Subexponential-Time Parameterized Algorithm for
Steiner Tree on Planar Graphs*

Marcin Pilipczuk!, Michal Pilipczuk?, Piotr Sankowski®, and Erik
Jan van Leeuwen?

1,3 Institute of Informatics, University of Warsaw, Poland
{malcin,sank}@mimuw.edu.pl

2 Department of Informatics, University of Bergen, Norway
michal.pilipczuk@ii.uib.no

4 Department of Computer, Control, and Management Engineering, Sapienza
University of Rome, Italy
E.J.van.Leeuwen@dis.uniromal.it

—— Abstract

The well-known bidimensionality theory provides a method for designing fast, subexponential-
time parameterized algorithms for a vast number of NP-hard problems on sparse graph classes
such as planar graphs, bounded genus graphs, or, more generally, graphs with a fixed excluded
minor. However, in order to apply the bidimensionality framework the considered problem needs
to fulfill a special density property. Some well-known problems do not have this property, unfortu-
nately, with probably the most prominent and important example being the STEINER TREE prob-
lem. Hence the question whether a subexponential-time parameterized algorithm for STEINER
TREE on planar graphs exists has remained open. In this paper, we answer this question posit-
ively and develop an algorithm running in O(2°((klog k)2 n) time and polynomial space, where
k is the size of the Steiner tree and n is the number of vertices of the graph. Our algorithm does
not rely on tools from bidimensionality theory or graph minors theory, apart from Baker’s clas-
sical approach. Instead, we introduce new tools and concepts to the study of the parameterized
complexity of problems on sparse graphs.

1998 ACM Subject Classification G.2.2 Graphs Algorithms
Keywords and phrases planar graph, Steiner tree, subexponential-time algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.353

1 Introduction

It is widely believed that no NP-hard problem can be solved in polynomial time. Interestingly,
it turns out that NP-hard problems differ greatly in their exact exponential-time complexity.
A majority of NP-complete problems admits algorithms that run in single-exponential time
with respect to the natural parameters of the problem (see Section 2 for formal definitions of
parameterized complexity). In many cases it is known that going below exponential time
would violate the so-called Exponential Time Hypothesis [17]. However, a limited set of
problems admits subexponential-time algorithms, which are significantly more efficient than
the ‘standard’ exponential-time algorithms.

* The second author is supported by the ERC grant “Rigorous Theory of Preprocessing” no. 267959,
whereas the remaining authors are partially supported by the ERC grant PAAI no. 259515. Additionally,
the first and third authors acknowledge the support of the Foundation for Polish Science.

© Marcin Pilipczuk, Michat Pilipczuk, Piotr Sankowski, Erik Jan van Leeuwgn; SYMPOSIUM
Ol licensed under Creative Commons License BY-ND Lv \n ON THEORETICAL

30th Symposium on Theoretical Aspects of Computer Science (STACS’13). n ASPECTS
Editors: Natacha Portier and Thomas Wilke; pp. 353-364 4 7 / OF COMPUTER

\\v Leibniz International Proceedings in Informatics SCIENCE
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.353
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

354

Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs

The main source of subexponential-time algorithms in parameterized complexity is the
theory of bidimensionality. This framework applies to sparse graph classes, such as planar
graphs and graphs with a fixed excluded minor. Without going into technical details, the
framework provides subexponential-time parameterized algorithms [8] and linear kernels [14]
for problems that fulfill a special density property. The problems that fall into this category
include DOMINATING SET, VERTEX COVER, and FEEDBACK VERTEX SET.

However, for some well-known problems the bidimensionality framework fails, with
probably the most prominent and important example being the STEINER TREE problem. In
this problem we are given a n-vertex graph G, an integer k, and a set of terminals S C V(G).
We are to find a tree T in G with at most k edges such that S C V(T'). The computational
complexity of the STEINER TREE problem on general graphs is by now fully understood. It
has a parameterized algorithm working in O(2!51n®™M)) time, which is tight under Strong
Exponential Time Hypothesis [21, 7], and it is unlikely to admit a polynomial kernel [10]
(i.e., a polynomial-time preprocessing algorithm reducing the instance size to |S|°(})). Tt has
a constant-factor approximation algorithm [6], but is APX-hard [3]. On the other hand, on
planar graphs, the problem is known to be NP-hard [18, 15] and to possess an EPTAS [5].
It has remained unclear, however, whether topological assumptions on the graph (such as
planarity) could speed up parameterized algorithms or provide a polynomial kernel.

