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It is proved that the questions whether a finite digraph G has a kernel K or a Sprague—Grundy
function g are NP-complete even if G is a cyclic planar digraph with degree constraints
dout(t) <2, din(u) <2 and d(u)<3. These results are best possible (if P+ NP) in the sense that if
any of the constraints is tightened, there are polynomial algorithms which either compute K and g
or show that they do not exist. The proof uses a single reduction from planar 3-satisfiability for
both problems.

Throughout G=(V, E) denotes a finite digraph, and Z° the set of non-negative
integers. Define the set of followers of ue V by

Fu)={veV:(u,v)eE}
and the set of predecessors of we V by

Pw)={veV:(v,w)eE}.

Then the out-degree of ue V is doy, (1) =|F(u)|, the in-degree d,,(u)=I|P(u)| and
d(u) =dy, (u) +di,(w). If F(u)=0, u is called a sink.
A kernel of G is a subset K¢ V such that for every ueV,

ueKe FluyNK =49,

that is, K is independent (=) and dominating (<=). See e.g., Berge [1, Ch. 14] or
Garey and Johnson [4].

If S is a finite subset of Z% define the ‘““minimum excluded value’’ of S by
mex S =min S =least nonnegative integer not in S. A (classical) Sprague—Grundy
function g: V—2Z9 (also called Grundy function) is defined by g(u) =mex g(F(u)),
where for any set T and any function 2 on T, A(T)={h(t): te T}. See Berge [1] or
Garey and Johnson ([4]. The kernel and Sprague—Grundy function have
applications in combinatorial game theory and elsewhere. See Berge [1]. There is a
‘‘one-way’’ connection between the two:
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Lemma 1. [f G=(V,E) is a digraph and g a Sprague—Grundy function on G, then
K={ueV:g(u)=0} is a kernel of G.

The proof is immediate. The converse is false. For both see [1, Ch. 14, § 3].
Since mex@=0, g(u)=0 for a sink u. For ‘‘simple’’ digraphs, K and g exist
uniquely [1, Theorem 7], and can be computed easily:

mma Il‘f'—ll Y fe it 5 0] thon K and o ovict rniirmialv an 7
Lo if AV, ) iS5 uJuuu: ut)’thL utslu i, lnen s ana g exisi (&4

and they can be computed in polynomial time.

Proof. We give an algorithm for computing g and K in ‘“‘endorder”’, that is,

labeling a vertex only after all its followers have been labeled: Label all sinks by 0; if

171c any unlaheled vartay ciich that EFf1) hac alreadyv haen lahalad then lahkel 17 wit
U 15 any uniaociCd VEricx sucn tnat /iy nas airéady oefn 1ao€icd, nei 1aoci L

mex /(F(u)), where /(1) denotes the label of u.

Since G is finite and acyclic, at least one sink always exists, and so the algorithm
can always be started. Since G is acyclic, no predecessor of an unlabeled vertex u is
labeled when the set F(u#) has been labeled. Hence the labeling exists and satisfies
I(u)y=mex I(F(u)) for every ue V. The labels are unique, since if we assume that all
labels in /(F(u)) are unique, then also /() is unique. The algorithm clearly requires
only O(| V] |E]) steps.

The result now follows by letting g(u)=/u) for all ueV and K=
{ueV:iguy=0}. O

Define the following two decision problems:
KERNEL (KE). Given a finite digraph G= (U, V), does G have a kernel?

SPRAGUE-GRUNDY (SG). Given a finite digraph G=(U, V), does G have a
Sprague—Grundy function?

Both of these problems are known to be NP-complete. See Chvatal [2], and van
Leeuwen [7]. The problem SG is NP-complete even when restricted to planar
digraphs with dg,(¥)<5 and d,(u)<5 for every ue V. See [3]. For another
reference for both problems as well as for the general concepts of NP-completeness
and polynomial reduction used below, see Garey and Johnson [4].

The decision problems RESTRICTED PLANAR KERNEL (PKE3) and
RESTRICTED PLANAR SPRAGUE-GRUNDY (PSG3) are defined as above,
except that G = (V, E) is a finite cyclic planar digraph with dg,(#) <2, di,(¥)<2 and
d(u) <3 for every ue V. Since g(u) is clearly bounded by the maximum out-degree of
the given digraph, SG € NP. Also KE € NP. Thus a fortiori PKE3, PSG3 € NP. Our
main result is that even these restricted problems seem difficult:

Theorem. PKE3 and PSG3 are NP-complete.
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For the proof we define an additional decision problem: Let 3CNF be the set of

Boolean formulas B= C,A---AC,, in the variables x, ..., x,, where each clause C;is

tha Aicis v v
the disjunction of three literals, and the set of literals is {xy, ..., X} U{%}, ..., %,}. A

Boolean formula B is satisfiable if there is a truth assignment (¢y,...,¢,) € {0,1}" to
the variables such that B=1, where 0VO0=0A0=0A1=1A0=0, Ovl=1vO0=
1v1=1A1=1. The multigraph G(B)=(V,E) of B is defined by

3
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where

E'= {(c,,x,) x;eCi}, E2=CJ {(c;,x)): %€ C.}.

Fig. 1. The multi-graph G(B) for the case B=(x] VX2V X3} A(X2V X2V X3).

PLANAR 3-SATISFIABILITY (P3SAT). Given a Boolean formula B € 3CNF such
that G(B) is planar, is B satisfiable?

Lemma 3. (Lichtenstein [6]). P3SAT is NP-complete.

