in routine joint activity their decisions in space and time is 624 

impressive. The capacity to quickly register the co-actor's motor intention 625 

before his or her action sequence is completed is essential for a fluent 626 

performance in human team activity (Sebanz, Knoblich and Bekkering, 627 

2006). Being able to select an action based on predicted effects of the co-628 

actor's behaviour is thus considered a crucial skill for robots in order to be 629 

fully accepted by a human user as a social partner in cooperative tasks 630 

(Hoffman and Breazeal , 2007). Converging lines of experimental evidence 631 

support the notion of an automatic and obligatory motor simulation process 632 

as the underlying mechanism for the intention understanding capacity (for 633 

review see Rizzolatti and Craighero, 2004). 634 

The dynamic field architecture implements the idea that goal inference, 635 

performance monitoring and action selection occur rather effortlessly and do 636 

not require a fully developed human capacity for conscious control (for a 637 

review Ferguson and Bargh, 2004). As the representation of context, goals 638 

and shared task knowledge are interconnected, the observation of a motor 639 

act together with situational cues activates through motor simulation first 640 

the self-sustained population representations of the related goal and 641 

subsequently the representation of the most appropriate complementary 642 

action. As our examples show, this automatic process includes situations in 643 

which the human partner acts in an unexpected or inappropriate manner. 644 

This view on intention communication and joint action planning contrasts 645 

with most robot control architectures that have been tested in the past in 646 

similar collaborative tasks (e.g., Alami et al., 2005; Steil et al., 2004; Gast et 647 

al., 2009; but see Breazeal, Gray and Berlin, 2009, for a conceptually 648 

similar approach). Typically, these architectures include dedicated modules 649 

that organize the high-level task of intention coordination between the co-650 
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actors and the intelligent monitoring of the team performance using some 651 

form of symbolic manipulation and logic. Although we do not deny that the 652 

results of our robotics experiments could be implemented in a symbolic 653 

framework we argue here that the additional planning process that would be 654 

needed to link the high-level representations to the motor level of the robot's 655 

actuators would greatly reduce the effectiveness of those representations. 656 

In the dynamic field architecture the decision process linked to 657 

complementary actions unfolds over time under multiple influences which 658 

are themselves modelled as dynamic representations with proper time 659 

scales. This is the basis of flexible behaviour in dynamic joint action 660 

conditions. The absence or delay of information about for instance the co-661 

actor's motor intention will automatically lead to a decision that does not 662 

take into account the co-actor (Bicho et al., in press). Conversely, the 663 

dynamic updating of the currently available subgoals for the team based on 664 

predicted effects of the co-actor's ongoing action allows for anticipatory 665 

action planning. If on the other hand the predicted effect is inconsistent with 666 

the current goals for the team the obligatory integration of evolving 667 

suprathreshold activity in the action monitoring layer may override the 668 

planning of a  pre-potent complementary action. 669 

Among the many possible types of errors that might occur during joint 670 

activity of the human-robot team (for a discussion see Spexard et al., 2008) 671 

we have focused in this chapter on the detection and communication of 672 

intention errors made by the human partner. The proposed action monitoring 673 

mechanism can be easily extended to cope with other types of unexpected 674 

events including errors made by the robot. For instance, the co-actor may 675 

show a request gesture with the intention to fulfil the valid subgoal of fixing 676 

the wheel with a nut. However, since a nut is located in her workspace, 677 

responding to the request by transferring the nut would not be an efficient 678 

behaviour of the robot. Population activity in the EML that combines the 679 

information from the OML about object location and the ASL about the 680 

goal of the request gesture should instead trigger for instance a pointing 681 

gesture to attract the co-actor's attention to the nut in her workspace. 682 

Similarly, population activity in the AML that automatically integrates the 683 

information about the goal (represented in CSGL) of a self-performed 684 

sequence like reaching-grasping-attaching a wheel and proprioceptive 685 

(and/or visual) information about an accidental loss of the wheel during 686 

transportation may allow the robot to quickly start searching for a new 687 

wheel or to ask the human for assistance. Interestingly, studies investigating 688 