In this work, we aim to bridge this gap by providing the first known subexponential-time
parameterized algorithm for STEINER TREE on planar graphs. The algorithm is parameterized
by the size k of the tree. We call this problem PLANAR STEINER TREE. Tazari [22] showed
that this problem admits an (9(20(Vklogn) n®M)-time algorithm by applying Baker’s classical
approach [1]. He explicitly posed the question whether a subexponential-time parameterized
algorithm for PLANAR STEINER TREE exists. We answer this question positively and develop
an algorithm running in O (2°((klog k)2 n) time and polynomial space.

Our approach starts with the observation that to obtain a subexponential-time para-
meterized algorithm for PLANAR STEINER TREE it suffices to give a subexponential kernel
and apply Tazari’s algorithm to it. That is, we only need to develop an algorithm that
reduces the size of the graph to be subexponential in k. To achieve this goal, we take a path
that differs significantly from previous approaches, which were based on bidimensionality
theory and which relied on some sort of grid minor theorem. Instead, we bring the strip and
brick decomposition (developed by Klein and Borradaile et al. [19, 5] to obtain the EPTAS
for STEINER TREE on planar graphs) to the parameterized setting. Roughly speaking, we
partition the graph into a polynomial (in k) number of bricks, each of polynomial perimeter,
such that within each brick the interaction between the solution and the perimeter of the
brick is bounded sublinearly in k. Then the number of partial solutions within a brick is
subexponential. We can restrict the graph to contain only the partial solutions, and thus
obtain a graph of subexponential size. However, we were not able to obtain a true subexpo-
nential kernel for the problem. Our decomposition algorithm instead relies on branching, and
in fact we obtain a subexponential number of subexponential kernels for the input instance.

We believe that our approach, which brings significantly new techniques to the paramet-
erized complexity community, is of independent interest and will inspire further research on
subexponential-time algorithms on sparse graph classes.

2 Preliminaries

For the standard graph notation used throughout this paper, we refer to [9]. We additionally
need the following notation. If C' is a simple cycle in a planar graph with fixed embedding,

M. Pilipczuk, M. Pilipczuk, O. Sankowski, and E. J. v. Leeuwen

then C[xz,y] denotes the unique counter-clockwise path on C between x and y. When we

refer to an order of vertices on a cycle, we mean their counter-clockwise order along the cycle.

For a path or a cycle X, | X| denotes the length of X in terms of the number of its edges.

2.1 Parameterized complexity

Parameterized complexity aims at explaining time and space complexities of various, usually
NP-hard problems with the help of multivariate analysis. Instead of looking at the instance
only from the side of the classical input size measure, we seek relevant parameters that are
responsible for the exponential blow-up in the complexity of an algorithm. These parameters
generally correspond to natural aspects of the input instance, such as the solution size or
some structural parameter of the input graph. In other words, we try to distinguish easy
and hard instances of an NP-hard problem by introducing an appropriate measure.

Formally, an instance comes with an integer parameter k. A parameterized problem (Q then
is a subset of ¥* x N for some finite alphabet X. We say that the problem is fixed-parameter
tractable (FPT) if there exists an algorithm solving any instance (z, k) in time f(k) poly(|z|),
for some computable (usually exponential) function f. It is known that a problem is FPT if
and only if it is kernelizable: a kernelization algorithm for a problem @ takes an instance (z, k)
and in time polynomial in |z| 4+ k produces an equivalent instance (2', k') (i.e., (x,k) € Q
if and only if (2, k') € Q) such that |2'| + k' < g(k) for some computable function g. The
function g is the size of the kernel, and if it is polynomial (linear), then we say that @ admits
a polynomial (linear) kernel. For more detailed expositions, see e.g. [11, 13].

3 Bricks and strip decompositions

In this section, we recall the decomposition framework of Klein and Borradaile et al. [19, 5]
and modify it to suit our purposes. The original framework operates on weighted graphs
and uses approximate distances, as it was designed to be the main tool in an approximation
algorithm (the EPTAS for PLANAR STEINER TREE). However, for our parameterized
algorithm it is crucial to use exact distances between vertices. At the same time, we may
use the fact that our graphs are unweighted. With this in mind, we develop a modified
framework.

