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Abstract

In this paper we study alternating cycles in graphs embedded in a surface. We observe
that 4-vertex-colorability of a triangulation on a surface can be expressed in terms of spanninq
quadrangulations, and we establish connections between spanning quadrangulations and cycles
in the dual graph which are noncontractible and alternating with respect to a perfect matching.
We show that the dual graph of an Eulerian triangulation of an orientable surface other than
the sphere has a perfect matching M and an M -alternating noncontractible cycle. As a conse-
quence, every Eulerian triangulation of the torus has a nonbipartite spanning quadrangulation.
For an Eulerian triangulation G of the projective plane the situation is different: If the dual
graph G∗ is nonbipartite, then G∗ has no noncontractible alternating cycle, and all spanning
quadrangulations of G are bipartite. If the dual graph G∗ is bipartite, then it has a noncon-
tractible, M -alternating cycle for some (and hence any) perfect matching, G has a bipartite
spanning quadrangulation and also a nonbipartite spanning quadrangulation.

Keywords: Vertex-coloring, edge-coloring, quadrangulation, alternating cycle.
Mathematics Subject Classification:05C10, 05C15

1 Introduction

5-vertex-colorability of a graph on a fixed surface is well understood in the following sense: There
are only finitely many minimal graphs that are not properly 5-vertex-colorable, [9]. There is
no analogous result for 4-vertex-coloring (except when the surface is the sphere) because of the
Ballentine-Fisk triangulations, see [6], page 241.

Tait proved in 1880 (see Jensen and Toft [3] page 16) that there is a one-to-one correspondance
between the 4-vertex-colorings of a planar triangulation and the proper 3-edge-colorings of the dual
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Danish Natural Science Research Council grant number 09-072584.
†Research partly supported by ERC Advanced Grant GRACOL.
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graph. A proper 3-edge coloring of the dual graph can also be expressed as an edge-coloring of the
triangulation such that every triangle receives all three colors, or equivalently, the union of any two
colors is a spanning quadrangulation. With a slight modification, this extends to higher surfaces
as follows:

Proposition 1 A triangulation G of a surface has a proper 4-vertex-coloring if and only if its edge
set has a proper 3-edge-coloring such that any two colors induce a bipartite spanning quadrangula-
tion.

The ”if” part is trivial as the union of two bipartite graphs is 4-vertex-colorable. To prove the ”only
if” part, we consider a 4-vertex-coloring where we think of the four colors as the ordered pairs (i, j)
where each of i, j is 0 or 1. We give each edge of the triangulation the color which is the sum of the
colors of the ends, where addition is taken modulo 2. Then the edge set is colored with the colors
(0, 1), (1, 0), (1, 1), and any two color classes form a spanning quadrangulation Q. To see that Q is
bipartite, let us assume that C is an odd cycle in Q. The sum of colors of the edges in C is the
sum of colors of vertices where each vertex appears twice. That is, the sum is (0, 0). As the edges
of Q have only two colors, one of the colors appears an even number of times with total sum (0, 0),
and the other color appears an odd number of times with total sum 6= (0, 0), a contradiction.

Ramamurthi et al. [4] asked if every graph of large width on a fixed surface has a 2-vertex-
coloring such that no face boundary is monochromatic. It suffices to verify this for triangulations.
If we delete the edges of such a 2-vertex-colored triangulation joining the vertices of the same color
we get a bipartite spanning quadrangulation. If this question can be answered affirmatively, then
one may drop the condition of the width and conjecture that, for each surface, there are only finitely
many minimal graphs with no 2-vertex-coloring satisfying the condition that no face boundary is
monochromatic. This might be an intermediate step towards gaining a better understanding of
4-vertex-colorability of graphs on a fixed surface.

The edges in the triangulation but outside of the spanning quadrangulation form a perfect
matching in the dual graph. The purpose of this paper is to establish connections between matchings
and their alternating cycles in the dual graph of a triangulation (see Section 3 for a definition)
and then apply these connections to study spanning quadrangulations. We apply these results in
particular to triangulations on the torus or the projective plane as explained in the abstract. For
example, it follows that the above 2-vertex-coloring exists for every Eulerian triangulation of the
projective plane, even without the width condition. On the torus the width condition is needed
even for Eulerian triangulations as shown by K7 on the torus. More generally, if Kn triangulates a
surface other than the sphere, then every spanning quadrangulation is non-bipartite (except when
n = 4). To see this we use Euler’s formula n − e + f = 2 − g (where g ≥ 1 is the Euler genus) to
conclude that Kn has f ≤ n(n − 1)/2 − n + 1 faces and that the number of edges in a spanning
quadrangulation is n(n− 1)/2− f/2 > n2/4 so the quadrangulation contains a triangle, by Turán’s
theorem.