Proof of Theorem. We use a single reduction from P3SAT for both problems. Let
B=C|A---AC,, In xy,...,Xx, be an instance of P3SAT. Construct the planar multi-
graph G(B) of B as defined above. Now ‘‘blow up’’ the vertices of G(B) as follows:
Replace each ¢; by a directed *‘triangle with tree’’ T;,=(V,, E;), where

I/l = {Cii di’ €, DisqisTisSis ti, u,‘},
Ei = {(Ci: di)’ (dir ei), (eb Ci)’ (cirpi)r (pi) Qi)’ (Qir ri)9 (ris ti): (qh Si)’ (Si’ ui)} .

As in Garey, Johnson and Stockmeyer [5], let m(/j) denote the total number of times
x;and X, appear in B. Replace each vertex x; in G(B) by a directed cycle S; = (V}, E}),
where

Vi={x1 R1js oo s Xmiinjs Xt s} o

Ef={(x1js%1), ®1js X2 -+ » Kimijiy, js By, ) Fomiin, o X17)} -
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For fixed i (1=i=<m), each edge e;=(c;,x;) € E(B) is replaced by a directed edge
(¢isXnj) or (u;, xp;) (if ;€ E') or by a directed edge (£, Xpj) OF (u;, X)) (if e;e E?), with
distinct A for each edge, such that d,,(¢,) =2, dou(1;) = 1 (see Fig. 2). This gives a set
E7 of three edges. All of this can be done so that planarity is preserved. Thus the
resulting digraph G(V, E) is planar, with d,, (#) <2, di,(u)<2, d(u)<3 forallueV,
where

||
i Ci

L"J £=U (B, £} UE'

It is also clear that the construction is polynomial.

Fig. 2. The construction for B=(x;Vx2VX1)A(X2V X2V X3).
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Regarding the subgraph G; consisting of the vertices g;, r;, s;, #;, u; and the edges
@qi.r), (ritd, (g:is), (s,u;), we note that ¢; is in a kernel K if and only if
(F(t)UFu))NK=4@; and g(g;) =0 if and only if 0¢& g(F(f)UF(u;)) (1<i<m).

Now suppose that we are given a satisfying truth assignment for B. For each j
(1 =j=m), label all m(j) vertices xyj, ..., Xm(;,; by 0 and all vertices %y, ..., X, by 1
(if x;=1) or the reverse (if x; =0). Since C;=1, at least one vertex in F(¢;) UF(u;) is
labeled O for every i (1 <i=<m). Label each of the vertices of the subgraph G; by the
mex of the labels of their followers. This results in a positive label (1 or 2) at g,. Also
label ¢; and p; by 0, d; by 1 and ¢; by 2 (1 =i<m). It is immediate that the labels are
the value of a Sprague—Grundy function on G, and that K={ue V:g(u)=0} is a
kernel (Lemma 1).

Conversely, suppose that G has a kernel K. For each i (1 =i<m), exactly one
vertex of each triple {c;,d;, e;} has to be in K, and it is clear that this must be e;. This
implies p;e K, q;¢ K. Hence (F(t)UF(u;))NK+#9. So there is either some edge
(ti xnj) € E” or (u;xy;) € E” with x,;€ K in which case we put x;=1, or there is an
edge (¢;, X)) € E” o1 (u;, X4;) € E” with X,;€ K in which case we put x; =0. This induces
a consistent satisfying truth assignment on a subset of the variables since clearly
each S; has precisely m(/j) vertices in K, either all of the form x;; or all of the form x;;.

Now suppose that G has a Sprague—Grundy function g. If g(e;) >0, then g(d;) =0,
hence g(c;)>0 and so g(e;) =0, a contradiction. Hence g(e;) =0, g(d))=1, g(p) =0,
g{c) =2, g(g)>0. Hence there must be some x,;€ F(£;) U F(u;) such that g(x,;) =0 or
some X;€ F(¢)UF(u;) such that g(x,;)=0. In the former case we have actually
gxn)=0, gxp)=1 (1=h=m(j)) and we put x;=1, and in the latter case the
equalities are reversed and we put x;=0. In any case C;=1 (I<i<m) and B is
satisfiable. [

Note. The theorem is best possible (if P+ NP). To see this, we may assume that
G =(V,E) is a connected cyclic digraph. Because if it is not connected, apply the
polynomial procedures below to each connected component, and if it is acyclic then
Lemma 2 applies and g can be computed polynomially.

(i) Suppose that d(u)=d,,(u)+di,(u)<2 for all ue V. This implies that G
consists of a single simple cycle. Then G has a kernel K and a Sprague—Grundy
function g if and only if |V} =0 (mod 2). If the condition holds, the g-values 0 and 1
alternate along the cycle, and K={ue V: g(u)=0}.

(ii) Suppose that d,,(#)<1 for all ue V. Then G consists of a single cycle,
possibly with several ingoing trees impinging on it. If V" is the set of vertices on the
cycle, then G has a kernel and a Sprague—Grundy function if and only if |V’|=0
(mod?2). If this holds, g along the cycle is determined as in (i), and these values
clearly prescribe g-values on the trees. A kernel is determined as in (i).

(iii) Suppose that di,(¥)=<1 for all ue V. Then G consists of a single cycle,
possibly with several outgoing trees cropping up from it. The g-values on the trees
can be computed by the algorithm indicated in the proof of Lemma 2. Let u be any
vertex on the cycle. If any of the labels 0, 1 or 2 for u leads to-a consistent assign-
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ment of labels for all vertices on the cycle, then G has a Sprague—Grundy function,
otherwise it does not have one. A slight variation of this algorithm determines a
kernel if there is one or shows that there is none.
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