11 research outputs found

    Planar kernel and grundy with d≤3, dout≤2, din≤2 are NP-complete

    Get PDF
    AbstractIt is proved that the questions whether a finite diagraph G has a kernel K or a Sprague—Grundy function g are NP-complete even if G is a cyclic planar digraph with degree constraints dout(u)≤2, din(u)≤2 and d(u)≤3. These results are best possible (if P ≠ NP) in the sense that if any of the constraints is tightened, there are polynomial algorithms which either compute K and g or show that they do not exist. The proof uses a single reduction from planar 3-satisfiability for both problems

    Generating Functions For Kernels of Digraphs (Enumeration & Asymptotics for Nim Games)

    Full text link
    In this article, we study directed graphs (digraphs) with a coloring constraint due to Von Neumann and related to Nim-type games. This is equivalent to the notion of kernels of digraphs, which appears in numerous fields of research such as game theory, complexity theory, artificial intelligence (default logic, argumentation in multi-agent systems), 0-1 laws in monadic second order logic, combinatorics (perfect graphs)... Kernels of digraphs lead to numerous difficult questions (in the sense of NP-completeness, #P-completeness). However, we show here that it is possible to use a generating function approach to get new informations: we use technique of symbolic and analytic combinatorics (generating functions and their singularities) in order to get exact and asymptotic results, e.g. for the existence of a kernel in a circuit or in a unicircuit digraph. This is a first step toward a generatingfunctionology treatment of kernels, while using, e.g., an approach "a la Wright". Our method could be applied to more general "local coloring constraints" in decomposable combinatorial structures.Comment: Presented (as a poster) to the conference Formal Power Series and Algebraic Combinatorics (Vancouver, 2004), electronic proceeding

    Solving the kernel perfect problem by (simple) forbidden subdigraphs for digraphs in some families of generalized tournaments and generalized bipartite tournaments

    Full text link
    A digraph such that every proper induced subdigraph has a kernel is said to be \emph{kernel perfect} (KP for short) (\emph{critical kernel imperfect} (CKI for short) resp.) if the digraph has a kernel (does not have a kernel resp.). The unique CKI-tournament is C→3\overrightarrow{C}_3 and the unique KP-tournaments are the transitive tournaments, however bipartite tournaments are KP. In this paper we characterize the CKI- and KP-digraphs for the following families of digraphs: locally in-/out-semicomplete, asymmetric arc-locally in-/out-semicomplete, asymmetric 33-quasi-transitive and asymmetric 33-anti-quasi-transitive TT3TT_3-free and we state that the problem of determining whether a digraph of one of these families is CKI is polynomial, giving a solution to a problem closely related to the following conjecture posted by Bang-Jensen in 1998: the kernel problem is polynomially solvable for locally in-semicomplete digraphs.Comment: 13 pages and 5 figure

    Out-degree reducing partitions of digraphs

    Get PDF
    Let kk be a fixed integer. We determine the complexity of finding a pp-partition (V1,…,Vp)(V_1, \dots, V_p) of the vertex set of a given digraph such that the maximum out-degree of each of the digraphs induced by ViV_i, (1≤i≤p1\leq i\leq p) is at least kk smaller than the maximum out-degree of DD. We show that this problem is polynomial-time solvable when p≥2kp\geq 2k and NP{\cal NP}-complete otherwise. The result for k=1k=1 and p=2p=2 answers a question posed in \cite{bangTCS636}. We also determine, for all fixed non-negative integers k1,k2,pk_1,k_2,p, the complexity of deciding whether a given digraph of maximum out-degree pp has a 22-partition (V1,V2)(V_1,V_2) such that the digraph induced by ViV_i has maximum out-degree at most kik_i for i∈[2]i\in [2]. It follows from this characterization that the problem of deciding whether a digraph has a 2-partition (V1,V2)(V_1,V_2) such that each vertex v∈Viv\in V_i has at least as many neighbours in the set V3−iV_{3-i} as in ViV_i, for i=1,2i=1,2 is NP{\cal NP}-complete. This solves a problem from \cite{kreutzerEJC24} on majority colourings.Comment: 11 pages, 1 figur

    Stable Matching with Uncertain Pairwise Preferences

    Get PDF

    A Polyhedral Description of Kernels

    Get PDF
    postprin
    corecore