2 Notation and terminology

We follow the notation and terminology of [1, 6].
Let G be a graph embedded in a surface Σ with large width, where the (face) width or rep-

resentativity is the minimum number of times a noncontractible curve intersects the drawing of
G.

We are interested in 2-coloring the vertices of G such that no face is monochromatic. Observe
that we can extend G to a triangulation by adding edges without reducing its width, and this only
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makes 2-coloring G harder. This may create double edges (and G may have had such edges to
begin with,) but such double edges would form a contractible digon, that splits off a planar piece
which can easily be 2-colored. Thus we can identify the two digon edges, and we can assume that
G is simple.

Throughout this paper we assume that G is a (simple) triangulation, and a spanning quadran-
gulation Q refers to a spanning subgraph of G such that every face is bounded by a cycle on 4
vertices. Observe now that G can be 2-colored such that no face is monochromatic iff G contains
a spanning quadrangulation Q which is bipartite. Indeed, a proper 2-coloring of Q immediately
yields the 2-coloring for G, since the three vertices of a face of G are all contained in the same 4-gon
face of Q. Conversely, removing all the edges whose endpoints have the same color in a 2-coloring
of G, we obtain a bipartite graph Q, and since every face has two colors it is easy to see that the
faces of Q will be 4-gons.

Next we observe that every spanning quadrangulation Q of G corresponds to a perfect matching
M in the dual graph G∗, namely the set of edges that is dual to the edges in E(G)− E(Q). Since
G∗ is 3-regular and 2-connected, it follows from Petersen’s theorem that G∗ must have a perfect
matching. Thus every triangulation G has a spanning quadrangulation Q, but Q may or may not
be bipartite.

Definition 2 If G is a triangulation such that every spanning quadrangulation of G is bipartite
(respectively nonbipartite), then G is called q-even (respectively q-odd.) If G has spanning quad-
rangulations of both kinds, then it is q-mixed.

It seems like an interesting question in its own right to categorize the triangulations according
to their q-parity. The question from [4] we started out with can now be restated as follows:

Question 3 Are there q-odd triangulations of high width?

Hutchinson, Richter and Seymour [2] proved that an Eulerian triangulation of an orientable
surface with high width must be 4-colorable (and thus combining 2 colors, they are 2-colorable
such that no face is monochromatic.) Hence it cannot be q-odd.

3 Alternating cycles and spanning quadrangulations

The purpose of this section is to study the interplay between spanning quadrangulations of a
triangulation, and matchings and their alternating cycles in the dual graph.

We start our investigation with the observation that if we have a planar graph in which at
most one face has odd length, then in fact every face has even length and the graph is bipartite.
It follows immediately that every triangulation of the plane is q-even. The same argument shows
that in fact every surface separating cycle of a spanning quadrangulation of an arbitrary surface
must be of even length. Thus a spanning quadrangulation is nonbipartite if and only if it contains
a surface nonseparating (in particular noncontractible) odd cycle.

The following notion seems to be useful when going between bipartite and nonbipartite span-
ning quadrangulations. Given the perfect matching M in G∗ that corresponds to the spanning
quadrangulation Q, we say that a cycle C in G∗ is M -alternating if it alternates between edges
in M and edges not in M . The symmetric difference E(C)∆M is another perfect matching in G∗

corresponding to a new spanning quadrangulation QC of G. If C1, C2, . . . , Ck are pairwise disjoint
M -alternating cycles, then we define recursively QC1C2...Ck

= (QC1C2...Ck−1
)Ck

.
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Lemma 4 Let Q be a spanning quadrangulation of a triangulation G, with corresponding matching
M in G∗ and M -alternating cycle C in G∗ and let H = Q− E(C)∗ = QC − E(C)∗.

1. Q and QC are both nonbipartite if and only if H is nonbipartite.

2. Q and QC are both bipartite if and only if H is bipartite and C is surface separating.

3. Exactly one of Q and QC is bipartite if and only if H is bipartite and C surface nonseparating.

Proof. It suffices to prove the backward direction for all three statements, and this is obvious for
the first statement. So now we may assume that H is bipartite. Observe that if C meets a face
uvw in G, say with uv in Q and vw in QC , then uw must be in H. Suppose first that C is surface
nonseparating. Then any curve from u to v in the surface that does not meet C and meets the
drawing only in V (G) yields a uv-path in G−E(C)∗, which in turn yields a uv-path in H, so that
H is connected. In this case the 2-coloring of H is unique. In this 2-coloring u,w receive different
colors, and we may assume that v receives the same color as say w. Going along C we see that all
edges in E(C)∗ ∩M∗ are properly colored, whereas all edges in E(C)∗ −M∗ are monochromatic,
so that Q is bipartite, but QC is not.

