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It is proved that the questions whether a finite digraph G has a kernel K or a Sprague-Grundy 

function g are NP-complete even if G is a cyclic planar digraph with degree constraints 

dOut(u)s 2, d,,(u) ~2 and d(u) 2 3. These results are best possible (if P f NP) in the sense that if 

any of the constraints is tightened, there are polynomial algorithms which either compute K and g 

or show that they do not exist. The proof uses a single reduction from planar 3.satisfiability for 

both problems. 

Throughout G = (V,E) denotes a finite digraph, and Z” the set of non-negative 

integers. Define the set of followers of u E V by 

F@)={VE V: (U,V)EE} 

and the set of predecessors of w E V by 

P(w)={vEV:(V,W)EE}. 

Then the out-degree of u E V is d,,,(u)= IF(u the in-degree din(u)= IF’(u)\ and 

d(u) = d,,,(u) + din(U). If F(U) = 0, u is called a sink. 

A kernel of G is a subset KC V such that for every u E V, 

uEKoF(u)nK=O, 

that is, K is independent (a) and dominating (0. See e.g., Berge [l, Ch. 141 or 

Garey and Johnson [4]. 

If S is a finite subset of Z”, define the “minimum excluded value” of S by 

mex S = min s= least nonnegative integer not in S. A (classical) Sprague-Grundy 
function g: V--+Z” (also called Grundy function) is defined by g(u) =mexg(F(u)), 

where for any set T and any function h on T, h(T) = {h(t): t E T} . See Berge [I] or 

Garey and Johnson [4]. The kernel and Sprague-Grundy function have 

applications in combinatorial game theory and elsewhere. See Berge [l]. There is a 

“one-way” connection between the two: 
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Lemma 1. If G = (V, E) is a digraph and g a Sprague-Grundy function on G, then 
K = {u E V: g(u) = 0} is a kernel of G. 

The proof is immediate. The converse is false. For both see [ 1, Ch. 14, $ 31. 

Since mex0= 0, g(u) = 0 for a sink u. For “simple” digraphs, K and g exist 

uniquely [ 1, Theorem 71, and can be computed easily: 

Lemma 2. If G = (V, E) is a finite acyclic digraph, then K and g exist uniquely on G 
and they can be computed in polynomial time. 

Proof. We give an algorithm for computing g and K in “endorder”, that is, 

labeling a vertex only after all its followers have been labeled: Label all sinks by 0; if 

u is any unlabeled vertex such that F(u) has already been labeled, then label u with 

mex/(F(u)), where I(u) denotes the label of u. 

Since G is finite and acyclic, at least one sink always exists, and so the algorithm 

can always be started. Since G is acyclic, no predecessor of an unlabeled vertex u is 

labeled when the set F(u) has been labeled. Hence the labeling exists and satisfies 

I(u) = mex /(F(u)) for every u E V. The labels are unique, since if we assume that all 

labels in l(F(u)) are unique, then also l(u) is unique. The algorithm clearly requires 

only 0( / Vj IEI) steps. 

The result now follows by letting g(u) =I(u) for all UE V and K= 
(u@s v:g(u)=O). q 

Define the following two decision problems: 

KERNEL (KE). Given a finite digraph G = (U, V), does G have a kernel? 

SPRAGUE-GRUNDY (SG). Given a finite digraph G= (U, V), does G have a 
Sprague-Grundy function? 

Both of these problems are known to be NP-complete. See Chvatal [2], and van 

Leeuwen [7]. The problem SG is NP-complete even when restricted to planar 

digraphs with do,,(u) I 5 and din(u)15 for every UE V. See [3]. For another 

reference for both problems as well as for the general concepts of NP-completeness 

and polynomial reduction used below, see Garey and Johnson [4]. 

The decision problems RESTRICTED PLANAR KERNEL (PKE3) and 

RESTRICTED PLANAR SPRAGUE-GRUNDY (PSG3) are defined as above, 

except that G = (V, E) is a finite cyclic planar digraph with d,,,(u) I 2, din(u) I 2 and 

d(u) I 3 for every u E V. Since g(u) is clearly bounded by the maximum out-degree of 

the given digraph, SG E NP. Also KE E NP. Thus a fortiori PKE3, PSG3 E NP. Our 

main result is that even these restricted problems seem difficult: 

Theorem. PKE3 and PSG3 are NP-complete. 
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For the proof we define an additional decision problem: Let 3CNF be the set of 
Boolean formulas B = Cr A’.. AC, in the variables xl, . . . ,x, , where each clause Ci is 
the disjunction of three literals, and the set of literals is {x1, . . . ,x,} U {Xr, . . . ,X,} . A 
Boolean formula B is satisfiable if there is a truth assignment (tr, . . . , tn) E { 0, 1 }” to 
the variables such that B=l, where 0~0=0~0=0~1=1~0=0, OVl=lVO= 
1 v 1 = 1 A 1 = 1, The multigraph G(B) = (V, E) of B is defined by 

where 

V= ij Ci i, Xj, E=E’UE2, 
i=l ,=I 

E’= IJ {(C;,X,):XjEC,}, 
,=I 

E2= $, ((C;,Xj):XjjEC;}. 

See Fig. 1. Note that different formulas B may map into the same multigraph G(B) 
(such as X, VR~VX~ and x1 VR~VK~). 

Fig. 1. The multi-graph G(B) for the case B=(xl vX2vn3)A(&v%vX3). 

PLANAR 3-SATISFIABILITY (P3SAT). Given a Boolean formula BE 3CNF such 
that G(B) is planar, is B satisfiable? 

Lemma 3. (Lichtenstein [6]). P3SAT is NP-complete. 

