PLANAR KERNEL AND GRUNDY WITH $d \leq 3, d_{\text {out }} \leq 2, d_{\text {in }} \leq 2$ ARE NP-COMPLETE

Aviezri S. FRAENKEL
Department of Applied Mathematics. The Weizmann Institute of Science, Rehovot, Israel

Received 12 June 1980
Revised 17 February 1981

Abstract

It is proved that the questions whether a finite digraph G has a kernel K or a Sprague-Grundy function g are NP-complete even if G is a cyclic planar digraph with degree constraints $d_{\text {out }}(u) \leq 2, d_{\text {in }}(u) \leq 2$ and $d(u) \leq 3$. These results are best possible (if $\mathrm{P} \neq \mathrm{NP}$) in the sense that if any of the constraints is tightened, there are polynomial algorithms which either compute K and g or show that they do not exist. The proof uses a single reduction from planar 3-satisfiability for both problems.

Throughout $G=(V, E)$ denotes a finite digraph, and Z^{0} the set of non-negative integers. Define the set of followers of $u \in V$ by

$$
F(u)=\{v \in V:(u, v) \in E\}
$$

and the set of predecessors of $w \in V$ by

$$
P(w)=\{v \in V:(v, w) \in E\} .
$$

Then the out-degree of $u \in V$ is $d_{\text {out }}(u)=|F(u)|$, the in-degree $d_{\text {in }}(u)=|P(u)|$ and $d(u)=d_{\text {out }}(u)+d_{\text {in }}(u)$. If $F(u)=\emptyset, u$ is called a $\sin k$.

A kernel of G is a subset $K \subseteq V$ such that for every $u \in V$,

$$
u \in K \Leftrightarrow F(u) \cap K=\emptyset,
$$

that is, K is independent (\Rightarrow) and dominating (ϵ). See e.g., Berge [1, Ch. 14] or Garey and Johnson [4].

If S is a finite subset of Z^{0}, define the "minimum excluded value" of S by $\operatorname{mex} S=\min \bar{S}=$ least nonnegative integer not in S. A (classical) Sprague-Grundy function $g: V \rightarrow Z^{0}$ (also called Grundy function) is defined by $g(u)=\operatorname{mex} g(F(u))$, where for any set T and any function h on $T, h(T)=\{h(t): t \in T\}$. See Berge [1] or Garey and Johnson [4]. The kernel and Sprague-Grundy function have applications in combinatorial game theory and elsewhere. See Berge [1]. There is a "one-way" connection between the two:

Lemma 1. If $G=(V, E)$ is a digraph and g a Sprague-Grundy function on G, then $K=\{u \in V: g(u)=0\}$ is a kernel of G.

The proof is immediate. The converse is false. For both see [1, Ch. 14, § 3].
Since mex $\emptyset=0, g(u)=0$ for a sink u. For "simple" digraphs, K and g exist uniquely [1, Theorem 7], and can be computed easily:

Lemma 2. If $G=(V, E)$ is a finite acyclic digraph, then K and g exist uniquely on G and they can be computed in polynomial time.

Proof. We give an algorithm for computing g and K in "endorder", that is, labeling a vertex only after all its followers have been labeled: Label all sinks by 0 ; if u is any unlabeled vertex such that $F(u)$ has already been labeled, then label u with mex $l(F(u))$, where $l(u)$ denotes the label of u.

Since G is finite and acyclic, at least one sink always exists, and so the algorithm can always be started. Since G is acyclic, no predecessor of an unlabeled vertex u is labeled when the set $F(u)$ has been labeled. Hence the labeling exists and satisfies $l(u)=\operatorname{mex} l(F(u))$ for every $u \in V$. The labels are unique, since if we assume that all labels in $l(F(u))$ are unique, then also $l(u)$ is unique. The algorithm clearly requires only $\mathrm{O}(|V||E|)$ steps.

The result now follows by letting $g(u)=l(u)$ for all $u \in V$ and $K=$ $\{u \in V: g(u)=0\}$.

Define the following two decision problems:

KERNEL (KE). Given a finite digraph $G=(U, V)$, does G have a kernel?
SPRAGUE-GRUNDY (SG). Given a finite digraph $G=(U, V)$, does G have a Sprague-Grundy function?