If C is surface separating, then H has two components H1 (containing some u,w as above) and
H2 (containing v.) By the same argument as before the 2-coloring of H in which the colors of v
and w agree shows that Q is bipartite, whereas the 2-coloring of H in which the colors of v and u
agree shows that QC is bipartite.

Observe that the condition that C is surface separating is equivalent to the fact that H is
disconnected. This lemma immediately implies

Proposition 5 The following are equivalent for a triangulation G of any surface.

1. G is q-mixed.

2. G has a nonbipartite spanning quadrangulation, and for some (and hence every) nonbipartite
spanning quadrangulation Q with associated matching M in G∗ there is a collection of vertex-
disjoint surface nonseparating M -alterning cycles C1, C2, . . . , Ck in G∗ such that QC1C2...Ck

is a bipartite spanning quadrangulation.

Proof. It is obvious that 2 implies 1. To see that 1 implies 2 let Q be a nonbipartite spanning
quadrangulation, and Q′ be a bipartite one. The symmetric difference of their corresponding match-
ings M∆M ′ is a collection of cycles C1, . . . , Cm that are alternating for both matchings. Observe
that Q = Q′C1C2...Cm

, so that by Lemma 4.3 some of these cycles must be surface nonseparating,
say C1, . . . , Ck. Now observe that QC1...Ck

= Q′Ck+1...Cm
, and the latter is bipartite by Lemma 4.2.

Another easy consequence of Lemma 4.3 is the following.

Corollary 6 If G is a triangulation of the projective plane with a spanning quadrangulation Q that
has a surface nonseparating M -alternating cycle C in G∗, then G is q-mixed.

Proof. Observe that since C is a nonseparating cyle in the projective plane, Q − E(C)∗ is a
planar graph such that at most one face is not a 4-gon, and thus Q− E(C)∗ is bipartite.

Inserting a vertex into each face of a spanning quadrangulation we obtain an Eulerian triangula-
tion. Eulerian triangulations have nice properties. For example Hutchinson, Richter and Seymour
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[2] proved that an Eulerian triangulation of an orientable surface with high width must be 4-
colorable (and thus combining 2 colors, they are 2-colorable such that no face is monochromatic.)
The same statement is not true for nonorientable surfaces, since there are Eulerian triangulations
of large width that are not 4-colorable. The standard construction, given in the next result, turns
out to be q-mixed in any surface, orientable or not.

Proposition 7 Every surface Σ other than the plane has an Eulerian q-mixed triangulation of
arbitrarily high width.

Proof. Start with a nonbipartite quadrangulation Q′ of Σ with high width. (To see that
these exist one can start from a toroidal embedding of the cartesian product of two very long odd
cycles C2k+1, and then increase the genus by successively deleting the interior of some pairs of
m×m grids and then pairwise identifying the boundaries. As long as m is large enough and these
grids are mutually far enough apart the resulting spanning quadrangulation will be of high width,
and nonbipartite as long as some copy of C2k+1 is unaffected. This construction works when Σ is
distinct from the nonorientable surfaces with one, two, or three crosscaps. For those nonorientable
surfaces we can instead start with a quadrangulation of the sphere that contains a suffciently large
grid, remove an m ×m-grid for each desired crosscap, and make each vertex on the boundary of
such a removed grid adjacent to the opposite vertex on this boundary.)

To each face f of Q′ we add a new vertex vf to Q′ and make it adjacent to every vertex in f to
obtain a new graph G. G is clearly an Eulerian triangulation. Moreover G contains a nonbipartite
spanning quadrangulation obtained from Q′ by adding in the vertices vf together with two edges
each to nonadjacent vertices of f . But G also contains a bipartite spanning quadrangulation, which
can be obtained by removing the edges of Q′ from G, since then the vertices of Q′ form one color
class, and the facial vertices vf form the other color class.

4 The existence of noncontractible alternating cycles in bipartite
graphs

In the previous section we have tried to show how to make use of noncontractible alternating cycles
if they exist. We now address the question of existence. For bipartite graphs the existence can be
established by cycle space methods.

