535 research outputs found

    Beyond Bidimensionality: Parameterized Subexponential Algorithms on Directed Graphs

    Get PDF
    We develop two different methods to achieve subexponential time parameterized algorithms for problems on sparse directed graphs. We exemplify our approaches with two well studied problems. For the first problem, {\sc kk-Leaf Out-Branching}, which is to find an oriented spanning tree with at least kk leaves, we obtain an algorithm solving the problem in time 2O(klogk)n+nO(1)2^{O(\sqrt{k} \log k)} n+ n^{O(1)} on directed graphs whose underlying undirected graph excludes some fixed graph HH as a minor. For the special case when the input directed graph is planar, the running time can be improved to 2O(k)n+nO(1)2^{O(\sqrt{k})}n + n^{O(1)}. The second example is a generalization of the {\sc Directed Hamiltonian Path} problem, namely {\sc kk-Internal Out-Branching}, which is to find an oriented spanning tree with at least kk internal vertices. We obtain an algorithm solving the problem in time 2O(klogk)+nO(1)2^{O(\sqrt{k} \log k)} + n^{O(1)} on directed graphs whose underlying undirected graph excludes some fixed apex graph HH as a minor. Finally, we observe that for any ϵ>0\epsilon>0, the {\sc kk-Directed Path} problem is solvable in time O((1+ϵ)knf(ϵ))O((1+\epsilon)^k n^{f(\epsilon)}), where ff is some function of \ve. Our methods are based on non-trivial combinations of obstruction theorems for undirected graphs, kernelization, problem specific combinatorial structures and a layering technique similar to the one employed by Baker to obtain PTAS for planar graphs

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure

    Bidimensionality and Geometric Graphs

    Full text link
    In this paper we use several of the key ideas from Bidimensionality to give a new generic approach to design EPTASs and subexponential time parameterized algorithms for problems on classes of graphs which are not minor closed, but instead exhibit a geometric structure. In particular we present EPTASs and subexponential time parameterized algorithms for Feedback Vertex Set, Vertex Cover, Connected Vertex Cover, Diamond Hitting Set, on map graphs and unit disk graphs, and for Cycle Packing and Minimum-Vertex Feedback Edge Set on unit disk graphs. Our results are based on the recent decomposition theorems proved by Fomin et al [SODA 2011], and our algorithms work directly on the input graph. Thus it is not necessary to compute the geometric representations of the input graph. To the best of our knowledge, these results are previously unknown, with the exception of the EPTAS and a subexponential time parameterized algorithm on unit disk graphs for Vertex Cover, which were obtained by Marx [ESA 2005] and Alber and Fiala [J. Algorithms 2004], respectively. We proceed to show that our approach can not be extended in its full generality to more general classes of geometric graphs, such as intersection graphs of unit balls in R^d, d >= 3. Specifically we prove that Feedback Vertex Set on unit-ball graphs in R^3 neither admits PTASs unless P=NP, nor subexponential time algorithms unless the Exponential Time Hypothesis fails. Additionally, we show that the decomposition theorems which our approach is based on fail for disk graphs and that therefore any extension of our results to disk graphs would require new algorithmic ideas. On the other hand, we prove that our EPTASs and subexponential time algorithms for Vertex Cover and Connected Vertex Cover carry over both to disk graphs and to unit-ball graphs in R^d for every fixed d

    Approximation Algorithms for Polynomial-Expansion and Low-Density Graphs

    Full text link
    We study the family of intersection graphs of low density objects in low dimensional Euclidean space. This family is quite general, and includes planar graphs. We prove that such graphs have small separators. Next, we present efficient (1+ε)(1+\varepsilon)-approximation algorithms for these graphs, for Independent Set, Set Cover, and Dominating Set problems, among others. We also prove corresponding hardness of approximation for some of these optimization problems, providing a characterization of their intractability in terms of density

