22 research outputs found

    Macroscopic network circulation for planar graphs

    Get PDF
    The analysis of networks, aimed at suitably defined functionality, often focuses on partitions into subnetworks that capture desired features. Chief among the relevant concepts is a 2-partition, that underlies the classical Cheeger inequality, and highlights a constriction (bottleneck) that limits accessibility between the respective parts of the network. In a similar spirit, the purpose of the present work is to introduce a new concept of maximal global circulation and to explore 3-partitions that expose this type of macroscopic feature of networks. Herein, graph circulation is motivated by transportation networks and probabilistic flows (Markov chains) on graphs. Our goal is to quantify the large-scale imbalance of network flows and delineate key parts that mediate such global features. While we introduce and propose these notions in a general setting, in this paper, we only work out the case of planar graphs. We explain that a scalar potential can be identified to encapsulate the concept of circulation, quite similarly as in the case of the curl of planar vector fields. Beyond planar graphs, in the general case, the problem to determine global circulation remains at present a combinatorial problem

    Exact Algorithms for the Maximum Planar Subgraph Problem: New Models and Experiments

    Get PDF
    Given a graph G, the NP-hard Maximum Planar Subgraph problem asks for a planar subgraph of G with the maximum number of edges. The only known non-trivial exact algorithm utilizes Kuratowski\u27s famous planarity criterion and can be formulated as an integer linear program (ILP) or a pseudo-boolean satisfiability problem (PBS). We examine three alternative characterizations of planarity regarding their applicability to model maximum planar subgraphs. For each, we consider both ILP and PBS variants, investigate diverse formulation aspects, and evaluate their practical performance

    Optimal Morphs of Convex Drawings

    Get PDF
    We give an algorithm to compute a morph between any two convex drawings of the same plane graph. The morph preserves the convexity of the drawing at any time instant and moves each vertex along a piecewise linear curve with linear complexity. The linear bound is asymptotically optimal in the worst case.Comment: To appear in SoCG 201

    Spanning quadrangulations of triangulated surfaces

    Get PDF
    corecore