the functional system for action monitoring suggest that humans use similar 689 

cognitive and neural mechanisms to detect own and observed errors in joint 690 

action (Bekkering et al., 2009). 691 
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The focus of the present experiments was on implicit communication. The 692 

robot had to interpret the co-actors actions and gestures in terms of a goal to 693 

select an adequate complementary action. Although we have argued that 694 

joint activity in a familiar task often does not require explicit 695 

communication it is undeniable that being able to communicate with the 696 

robot system by natural speech would greatly facilitate human-robot 697 

interactions in many situations (e.g., Spexard et al., 2007; Pardowitz  et al., 698 

2007; Gast et al., 2009). Our robot speaks aloud to make its goal inference 699 

and action monitoring capacities transparent for the user. The knowledge 700 

about the robot's cognitive capacities supports predictability of its behaviour 701 

which is essential to an effective collaboration. Using a simplified version 702 

of a joint assembly task in which the robot merely assists the human user by 703 

handing over pieces (Bicho, Louro and Erlhagen, 2010), we have recently 704 

made first steps towards integrating in the DNF-model of joint action  the 705 

capacity to understand simple action-related speech.  The basic idea is that 706 

the automatic resonance of motor structures during action observation 707 

extends to the language domain. The robot  understands sentences like Give 708 

me the wheel or I give you the wheel by covertly activating semantically 709 

congruent  motor representations that are linked to the specific goal or end-710 

state (e.g. hand opens up as it moves towards the co-actor for a request 711 

gesture and a reaching-grasping-holding out sequence for a handing over 712 

procedure). This embodied view on language comprehension is supported 713 

by findings in a range of recent experimental studies (for review see Fischer 714 

and Zwaan, 2008). 715 

 716 

 717 

7. Conclusions and outlook 718 

 719 

The work presented in this chapter wished to contribute to the development 720 

of design principles for robots that are supposed to directly collaborate with 721 

their human partners in shared tasks. As an exquisitely social species, 722 

humans are experts in coordinating actions and decisions with other in order 723 

to achieve common goals. We believe that implementing a human-like joint 724 

action model in the robot is a promising approach because it will allow the 725 

artificial cognitive agent to meet the user's expectations about a pleasant, 726 

efficient and successful interaction with a socially intelligent partner. While 727 

theories about the neurocognitive mechanisms supporting human joint 728 

action have now reached a sufficient level of detail to guide robotics work,  729 

it is also clear that these theories contain hypothesis and assumptions for 730 

which the experimental evidence is still under debate.  Implementing and 731 

testing theories and hypothesis about human joint action in an embodied 732 

agent with sensory, motor and cognitive capabilities offers in our view 733 
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unique opportunities for researchers from cognitive science and 734 

neuroscience. 735 

The adopted dynamic perspective offers in general a high degree of 736 

flexibility and robustness in joint task execution. However, the present 737 

implementation of the dynamic field architecture limits the cooperative 738 

interactions to the specific assembly task since the neural representations 739 

and their connectivity were tailored by the designer.  It is thus highly 740 

desirable to endow the robot with a developmental program that would 741 

allow the artificial agent to autonomously learn and represent new task-742 

relevant representations (Weng, 2004). Learning efficient joint action 743 

coordination in a complex task is a very demanding and to a large extent 744 

unsolved problem even when starting with a "minimal" set of pre-defined 745 

capacities and knowledge. Adopting a socially guided machine learning 746 

paradigm in which a human trainer teaches a robot through demonstration 747 

and verbal or gestural commands in much the same way as parents teach 748 

their children seems to be a promising research direction (Otero et al., 2008; 749 