We say that a cycle in a graph G is alternating if it is M -alternating for some perfect matching
M . Let Z(G) denote the cycle space of G (see [1] page 35 for a definition), and let Z ′(G) be the
subspace of Z(G) that is generated by the alternating cycles.

Proposition 8 If M is a fixed perfect matching in a graph G, then Z ′(G) is generated by the
M -alternating cycles.

Proof. It suffices to prove that every alternating cycle C is the modulo 2 sum (i.e. the sym-
metric difference) of M -alternating cycles. As C is alternating, there are two perfect matchings
M1,M2 such that the edges in C are alternately from M1 and M2. We may assume that M1,M2

agree outside of C. We now consider the modulo 2 sum of all cycles in M ∪M1 and all cycles in
M ∪M2. This sum equals C.

Theorem 9 If G is a bipartite graph in which every edge is contained in some perfect matching,
then Z ′(G) = Z(G).
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Proof. It suffices to consider the case where G is connected. Let A,B be the bipartition
of G. As G is connected and every edge is in a perfect matching, there must be strict inequality
in Hall’s condition for every proper subset of A. (For, if S is a proper subset of A and the set
N(S) of neighbors of S has the same cardinality as S, then there is an edge from A \ S to N(S)
(because G is connected) but no such edge is in a perfect matching.) So, if u, v are vertices in A,B,
respectively, then G− u− v has a perfect matching M ′. As also G has a perfect matching, G has
an M ′-alternating path from u to v.

Let H be a maximal connected subgraph of G with the following properties:
(i) Each edge of H is in a perfect matching of H.
(ii) G− V (H) is empty or has a perfect matching M .
(iii) Z ′(H) = Z(H).
As every alternating cycle satisfies the conditions (i),(ii),(iii), H is nonempty. We claim that

H = G. So assume (reductio ad absurdum) that G has an edge e which is not in H, but is incident
with a vertex u in H. As e is in a perfect matching of G, G has an M -alternating path P from u
to some v ∈ V (H), which starts with e and which has no other vertex in common with H. Also,
H − u − v has a perfect matching M ′ such that H has an M ′-alternating path from P ′ from u
yo v. Now P ∪ P ′ is an alternating cycle in both G and H ′ = H ∪ P . Now Z ′(H) = Z(H), and
the dimension of Z(H ′) exceeds the dimension of Z(H) by precisely 1. The dimension of Z ′(H ′) is
strictly greater than the dimension of the cycle space of H, and thus Z ′(H ′) = Z(H ′). Therefore
H ′ satisfies (i),(ii),(iii), a contradiction.

Observe that every edge that is in an alternating cycle must be in a perfect matching, so that the
second condition in Theorem 9 is essentially necessary. Moreover, the conclusion in Theorem 9 does
not hold for nonbipartite graphs because (modulo 2 sums of) alternating cycles have an even number
of edges. It would be useful if the alternating cycles (in a connected graph where every edge is in a
perfect matching) would generate the subspace Z ′′(G) of Z(G) consisting of all eulerian subgraphs
with an even number of elements. (The dimension of Z ′′(G) is one less than the dimension of Z(G)
when G contains an odd cycle.) But the following example shows that the alternating cycles may
generate a subspace of much smaller dimension: For k ≥ 2 take a cycle v1v2 . . . v4kv1, and add all
edges v4iv4i−2, v4i−1v4i−3, i = 1, 2, . . . , k. For this graph G the dimension of Z(G) is 2k+ 1 whereas
Z ′(G) has dimension k + 1.

Theorem 10 Let H be a cubic bipartite graph drawn on any surface. Let M be any perfect match-
ing of H.

If H has a noncontractible cycle, then H has an M -alternating noncontractible cycle.
If H has a onesided cycle, then H has an M -alternating onesided cycle.
If H has a surface nonseparating cycle, then H has an M -alternating surface nonseparating

cycle.

Proof. Observe that the edge set of a cubic bipartite graph can be decomposed into perfect
matchings, and so each edge is in a perfect matching. Thus the last two statements follow directly
from Proposition 8 and Theorem 9 because a surface nonseparating cycle cannot be a modulo 2 sum
of surface separating cycles, and a onesided cycle cannot be a modulo 2 sum of twosided cycles. The
former obervation follows from the fact that a cycle is surface separating if and only if every closed
curve that avoids V (H) crosses its edges an even number of times, and this property is preserved
under modulo 2 sum. The latter observation can be derived similarly from the fact that a cycle is
onesided if and only if it has an odd number of edges with negative signature, see [6] page 101.