Both of these problems are known to be NP-complete. See Chvátal [2], and van Leeuwen [7]. The problem SG is NP-complete even when restricted to planar digraphs with $d_{\text {out }}(u) \leq 5$ and $d_{\text {in }}(u) \leq 5$ for every $u \in V$. See [3]. For another reference for both problems as well as for the general concepts of NP-completeness and polynomial reduction used below, see Garey and Johnson [4].

The decision problems RESTRICTED PLANAR KERNEL (PKE3) and RESTRICTED PLANAR SPRAGUE-GRUNDY (PSG3) are defined as above, except that $G=(V, E)$ is a finite cyclic planar digraph with $d_{\text {out }}(u) \leq 2, d_{\mathrm{in}}(u) \leq 2$ and $d(u) \leq 3$ for every $u \in V$. Since $g(u)$ is clearly bounded by the maximum out-degree of the given digraph, $\mathrm{SG} \in \mathrm{NP}$. Also KE $\in \mathrm{NP}$. Thus a fortiori PKE3, PSG3 \in NP. Our main result is that even these restricted problems seem difficult:

Theorem. PKE3 and PSG3 are NP-complete.

For the proof we define an additional decision problem: Let 3CNF be the set of Boolean formulas $B=C_{1} \wedge \cdots \wedge C_{m}$ in the variables x_{1}, \ldots, x_{n}, where each clause C_{i} is the disjunction of threc literals, and the set of literals is $\left\{x_{1}, \ldots, x_{n}\right\} \cup\left\{\bar{x}_{1}, \ldots, \bar{x}_{n}\right\}$. A Boolean formula B is satisfiable if there is a truth assignment $\left(t_{1}, \ldots, t_{n}\right) \in\{0,1\}^{n}$ to the variables such that $B=1$, where $0 \vee 0=0 \wedge 0=0 \wedge 1=1 \wedge 0=0,0 \vee 1=1 \vee 0=$ $1 \vee 1=1 \wedge 1=1$. The multigraph $G(B)=(V, E)$ of B is defined by

$$
V=\bigcup_{i=1}^{m} c_{i} \bigcup_{j=1}^{n} x_{j}, \quad E=E^{l} \cup E^{2}
$$

where

$$
E^{1}=\bigcup_{i=1}^{m}\left\{\left(c_{i}, x_{j}\right): x_{j} \in C_{i}\right\}, \quad E^{2}=\bigcup_{i=1}^{m}\left\{\left(c_{i}, x_{j}\right): \bar{x}_{j} \in C_{i}\right\} .
$$

See Fig. 1. Note that different formulas B may map into the same multigraph $G(B)$ (such as $\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}$ and $x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}$).

Fig. 1. The multi-graph $G(B)$ for the case $B=\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{2} \vee x_{3}\right)$.
PLANAR 3-SATISFIABILITY (P3SAT). Given a Boolean formula $B \in 3 C N F$ such that $G(B)$ is planar, is B satisfiable?

Lemma 3. (Lichtenstein [6]). P3SAT is NP-complete.
Proof of Theorem. We use a single reduction from P3SAT for both problems. Let $B=C_{1} \wedge \cdots \wedge C_{m}$ in x_{1}, \ldots, x_{n} be an instance of P3SAT. Construct the planar multigraph $G(B)$ of B as defined above. Now "blow up" the vertices of $G(B)$ as follows: Replace each c_{i} by a directed "triangle with tree" $T_{i}=\left(V_{i}, E_{i}\right)$, where

$$
\begin{aligned}
& V_{i}=\left\{c_{i}, d_{i}, e_{i}, p_{i}, q_{i}, r_{i}, s_{i}, t_{i}, u_{i}\right\} \\
& E_{i}=\left\{\left(c_{i}, d_{i}\right),\left(d_{i}, e_{i}\right),\left(e_{i}, c_{i}\right),\left(c_{i}, p_{i}\right),\left(p_{i}, q_{i}\right),\left(q_{i}, r_{i}\right),\left(r_{i}, t_{i}\right),\left(q_{i}, s_{i}\right),\left(s_{i}, u_{i}\right)\right\}
\end{aligned}
$$