Proof of Theorem. We use a single reduction from P3SAT for both problems. Let 
B= C,r\.../\C,,, in x1, . . . , x, be an instance of P3SAT. Construct the planar multi- 
graph G(B) of B as defined above. Now “blow up” the vertices of G(B) as follows: 
Replace each c; by a directed “triangle with tree” r, = (vi, EJ, where 

K = {c;, div fwi, 4i9 ri, Sip ti9 U;}, 

Ei = {(Ci, d;), (dit ei), 0% cih (C;rPi), (pi, qi), (qi, ri), (ri, tiX (qi, si), (si, Ui)). 

As in Garey, Johnson and Stockmeyer [5], let m(j) denote the total number of times 
Xj and Xj appear in B. Replace each vertex Xj in G(B) by a directed cycle Sj = (V,!,E,3, 
where 

vi’= {xlj,Rlj, *** ,Xm(j),j*xrtl(j),j}t 
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For fixed i (15 i I m), each edge ei = (c,,xi) E E(B) is replaced by a directed edge 

(r;,~,) or (u,,xh]) (if e;eE’) or by a directed edge (‘;,.q,,) or (u;,R,,;) (if ejEE2), with 

distinct h for each edge, such that dout(ti) = 2, d,,,(uJ = 1 (see Fig. 2). This gives a set 

El of three edges. All of this can be done so that planarity is preserved. Thus the 

resulting digraph G( V, E) is planar, with d,,,(u) I 2, din(U) s 2, d(u) 5 3 for all u E V, 

where 

It is also clear that the construction is polynomial. 

Fig. 2. The COnStrUCtiOn for B=(xIVX~VJ~~)A(~ZV~ZVX~). 
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Regarding the subgraph Gi consisting of the vertices q;, Ti, s;, ti, u; and the edges 

(qi,ri), (Ti, t;), (q;,si), (s;, ui), we note that qi is in a kernel K if and only if 

(F(t;)UF(uJ)flK=O; and g(qi) =O if and only if Oeg(F(tJUF(uJ) (1 ci<m). 

Now suppose that we are given a satisfying truth assignment for B. For each j 

(1 ~j I m), label all m(j) vertices xlj, . . . , x,,,u),; by 0 and all vertices Kij, . . . , K,U),~ by 1 

(if Xj = 1) or the reverse (if Xj = 0). Since Ci = 1, at least one vertex in F(Ti) lJF(Ui) is 

labeled 0 for every i (1 I is m). Label each of the vertices of the subgraph Gi by the 

mex of the labels of their followers. This results in a positive label (1 or 2) at q,. Also 

label ei and pi by 0, di by 1 and ci by 2 (15 i I m). It is immediate that the labels are 

the value of a Sprague-Grundy function on G, and that K = {u E V: g(u) = 0} is a 

kernel (Lemma 1). 

Conversely, suppose that G has a kernel K. For each i (1 I ilm), exactly one 

vertex of each triple { ci, di, ei} has to be in K, and it is clear that this must be ei. This 

implies PiE K, qie K. Hence (F(ti)UF(ui)) fl K # 0. SO there is either some edge 

(li,Xhj)EE" or (Ui,xhj)E E” with XhjE K in which case we put Xj= 1, or there is an 

edge (ti,Xhj) E E” or (~,,Rhj) E E” with RhjE K in which case we put Xj = 0. This induces 

a consistent satisfying truth assignment on a subset of the variables since clearly 

each Sj has precisely m(j) vertices in K, either all of the form xg or all of the form KQ. 

NOW suppose that G has a Sprague-Grundy function g. If g(eJ > 0, then g(di) = 0, 

hence g(Ci) > 0 and SO g(ei) = 0, a contradiction. Hence g(eJ = 0, g(di) = 1, g(pi) = 0, 

g(Ci) = 2, g(q;) > 0. Hence there must be some XhjE F(ti) UF(Ui) such that g(xhj) = 0 or 

some nhjEF(ti)UF(ui) such that g(xh,) =O. In the former case we have actually 

g(xhj) = 0, g(xhj) = 1 (I I h I m(j)) and we put Xj= 1, and in the latter case the 

equalities are reversed and we put xj =O. In any case Ci= 1 (15 ism) and B is 

satisfiable. 0 

Note. The theorem is best possible (if Pf NP). To see this, we may assume that 

G = (V,E) is a connected cyclic digraph. Because if it is not connected, apply the 

polynomial procedures below to each connected component, and if it is acyclic then 

Lemma 2 applies and g can be computed polynomially. 

(i) Suppose that d(u) = d,,,(u) + din(u)5 2 for all u E V. This implies that G 

consists of a single simple cycle. Then G has a kernel K and a Sprague-Grundy 

function g if and only if ) q = 0 (mod 2). If the condition holds, the g-values 0 and 1 

alternate along the cycle, and K = {u E V: g(u) = 0). 

(ii) Suppose that d,,,(u)s 1 for all u E V. Then G consists of a single cycle, 

possibly with several ingoing trees impinging on it. If I/’ is the set of vertices on the 

cycle, then G has a kernel and a Sprague-Grundy function if and only if ) V’I = 0 

(mod2). If this holds, g along the cycle is determined as in (i), and these values 

clearly prescribe g-values on the trees. A kernel is determined as in (i). 

(iii) Suppose that din(u)5 1 for all u E V. Then G consists of a single cycle, 

possibly with several outgoing trees cropping up from it. The g-values on the trees 

can be computed by the algorithm indicated in the proof of Lemma 2. Let u be any 

vertex on the cycle. If any of the labels 0, 1 or 2 for u leads to a consistent assign- 
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ment of labels for all vertices on the cycle, then G has a Sprague-Grundy function, 

otherwise it does not have one. A slight variation of this algorithm determines a 

kernel if there is one or shows that there is none. 
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