It is possible that a noncontractible cycle C is a modulo 2 sum of contractible cycles so this
case needs a different argument. We need only consider the case where C divides the surface into
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two surfaces, each distinct from the sphere. If H is a 2-cell embedding of one of these, then the
part of H in that surface has a surface nonseparating cycle (see [6] page 106) and we are done.
Otherwise each of the two parts of the surface has a face which is not homeomorphic to a disc. We
replace each of these faces by a tube whose boundaries are the two face boundaries. In this new
surface C is surface nonseparating. Hence H has an M -alternating surface nonseparating cycle C ′

in this new surface. Then C ′ is noncontractible in the original surface.

5 Eulerian triangulations of the projective plane

Theorem 11 Let G be an Eulerian triangulation of the projective plane.
If G∗ is bipartite, then G is q-mixed.
If G∗ is not bipartite, then G is q-even.

Proof. Observe that G∗ must have a surface nonseparating cycle (see [6] page 106). Thus the
first statement follows from Theorem 10 with H = G∗ and Corollary 6 and it suffices to consider
the case when G∗ is not bipartite.

Observe that if G∗ contains any noncontractible even cycle C∗, then G∗ is bipartite. This
follows since if we cut the projective plane along C∗, G∗ yields a graph embedded in the plane
whose exterior face is bounded by a cycle C of length 2|C∗|. Since G is Eulerian all faces of G∗ are
even length, and this graph is properly 2-colorable. This coloring yields a proper 2-coloring of G∗

since |C∗| being even implies that two copies of the same vertex of G∗ on C receive the same color.
Thus we may now assume that every noncontractible cycle in G∗ is odd.

Now suppose that G contains a nonbipartite spanning quadrangulation Q, and let C be an odd
cycle in Q. Then C must be noncontractible, since otherwise its interior forms a planar bipartite
graph, contradicting the fact that C has odd length. Let E∗ be the set of edges in G∗ that are dual
to the edges in C. Removing the edges in E∗ from G∗ we obtain a planar graph H with at most
one face of odd length (because C is surface nonseparating and hence G∗ − V (C) is connected)
which must therefore be bipartite with partition V0 ∪ V1. Since the perfect matching in G∗ that
corresponds to the edges of E(G)−E(Q) is still a perfect matching in H, we obtain that |V0| = |V1|.

Consider any edge uv ∈ E∗. Observe that there is a noncontractible cycle in G∗ that meets E∗

only in the edge uv. Since this cycle is odd it follows that u, v are in the same part Vi. Thus an
edge in G∗ has endpoints in both V0, V1 if and only if it is not in E∗. Let ei denotes the number
of edges induced by Vi. Since G∗ is cubic counting the number of edges between V0 and V1 yields
3|V0| − 2e0 = 3|V1| − 2e1. Thus e0 = e1, contradicting the fact that e0 + e1 is odd, since it counts
the number of edges in C.

A triangle replacement of a triangulation G on a surface is the triangulation obtained by sub-
dividing each edge of G and pairwise connecting the three new vertices of any face. By doing
sufficiently many triangle replacements of G we obtain a graph G′ whose width is strictly larger
than the width of G. Moreover G′ is Eulerian if and only if G is, and the parity of a cycle in G′∗

is the same as that of the corresponding cycle in G∗.

Corollary 12 (i) There are no q-odd Eulerian triangulations of the projective plane.
(ii) There are q-mixed Eulerian triangulations of the projective plane of arbitrarily large width.
(iii) There are q-even Eulerian triangulations of the projective plane of arbitrarily large width.

Proof. Theorem 11 implies (i).
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Proposition 7 implies (ii).
To prove (iii), let G0 be any nonbipartite Eulerian triangulation of the projective plane. Thus

if we successively let Gi+1 = G′i, then we obtain Eulerian triangulations of arbitrarily large width
whose dual has a noncontractible odd cycle.

We also get the following result:

Corollary 13 Let G be an Eulerian triangulation of the projective plane such that G∗ is nonbipar-
tite. Then G is 4-vertex-colorable if and only if G∗ is 3-edge-colorable.

Proof. As pointed out in the introduction, if G is 4-vertex colorable, then G∗ is 3-edge-
colorable. If G∗ is 3-edge-colored, then, by Theorem 11, the corresponding three spanning quad-
rangulations of G are all bipartite. Thus G is 4-vertex-colorable.