As in Garey, Johnson and Stockmeyer [5], let $m(j)$ denote the total number of times x_{j} and \bar{x}_{j} appear in B. Replace each vertex x_{j} in $G(B)$ by a directed cycle $S_{j}=\left(V_{j}^{\prime}, E_{j}^{\prime}\right)$, where

$$
\begin{aligned}
& V_{j}^{\prime}=\left\{x_{1 j}, \bar{x}_{1 j}, \ldots, x_{m(j), j}, \bar{x}_{m(j), j}\right\}, \\
& E_{j}^{\prime}=\left\{\left(x_{1 j}, \bar{x}_{1 j}\right),\left(\bar{x}_{1 j}, x_{2 j}\right), \ldots,\left(x_{m(j), j}, \bar{x}_{m(j), j}\right),\left(\bar{x}_{m(j), j}, x_{1 j}\right)\right\} .
\end{aligned}
$$

For fixed $i(1 \leq i \leq m)$, each edge $e_{i}=\left(c_{i}, x_{j}\right) \in E(B)$ is replaced by a directed edge ($t_{i}, x_{h j}$) or ($u_{i}, x_{h j}$) (if $e_{i} \in E^{1}$) or by a directed edge ($t_{i}, \bar{x}_{h j}$) or ($u_{i}, \bar{x}_{h j}$) (if $e_{i} \in E^{2}$), with distinct h for each edge, such that $d_{\text {out }}\left(t_{i}\right)=2, d_{\text {out }}\left(u_{i}\right)=1$ (see Fig. 2). This gives a set $E_{i}^{\prime \prime}$ of three edges. All of this can be done so that planarity is preserved. Thus the resulting digraph $G(V, E)$ is planar, with $d_{\text {out }}(u) \leq 2, d_{\text {in }}(u) \leq 2, d(u) \leq 3$ for all $u \in V$, where

$$
V=\bigcup_{i=1}^{m} V_{i} \bigcup_{j=1}^{n} V_{j}^{\prime}, \quad E=\bigcup_{i=1}^{m}\left\{E_{i}, E_{i}^{\prime \prime}\right\} \bigcup_{j=1}^{n} E_{j}^{\prime} .
$$

It is also clear that the construction is polynomial.

Fig. 2. The construction for $B=\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{2} \vee x_{2} \vee x_{3}\right)$.

Regarding the subgraph G_{i} consisting of the vertices $q_{i}, r_{i}, s_{i}, t_{i}, u_{i}$ and the edges $\left(q_{i}, r_{i}\right),\left(r_{i}, t_{i}\right),\left(q_{i}, s_{i}\right),\left(s_{i}, u_{i}\right)$, we note that q_{i} is in a kernel K if and only if $\left(F\left(t_{i}\right) \cup F\left(u_{i}\right)\right) \cap K=\emptyset$; and $g\left(q_{i}\right)=0$ if and only if $0 \notin g\left(F\left(t_{i}\right) \cup F\left(u_{i}\right)\right)(1 \leq i \leq m)$.

Now suppose that we are given a satisfying truth assignment for B. For each j $(1 \leq j \leq m)$, label all $m(j)$ vertices $x_{1 j}, \ldots, x_{m(j), j}$ by 0 and all vertices $\bar{x}_{1 j}, \ldots, \bar{x}_{m(j), j}$ by 1 (if $x_{j}=1$) or the reverse (if $x_{j}=0$). Since $C_{i}=1$, at least one vertex in $F\left(t_{i}\right) \cup F\left(u_{i}\right)$ is labeled 0 for every $i(1 \leq i \leq m)$. Label each of the vertices of the subgraph G_{i} by the mex of the labels of their followers. This results in a positive label (1 or 2) at q_{i}. Also label e_{i} and p_{i} by $0, d_{i}$ by 1 and c_{i} by $2(1 \leq i \leq m)$. It is immediate that the labels are the value of a Sprague-Grundy function on G, and that $K=\{u \in V: g(u)=0\}$ is a kernel (Lemma 1).

Conversely, suppose that G has a kernel K. For each $i(1 \leq i \leq m)$, exactly one vertex of each triple $\left\{c_{i}, d_{i}, e_{i}\right\}$ has to be in K, and it is clear that this must be e_{i}. This implies $p_{i} \in K, q_{i} \oplus K$. Hence $\left(F\left(t_{i}\right) \cup F\left(u_{i}\right)\right) \cap K \neq \emptyset$. So there is either some edge $\left(t_{i}, x_{h j}\right) \in E^{\prime \prime}$ or $\left(u_{i}, x_{h j}\right) \in E^{\prime \prime}$ with $x_{h j} \in K$ in which case we put $x_{j}=1$, or there is an edge $\left(t_{i}, x_{h j}\right) \in E^{\prime \prime}$ or ($\left.u_{i}, \mathbb{x}_{h j}\right) \in E^{\prime \prime}$ with $x_{h j} \in K$ in which case we put $x_{j}=0$. This induces a consistent satisfying truth assignment on a subset of the variables since clearly each S_{j} has precisely $m(j)$ vertices in K, either all of the form $x_{i j}$ or all of the form $\bar{x}_{i j}$.