    Subexponential-time parameterized algorithm for Steiner tree on planar graphs

    Get PDF
    The well-known bidimensionality theory provides a method for designing fast, subexponential-time parameterized algorithms for a vast number of NP-hard problems on sparse graph classes such as planar graphs, bounded genus graphs, or, more generally, graphs with a fixed excluded minor. However, in order to apply the bidimensionality framework the considered problem needs to fulfill a special density property. Some well-known problems do not have this property, unfortunately, with probably the most prominent and important example being the Steiner Tree problem. Hence the question whether a subexponential-time parameterized algorithm for Steiner Tree on planar graphs exists has remained open. In this paper, we answer this question positively and develop an algorithm running in O(2^{O((k log k)^{2/3})}n) time and polynomial space, where k is the size of the Steiner tree and n is the number of vertices of the graph. Our algorithm does not rely on tools from bidimensionality theory or graph minors theory, apart from Baker's classical approach. Instead, we introduce new tools and concepts to the study of the parameterized complexity of problems on sparse graphs.publishedVersio

    Computational Geometry Column 42

    Get PDF
    A compendium of thirty previously published open problems in computational geometry is presented.Comment: 7 pages; 72 reference

    Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs

    Full text link
    We propose polynomial-time algorithms that sparsify planar and bounded-genus graphs while preserving optimal or near-optimal solutions to Steiner problems. Our main contribution is a polynomial-time algorithm that, given an unweighted graph GG embedded on a surface of genus gg and a designated face ff bounded by a simple cycle of length kk, uncovers a set FE(G)F \subseteq E(G) of size polynomial in gg and kk that contains an optimal Steiner tree for any set of terminals that is a subset of the vertices of ff. We apply this general theorem to prove that: * given an unweighted graph GG embedded on a surface of genus gg and a terminal set SV(G)S \subseteq V(G), one can in polynomial time find a set FE(G)F \subseteq E(G) that contains an optimal Steiner tree TT for SS and that has size polynomial in gg and E(T)|E(T)|; * an analogous result holds for an optimal Steiner forest for a set SS of terminal pairs; * given an unweighted planar graph GG and a terminal set SV(G)S \subseteq V(G), one can in polynomial time find a set FE(G)F \subseteq E(G) that contains an optimal (edge) multiway cut CC separating SS and that has size polynomial in C|C|. In the language of parameterized complexity, these results imply the first polynomial kernels for Steiner Tree and Steiner Forest on planar and bounded-genus graphs (parameterized by the size of the tree and forest, respectively) and for (Edge) Multiway Cut on planar graphs (parameterized by the size of the cutset). Additionally, we obtain a weighted variant of our main contribution

    Subexponential parameterized algorithms for graphs of polynomial growth

    Get PDF
    We show that for a number of parameterized problems for which only 2O(k)nO(1)2^{O(k)} n^{O(1)} time algorithms are known on general graphs, subexponential parameterized algorithms with running time 2O(k111+δlog2k)nO(1)2^{O(k^{1-\frac{1}{1+\delta}} \log^2 k)} n^{O(1)} are possible for graphs of polynomial growth with growth rate (degree) δ\delta, that is, if we assume that every ball of radius rr contains only O(rδ)O(r^\delta) vertices. The algorithms use the technique of low-treewidth pattern covering, introduced by Fomin et al. [FOCS 2016] for planar graphs; here we show how this strategy can be made to work for graphs with polynomial growth. Formally, we prove that, given a graph GG of polynomial growth with growth rate δ\delta and an integer kk, one can in randomized polynomial time find a subset AV(G)A \subseteq V(G) such that on one hand the treewidth of G[A]G[A] is O(k111+δlogk)O(k^{1-\frac{1}{1+\delta}} \log k), and on the other hand for every set XV(G)X \subseteq V(G) of size at most kk, the probability that XAX \subseteq A is 2O(k111+δlog2k)2^{-O(k^{1-\frac{1}{1+\delta}} \log^2 k)}. Together with standard dynamic programming techniques on graphs of bounded treewidth, this statement gives subexponential parameterized algorithms for a number of subgraph search problems, such as Long Path or Steiner Tree, in graphs of polynomial growth. We complement the algorithm with an almost tight lower bound for Long Path: unless the Exponential Time Hypothesis fails, no parameterized algorithm with running time 2k11δεnO(1)2^{k^{1-\frac{1}{\delta}-\varepsilon}}n^{O(1)} is possible for any ε>0\varepsilon > 0 and an integer δ3\delta \geq 3
    corecore