Eulerian triangulations of the projective plane may be 5-chromatic. Mohar [5] characterized
these. Using that characterization we get:

Corollary 14 Let G be a 5-chromatic Eulerian triangulation of the projective plane. Then G∗ is
bipartite.

Proof. Mohar [5] proved that G contains a nonbipartite quadrangulation Q which is not
necessarily spanning. Consider now a face of Q and the part H of G∗ which is inside that face.
Since G is Eulerian, H is bipartite and we can assume that either H = K2 or all its vertices have
degree 3, except for four vertices of degree 2 so that no three of these four vertices have the same
color. Now Hall’s theorem implies that H has a perfect matching. Using these matchings in each
face of Q we get a (now spanning) quadrangulation of G which contains all edges of Q and which
is therefore nonbipartite. So G is not q-even, and it follows from Theorem 11 that it is in fact
q-mixed, and that G∗ is bipartite.

Since cubic bipartite graphs are 3-edge-colorable, the two previous corollaries yield

Corollary 15 Let G be an Eulerian triangulation of the projective plane. Then G∗ is 3-edge-
colorable.

6 The existence of noncontractible alternating cycles in orientable
surfaces

Theorem 16 If H is a cubic graph drawn in an orientable surface Σ such that each face is bounded
by a cycle of even length and such that H has at least one noncontractible cycle, then H has a perfect
matching M and a noncontractible M -alternating cycle C.

Proof. Since every face of H is bounded by a cycle, H is 2-connected. Since H is cubic
and 2-connected it has, for each edge e, a perfect matching containing e. Suppose (reductio ad
absurdum) that, for every perfect matching M of H, every M -alternating cycle C is contractible.
Pick M and C such that the interior of C contains the maximum number of edges. For each vertex
v let vv′ denote the edge in M containing it. Since H is connected and not entirely in the interior
of C, there must be an edge uv in the exterior of C with v ∈ V (C). Observe that the edge vv′ is
in C, and thus uv /∈M .
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If M ′ is any perfect matching of H that contains uv, then the symmetric difference M∆M ′

contains an M -alternating cycle v1v2, . . . v2kv1 through uv and vv′, where v1 = v, v2 = u. If we
let i be the smallest index with i > 1 such that vi ∈ V (C), then vivi+1 is in M ∩ E(C), and
thus i is even. Now if both v′ = v2k and v′i = vi+1 are on the same v, vi-segment of C, then we
obtain an M -alternating cycle C ′ by combining this M -alternating segment with vi . . . v1. If C ′ is
noncontractible, then we are done. If C ′ is contractible, then by the 3-path property (see [6], page
110) C∆C ′ is also a contractible cycle, and either C ′ or C∆C ′ has an interior which is strictly larger
than that of C. Moreover, C∆C ′ is an alternating cycle for the matching M∆C, contradicting our
choice of M and C.

Thus we may assume that if an M -alternating path has endpoints u, v ∈ V (C), but all edges
and other vertices outside of C, then u′, v′ must be in different u, v-segments of C.

Put C = u1u2 . . . umu1 where m is even.
We say that a path P is a C-detour if P is a path from a vertex ui in C to a vertex uj in C

such that each intermediate vertex (if any) is not in C. If P is in Int(C), then P is an internal
C-detour. (We will use int(C) to denote the set of all vertices and edges of G that meet the interior
of C whereas Int(C) is the subgraph of G consisting of all the vertices and edges that are in int(C)
or C.) Otherwise, P is an external C-detour. If a C-detour P is M -alternating, and u′i = ui+1

and u′j = uj+1, then we say that P is positive. If u′i = ui−1 and u′j = uj−1, then we say that P is
negative. We have just proved that

Claim 1: Every M -alternating external C-detour is either positive or negative.

Moreover:
Claim 2: If P is an M -alternating external C-detour and P ′ is a subpath of C such that P ∪P ′

is a cycle, then P ∪ P ′ has odd length and is therefore surface nonseparating.
Proof of Claim 2: Since every face has even length, it follows that every surface separating cycle

has even length, since otherwise after separating we would arrive at a graph with exactly one face
of odd length, but then its dual would have precisely one vertex of odd degree.

Two disjoint C-detours overlap if their union with C form a subdivision of K4. (For the more
general definition of C-bridges (also sometimes called C-components) and overlapping C-bridges,
see e.g. [8] or [6], page 7.)

Claim 3: A positive M -alternating external C-detour cannot overlap a negative M -alternating
external C-detour.