Now suppose that G has a Sprague-Grundy function g. If $g\left(e_{i}\right)>0$, then $g\left(d_{i}\right)=0$, hence $g\left(c_{i}\right)>0$ and so $g\left(e_{i}\right)=0$, a contradiction. Hence $g\left(e_{i}\right)=0, g\left(d_{i}\right)=1, g\left(p_{i}\right)=0$, $g\left(c_{i}\right)=2, g\left(q_{i}\right)>0$. Hence there must be some $x_{h j} \in F\left(t_{i}\right) \cup F\left(u_{i}\right)$ such that $g\left(x_{h j}\right)=0$ or some $\bar{x}_{h j} \in F\left(t_{i}\right) \cup F\left(u_{i}\right)$ such that $g\left(\bar{x}_{h j}\right)=0$. In the former case we have actually $g\left(x_{h j}\right)=0, g\left(\bar{x}_{h j}\right)=1(1 \leq h \leq m(j))$ and we put $x_{j}=1$, and in the latter case the equalities are reversed and we put $x_{j}=0$. In any case $C_{i}=1(1 \leq i \leq m)$ and B is satisfiable.

Note. The theorem is best possible (if $\mathrm{P} \neq \mathrm{NP}$). To see this, we may assume that $G=(V, E)$ is a connected cyclic digraph. Because if it is not connected, apply the polynomial procedures below to each connected component, and if it is acyclic then Lemma 2 applies and g can be computed polynomially.
(i) Suppose that $d(u)=d_{\text {out }}(u)+d_{\text {in }}(u) \leq 2$ for all $u \in V$. This implies that G consists of a single simple cycle. Then G has a kernel K and a Sprague-Grundy function g if and only if $|V| \equiv 0(\bmod 2)$. If the condition holds, the g-values 0 and 1 alternate along the cycle, and $K=\{u \in V: g(u)=0\}$.
(ii) Suppose that $d_{\text {out }}(u) \leq 1$ for all $u \in V$. Then G consists of a single cycle, possibly with several ingoing trees impinging on it. If V^{\prime} is the set of vertices on the cycle, then G has a kernel and a Sprague-Grundy function if and only if $\left|V^{\prime}\right| \equiv 0$ $(\bmod 2)$. If this holds, g along the cycle is determined as in (i), and these values clearly prescribe g-values on the trees. A kernel is determined as in (i).
(iii) Suppose that $d_{\mathrm{in}}(u) \leq 1$ for all $u \in V$. Then G consists of a single cycle, possibly with several outgoing trees cropping up from it. The g-values on the trees can be computed by the algorithm indicated in the proof of Lemma 2. Let u be any vertex on the cycle. If any of the labels 0,1 or 2 for u leads to a consistent assign-
ment of labels for all vertices on the cycle, then G has a Sprague-Grundy function, otherwise it does not have one. A slight variation of this algorithm determines a kernel if there is one or shows that there is none.

References

[1] C. Berge, Graphs and Hypergraphs, translated by E. Minieka (North-Holland, Amsterdam, 1973).
[2] V. Chvátal, On the computational complexity of finding a kernel, Report No. CRM-300, Centre de Recherches Mathématiques, Université de Montréal (1973).
[3] A.S. Fraenkel and Y. Yesha, Complexity of problems in games, graphs and algebraic equations, Discrete Applied Math. 1 (1979) 15-30.
[4] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP. Completeness (W.H. Freeman, San Francisco, 1979).
[5] M.R. Garey, D.S. Johnson and L. Stockmeyer, Some simplified NP-complete problems, Theoret. Comput. Sci. 1 (1976) 237-267.
[6] D. Lichtenstein, Planar satisfiability and its uses, SIAM J. Comput., to appear,
[7] J. van Leeuwen, Having a Grundy-numbering is NP-complete, Report No. 207, Computer Science Dept., Pennsylvania State University, University Park, PA (1976).