Thomaz and Breazeal, 2008). First experimental results of our attempt to 750 

apply a learning dynamics for establishing inter-field connections show the 751 

feasibility of the approach.  Using correlation-based learning rules (Gerstner 752 

and Kistler, 2002) with a gating that signals the success of behaviour, we 753 

have shown for instance how goal-directed mappings between action 754 

observation and action execution that support an action understanding 755 

capacity may develop during learning and practice (Erlhagen, Mukovskiy 756 

and Bicho, 2006; Erlhagen et al., 2006). Importantly, the developmental 757 

process may explain the emergence of new task-specific populations which 758 

have not been introduced to the architecture by the human designer 759 

(Erlhagen et al., 2007).  760 

We are currently applying and testing a learning by demonstration approach 761 

to systematically address the question of how ARoS may acquire and store 762 

the knowledge about the serial order of task execution that was predefined 763 

by the designer in the experiments reported here.  For the present dynamic 764 

field architecture this means to autonomously develop the connections 765 

between neural populations in the two sublayers of CSGL representing 766 

subsequent steps of the assembly plan. We exploit here the self-stabilizing 767 

properties of the field dynamics determined by the recurrent interactions 768 

within each population and fixed   excitatory and inhibitory connections 769 

between neuronal populations in both layers representing the same assembly 770 

step or subgoal of the construction plan. During demonstration by a human 771 

teacher, ARoS perceives changes in the state of the construction. This visual 772 

input triggers a suprathreshold activity pattern of the neural population in 773 

the second layer representing the currently achieved subgoal. Mediated by 774 

excitatory connections this activity propagates to the population in the first 775 
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layer and initiates the evolution of a self-sustained activity pattern. This 776 

pattern implements a working memory function in the first layer and 777 

suppresses through inhibitory feedback connections the population activity 778 

in the second layer.  Importantly, the actively maintained representation of 779 

the achieved subgoal allows the robot to learn associations between 780 

subsequent assembly steps that are separated in time. Correlation-based 781 

learning takes place whenever a perceived change in the state of 782 

construction triggers a transient population representation of a newly 783 

achieved subgoal in the second layer. Since the serial order of task 784 

execution may not be exactly the same in different demonstrations of the 785 

task (e.g., different teachers), association between a single memorized 786 

subgoal and several possible next steps may be learned during observation.   787 

The work on learning and development in the dynamic field architecture for 788 

joint action represents first steps towards robotics systems that will 789 

ultimately be able to autonomously built representations for assisting 790 

different human users in a large variety of tasks.  We believe that combining   791 

the processing principles   of neural field dynamics and different machine 792 

learning techniques in the context of the socially guided learning paradigm   793 

represents a promising research direction towards achieving this demanding 794 

goal. 795 
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List of Figures & captions 979 

 980 

 981 

Figure 1: Human-robot team and scenario for the joint construction task. 982 

The team has to collaborate in the construction of a „toy vehicle‟ (shown in 983 

panel b) from components that are initially distributed on a table (panel a).   984 

985 



26 

 

 986 

 987 

Figure 2: Schematic view of the cognitive architecture for joint action. It 988 

implements a flexible mapping from observed actions (layer AOL) onto 989 

complementary actions (layer AEL) taking into account the inferred action 990 

goal of partner (layer IL), detected errors (layer EML), contextual cues 991 

(OML) and shared task knowledge (CSGL). The goal inference capacity is 992 

based on motor simulation (layer ASL). 993 

 994 

 995 

 996 

 997 

Figure 3: The activity of a neural population is shown that represents 998 

through a self-stabilized activation peak the presence of information about a 999 

grasping behaviour  (dashed-dotted line), while a flat, low-level distribution 1000 
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of activity (solid line) indicates that information about this motor primitive  1001 

is currently not processed.  In response to a weak input the population 1002 

generates an activation pattern with amplitude below the threshold 1003 

necessary to trigger an interaction-dominated activation peak (dashed line). 1004 

 1005 

 1006 

Figure 4: Decision making in a field representing different actions, A1 to 1007 

A4. The decision is triggered by a sufficiently strong input at time t=0 to 1008 

population A2. Note that at this time all 4 populations are activated below 1009 

the critical value for a self-stabilized pattern.   1010 

 1011 

 1012 
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 1013 

Figure 5: Snapshots, S1-S9, in the time interval T1-T5 of video 1 (long 1014 

interaction scenario) illustrate the robot‟s pro-active behavior and its goal 1015 

inference capacity which is based on an anticipatory model of action 1016 

observation.  1017 
  1018 
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 1019 