Proof of Claim 3: For otherwise, the union of the two M -alternating C-detours and two segments
of C would form an M -alternating cycle C ′. Since Σ is orientable it is easy to see that the interior
of C contains a curve which has only its ends in common with C ′ and which hits C ′ on the right
hand side and the left hand side, respectively. Therefore C ′ is surface nonseparating and hence
noncontractible. This proves Claim 3.

Now let C ′ be an M -alternating cycle containing an edge which is incident with C but in the
exterior of C. Then C can be divided into segments P1, P

′
1, P2, P

′
2, . . . where Pi is an M -alternating

external C-detour and P ′i is a path in Int(C) for i = 1, 2, . . .. As Int(C) is bipartite, we get

Claim 4: For each i = 1, 2, . . ., Pi and Pi+1 have different signs.
In particular, C ′ has at least two M -alternating external C-detours.

Assume that C ′ is chosen such that it has as few M -alternating external C-detours as possible.
Subject to that we assume that C ′ has as few M -alternating internal C-detours as possible
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Claim 5: C ′ has precisely two M -alternating external C-detours.
Proof of Claim 5: Suppose (reductio ad absurdum) that C ′ has at least three (and hence at

least four) external M -alternating C-detours.
We choose the notation so that P1 is a path u2 . . . ua with u′2 = u1, u

′
a = ua−1 such that a is

minimal. Now considering P2 : ub . . . uc, it follows from Claim 4 that u′b = ub+1, u
′
c = uc+1. The

minimality of a and Claim 3 imply that b > a and c > a. Thus P ′1 contains an internal C-detour
P ′′1 joining a vertex uα with a vertex uβ such that 2 < α < a < β. (Note that P ′1 may not be a
C-detour. P ′1 is the union of internal C-detours and segments of C.) Now we choose an internal
C-detour Q joining a vertex uα with a vertex uβ (with β > α) such that β − α is minimum, where
we do not necessarily require α < a < β.

Q divides C into two paths Q1 : uα+1 . . . uβ−1 and Q2 : uβ+1 . . . uα−1. Observe that no external
C-detour Pi : ub . . . uc can have both endpoints in Q1. Indeed, suppose that α < b < c < β and
u′c = uc−1 with the other cases being similar: by the minimality of Q, Pi+1 : ud . . . ue must have
b < d < c and Claim 3 and 4 now imply that b < e < d. Continuing in this matter the intervals
[b, c], [e, d] . . . corresponding to Pi, Pi+1, . . . form a nested sequence, but this is impossible, since it
leaves no way for C ′ to connect back to u1.

Case 1: u′α = uα+1.
Since Int(C) is planar and bipartite, it follows that u′β = uβ−1. Now traverse C ′ starting with

uαuα+1 until we meet a C-detour. The minimality of Q ensures that this C-detour is external, that
is, it is a Pi, which starts in Q1 and thus must end in Q2. We can also traverse C ′ in the other
direction starting with uβuβ−1 until we meet the C-detour P ′ ∈ {Pi−1, Pi+1} which starts in Q1

and ends in Q2. As Pi, P
′ do not overlap it follows that C ∪Q∪Pi ∪P ′ contains an M -alternating

cycle with precisely two M -alternating external C-detours, namely Pi, P
′, a contradiction.

Case 2: u′α = uα−1.
Since Int(C) is planar and bipartite, it follows that u′β = uβ+1. We may assume that C ′

intersects Q1 since otherwise we may replace Q with Q1 in C ′. So there must be an external
C-detour Pi : ub . . . uc such that α < b < β < c as no external C-detour has both endpoints in
Q1. Since u′b ∈ Q1 it follows after Pi, C

′ uses a segment of C because of the minimality property
of Q. After that segment C ′ uses P ′ ∈ {Pi−1, Pi+1} from ud to ue with α < d < β < e. As Pi, P

′

do not overlap it follows that C ∪Q ∪ Pi ∪ P ′ contains an M -alternating cycle with precisely two
M -alternating external C-detours, namely Pi, P

′. This contradiction proves Claim 5.

