429 research outputs found

    Strip Planarity Testing of Embedded Planar Graphs

    Get PDF
    In this paper we introduce and study the strip planarity testing problem, which takes as an input a planar graph G(V,E)G(V,E) and a function γ:V{1,2,,k}\gamma:V \rightarrow \{1,2,\dots,k\} and asks whether a planar drawing of GG exists such that each edge is monotone in the yy-direction and, for any u,vVu,v\in V with γ(u)<γ(v)\gamma(u)<\gamma(v), it holds y(u)<y(v)y(u)<y(v). The problem has strong relationships with some of the most deeply studied variants of the planarity testing problem, such as clustered planarity, upward planarity, and level planarity. We show that the problem is polynomial-time solvable if GG has a fixed planar embedding.Comment: 24 pages, 12 figures, extended version of 'Strip Planarity Testing' (21st International Symposium on Graph Drawing, 2013

    Planarization With Fixed Subgraph Embedding

    Get PDF
    The visualization of metabolic networks using techniques of graph drawing has recently become an important research area. In order to ease the analysis of these networks, readable layouts are required in which certain known network components are easily recognizable. In general, the topology of the drawings produced by traditional graph drawing algorithms does not reflect the biologists' expert knowledge on particular substructures of the underlying network. To deal with this problem we present a constrained planarization method---an algorithm which computes a graph layout in the plane preserving the predefined shape for the specified substructures while minimizing the overall number of edge-crossings

    A Note on the Practicality of Maximal Planar Subgraph Algorithms

    Full text link
    Given a graph GG, the NP-hard Maximum Planar Subgraph problem (MPS) asks for a planar subgraph of GG with the maximum number of edges. There are several heuristic, approximative, and exact algorithms to tackle the problem, but---to the best of our knowledge---they have never been compared competitively in practice. We report on an exploratory study on the relative merits of the diverse approaches, focusing on practical runtime, solution quality, and implementation complexity. Surprisingly, a seemingly only theoretically strong approximation forms the building block of the strongest choice.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Planarization With Fixed Subgraph Embedding

    Get PDF
    The visualization of metabolic networks using techniques of graph drawing has recently become an important research area. In order to ease the analysis of these networks, readable layouts are required in which certain known network components are easily recognizable. In general, the topology of the drawings produced by traditional graph drawing algorithms does not reflect the biologists' expert knowledge on particular substructures of the underlying network. To deal with this problem we present a constrained planarization method---an algorithm which computes a graph layout in the plane preserving the predefined shape for the specified substructures while minimizing the overall number of edge-crossings

    NodeTrix Planarity Testing with Small Clusters

    Full text link
    We study the NodeTrix planarity testing problem for flat clustered graphs when the maximum size of each cluster is bounded by a constant kk. We consider both the case when the sides of the matrices to which the edges are incident are fixed and the case when they can be chosen arbitrarily. We show that NodeTrix planarity testing with fixed sides can be solved in O(k3k+32n)O(k^{3k+\frac{3}{2}} \cdot n) time for every flat clustered graph that can be reduced to a partial 2-tree by collapsing its clusters into single vertices. In the general case, NodeTrix planarity testing with fixed sides can be solved in O(n)O(n) time for k=2k = 2, but it is NP-complete for any k>2k > 2. NodeTrix planarity testing remains NP-complete also in the free sides model when k>4k > 4.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Recognizing and Drawing IC-planar Graphs

    Full text link
    IC-planar graphs are those graphs that admit a drawing where no two crossed edges share an end-vertex and each edge is crossed at most once. They are a proper subfamily of the 1-planar graphs. Given an embedded IC-planar graph GG with nn vertices, we present an O(n)O(n)-time algorithm that computes a straight-line drawing of GG in quadratic area, and an O(n3)O(n^3)-time algorithm that computes a straight-line drawing of GG with right-angle crossings in exponential area. Both these area requirements are worst-case optimal. We also show that it is NP-complete to test IC-planarity both in the general case and in the case in which a rotation system is fixed for the input graph. Furthermore, we describe a polynomial-time algorithm to test whether a set of matching edges can be added to a triangulated planar graph such that the resulting graph is IC-planar

    Synchronized planarity with applications to constrained planarity problems

    Get PDF
    We introduce the problem Synchronized Planarity. Roughly speaking, its input is a loop-free multi-graph together with synchronization constraints that, e.g., match pairs of vertices of equal degree by providing a bijection between their edges. Synchronized Planarity then asks whether the graph admits a crossing-free embedding into the plane such that the orders of edges around synchronized vertices are consistent. We show, on the one hand, that Synchronized Planarity can be solved in quadratic time, and, on the other hand, that it serves as a powerful modeling language that lets us easily formulate several constrained planarity problems as instances of Synchronized Planarity. In particular, this lets us solve Clustered Planarity in quadratic time, where the most efficient previously known algorithm has an upper bound of O(n⁸)

    Cubic Augmentation of Planar Graphs

    Full text link
    In this paper we study the problem of augmenting a planar graph such that it becomes 3-regular and remains planar. We show that it is NP-hard to decide whether such an augmentation exists. On the other hand, we give an efficient algorithm for the variant of the problem where the input graph has a fixed planar (topological) embedding that has to be preserved by the augmentation. We further generalize this algorithm to test efficiently whether a 3-regular planar augmentation exists that additionally makes the input graph connected or biconnected. If the input graph should become even triconnected, we show that the existence of a 3-regular planar augmentation is again NP-hard to decide.Comment: accepted at ISAAC 201
    corecore