Figure 6: Snapshot of the robot‟s vision system (Panel B) and 1020 

corresponding representations of objects in the OML. It contains two fields, 1021 

one for each workspace (i.e. Panels A and C). In each field the presence of 1022 

an object of a particular class is represented by a peak of activation.    1023 
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 1024 

 1025 

Figure 7: The temporal evolution of activity in the dynamic field encoding 1026 

the currently available subgoals (in the CSGL) is shown in the interval T1-1027 

T5 (video 1). The snapshots S1 and S6 show the corresponding events of the 1028 

human-robot interactions.   1029 
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 1030 

 1031 

Figure 8: Proactive behavior and goal inference based on an anticipatory 1032 

model of action observation (video 1, time interval T1-T5). (A) Temporal 1033 

evolutions of input to ASL (top) and field activity in ASL (bottom). (B) 1034 

Temporal evolutions of input to AEL (top) and field activity in AEL 1035 

(bottom)  1036 
 1037 

 1038 

 1039 

 1040 

 1041 

 1042 

 1043 
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 1044 
 1045 

Figure 9: Temporal evolution of field activity in the intention layer (IL) 1046 

during time interval T1-T5 (video 1). 1047 

  1048 
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 1049 

 1050 

 1051 

Figure 10: Video 2: (A) Video snapshots showing action understanding of 1052 

partially occluded actions (S1-S4) and anticipation of the user‟s future needs 1053 

(S4-S6). (B)  Snapshots of the robot‟s vision system.  1054 
 1055 

  1056 
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 1057 

 1058 

Figure 11: Video 2: (A) Temporal evolution of field activity representing 1059 

present possible subgoals (in the CSGL). (B) Temporal evolutions of field 1060 

activity in the OML. (C) Temporal evolutions of input to the ASL (top) and 1061 

the field activity of the ASL (bottom).  1062 
 1063 

 1064 

 1065 

 1066 

 1067 
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 1068 

 1069 

Figure 12: Updating of the dynamic field representing subsequent subgoals 1070 

for the user based on a prediction of his/her current motor intention. Input 1071 

from the dynamic field encoding the current subgoals (A) and input from IL 1072 

(B) induces suprathreshold peak(s) of activation in the field encoding 1073 

subsequent assembly steps (C). 1074 
 1075 

  1076 
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 1077 

 1078 

 1079 

 1080 

Figure 13: Video 2: Anticipatory action selection. The temporal evolution 1081 

of total input to AEL (top) and field activity in AEL (bottom) are shown.  1082 

The robot decides to transfer a nut to the user (´give nut` action, snapshots 1083 

S5-S6, Fig.10).  1084 
  1085 
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 1086 

Figure 14: Snapshots of Video 1 (long interaction scenario) in the time 1087 

interval T7-T11 are shown. They illustrate the robot‟s capacity to detect and 1088 

correct the user‟s intention errors and interpret a request gesture in a 1089 

context-sensitive manner (see the text for details).    1090 

 1091 
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 1093 
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 1095 

 1096 

 1097 

 1098 

 1099 
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 1104 

 1105 

Figure 15: Error detection and context-sensitive interpretation of a request 1106 

gesture (video 1, time interval T1-T10). The temporal evolution of input to 1107 

the ASL (top) and the field activity in the ASL (bottom) are shown. 1108 

 1109 

  1110 
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 1111 

 1112 

 1113 

 1114 

 1115 

Figure 16: The temporal evolution of activity in different fields is shown 1116 

for the Video 1 (long interaction scenario) in the time interval T7-T10. (A) 1117 

Field of the CSGL representing currently available subgoals, (B) IL, (C) EI 1118 

encoding the errors in intention, (D) AEL.  1119 

 1120 

 1121 