We may assume that P ′2 is a segment of C. Now Σ′ = Int(C) ∪ Int(C ′) is a surface with
boundary, that is, Σ′ is compact and locally homeomorphic to either a disc or a half-disc at every
point. The boundary points are those points where Σ′ is homeomorphic to a half-disc. The points
of Σ′ that are on precisely one of C,C ′ are clearly boundary points. So, the points on P1, P2 are
all boundary points. All other boundary points are on C since a point in int(C) is clearly not a
boundary point of Σ′. Moreover, the boundary of Σ′ consists of simple closed curves, that is, a
2-regular subgraph of C ∪P1 ∪P2. So, the boundary of Σ′ consists of P1, P2 and two disjoint paths
on C connecting the four vertices u2, ua, ub, uc. If the boundary of Σ′ has only one cycle, then the
path on C from u2 to ua is contained in both Int(C) and Int(C ′). As Int(C ′) also contains P1,
it follows that Int(C ′) is nonbipartite, a contradiction. So Σ′ has precisely two boundary cycles
R1, R2, say. As they have odd length, they are not surface separating in Σ. Let G′ be the part of
G drawn in Σ′. As R1 is not a face boundary of G in Σ, there is an edge not in G′ but incident
with R1. Let Q be an M -alternating path starting at a vertex of R1 such that precisely its first and
last vertex are in G′. If the last vertex is in R1, then we add Q to G′ and call the resulting graph
G′1. We repeat this argument with G′1 instead of G′. Continuing like this we obtain a sequence of
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graphs G′1, G
′
2 . . .. Each G′i has the property that for each vertex x in G′i but not in G′, there is an

M -alternating path starting with an M -edge incident with x and terminating at R1. As R1 is not
surface separating in Σ we obtain in a finite number of steps an M -alternating path from R1 to R2

having only its ends in common with G′. (Otherwise we would obtain a face whose boundary is
not connected.) If none of the ends of Q are in C, then (using R1, R2) this path Q can be extended
to an external C-detour Q which is neither positive nor negative. This contradicts Claim 1. If one
or both ends of Q are in C, we can use paths in R1, R2, C to extend Q to an M -alternating cycle
C ′′. We claim that C ′′ is surface nonseparating in Σ and hence noncontractible in Σ. To prove this
claim we observe that C has two disjoint paths joining R1, R2, and C ′′ contains precisely one of
them. Now the claim follows from the following observation: Σ′ is a surface with two holes, and
the intersection of C ′′ with Σ′ minus its boundary is a simple arc whose closure P ′′ joins the two
holes. Hence Σ′ minus P ′′ is connected, and it follows that Σ′ has a simple closed curve crossing
C ′′ precisely once which implies that C ′′ is surface nonseparating.

This contradiction completes the proof.

Corollary 17 If G is an Eulerian triangulation of the torus, then G has a nonbipartite spanning
quadrangulation (that is, G is not q-even). If, in addition, G has large width, then G is q-mixed.

Proof. In the torus a surface separating cycle must be contractible. Thus the first statement
follows immediately from Theorem 16 and Lemma 4. However, if the width is large we know from
the result of Hutchinson, Richter and Seymour [2] that G is properly 4-colorable, and thus has a
bipartite spanning quadrangulation.

Remark 18 After a presentation of the results in the current paper by the first author at WestFest
at the Institute for Applied Mathematics in June 2014, Atsuhiro Nakamoto (private communication)
and his collaborators have obtained a strengthening of Corollary 17 in that K7 is the only q-odd
triangulation of the torus. He also brought our attention to their resolution [7] of the following
question relating Eulerian triangulations to spanning quadrangulations: Given a quadrangulation
Q, how many Eulerian triangulations contain Q as a spanning quadrangulation?

7 Open problems

We believe that the answer to Question 3 (which was first stated in an equivalent form in [4]) is
negative. In other words, we conjecture:

Conjecture 19 If G is a triangulation of large width on a surface, then G has a bipartite spanning
quadrangulation, i.e. G is not q-odd.

Conjecture 20 If G is a triangulation of large width on an orientable surface, then G has a
nonbipartite spanning quadrangulation, i.e. G is not q-even.

To prove Conjecture 20, it suffices to find an alternating surface nonseparating cycle in the dual
graph, by Lemma 4. We have done that for Eulerian triangulations of the torus (Corollary 17) and
pointed out that this not always possible for the projective plane (Theorem 11). Conjecture 20
would follow from an affirmative answer to the following question:
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Question 21 Let M be a perfect matching in a 2-connected cubic graph of large width on a fixed
surface. Does H contain an M -alternating surface nonseparating cycle?

We do not even know counterexamples of small width, in other words, is the bipartite condition
necessary in Theorem 10? We believe that Theorem 16 can be extended to surface nonseparating
cycles thus verifying Conjecture 20 for all Eulerian triangulations of orientable surfaces (without
any width condition).

To prove Conjecture 19 by this method would amount to finding many surface nonseparating
cycles as shown by Proposition 5. Thus Conjecture 19 (if true) seems much deeper than Conjec-
ture 20.
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