Let (G, S, k) be a PLANAR STEINER TREE instance. We start by manipulating the graph
in such a way that all terminals lie on the outer face, in a similar manner as in the work of
Borradaile et al. [5]. Intuitively, we find an approximate Steiner tree along which we cut the
graph open and then make the resulting face the outer face (see Figure 1). Formally, we first
compute an approximate Steiner tree Ty, connecting S. We could use an O(nlogn)-time
2-approximation algorithm [20, 23, 24] for this. However, since we aim for a linear dependency
on n in the running time, we take a different approach. We compute a breadth-first search
tree from a fixed terminal, and iteratively remove any nonterminal leafs from this tree. This
takes linear time. The resulting tree is a (minimal) Steiner tree connecting S, which we use
as T,pe- Note that the distance in T,,, between any two terminals must be at most k, or we
may return NO. Hence we verify that Ty, has at most k% edges; otherwise, we return NO.

Given the tree Tgp,, we cut the plane open along the tree, duplicating every edge of T,.
Let G be the resulting graph. From here on, we fix a plane embedding of ¢ that has the
interior of the tree Ty, as the outer face (see Figure 1). Observe that now the terminals S
lie only on the outer face. Moreover, each vertex or edge of G can be mapped to a vertex or
edge in G; we denote this map by 7 : V(G) U E(G) — V(G) U E(G). Note that only vertices
and edges of Ty, possibly appear more than once in the domain of this map.

355

STACS’13

356

Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs

e

Figure 1 Construction of the cut-open graph G.

We can now proceed with the basic notion of a brick. We call a vertex or edge of a plane
graph enclosed by a closed walk of that graph if it is contained in a bounded Jordan region
defined by the Jordan curve which the walk induces in the plane embedding.

» Definition 1. A brick H is the subgraph of G enclosed by a simple cycle of G. This cycle
is called the perimeter of the brick and denoted by 0H.

We will also use the term perimeter to refer to the length of the perimeter of a brick H.
By intH we denote the set of edges enclosed by 0H, i.e., intH = E(H) \ E(0H). Observe
that although 7(0H) may not always be a simple cycle in G, it is still a closed walk without
self-crossings. Moreover, intH is isomorphic to the part of G on one of the sides of 7(0H).
Finally, observe that G itself is a brick with the Eulerian tour of 7 upz 88 its perimeter.

The algorithm of this paper continuously decomposes bricks into smaller bricks. Here,
a decomposition of a brick H is a collection of bricks inside H such that every face inside
H belongs to exactly one of these bricks. Any brick produced by the algorithm will be
immediately decomposed further into a particular type of bricks, called strips.

» Definition 2. A brick H is called a strip if 9H can be partitioned into two paths R and
B (called the red and blue paths below), such that

B is the shortest path (in H) between its endpoints,

every proper subpath of R is the shortest path (in H) between its endpoints.

The second condition is equivalent to saying that if R = ry,...,7 g, then ra,... 7 is a
shortest path between ro and 7z and 71,...,7r)—1 is a shortest path between r; and r|g|_;.
Observe that R and B share no edges, but do share two vertices of 0H. All algorithms in
the paper will construct and maintain R and B for each strip.

Klein [19] showed that, given a n-vertex brick H, one can decompose it into strips in time
polynomial in n. We need a slightly different result for our unweighted, parameterized case.

» Lemma 3. There exists an O(|0H|? n)-time algorithm that, given a brick H, decomposes
it into at most |0H| strips of perimeter at most |0H| each.

Proof. To prove the lemma it is sufficient to show an algorithm that in O(|0H|n) time
decomposes the brick H into a strip Hy and a number of bricks Hy, Hs, ..., H,, such that
the sum of the perimeters of all bricks Hy, Hs, ..., H, is strictly smaller than |[0H|. We may
then recursively decompose the bricks Hy, Ho, ..., H.. The decrease in the total length of
the perimeters yields the bound on the total number of strips in the obtained decomposition
via a trivial induction, and also proves the claimed running time bound.

We say that an ordered pair of vertices (x,y) € V(OH) x V(0H) is cuttable if 0H [x,y] is
not a shortest path between x and y in H. A cuttable pair (x,y) is minimal if there does not

M. Pilipczuk, M. Pilipczuk, O. Sankowski, and E. J. v. Leeuwen

Figure 2 Step of the decomposition algorithm of Lemma 3. A brick H is decomposed into a strip
Hy and bricks Hi, H2 and Hs. The dashed path is the path P.

exist another cuttable pair (2/,y’) with H[z', '] being a proper subpath of 0H[x,y]. Note
that a cuttable pair always exists in a brick H: since OH is a simple cycle, |0H| > 3 and
a pair (z,y) is cuttable whenever 0H [y, x] consists of a single edge. Therefore a minimal
cuttable pair always exists. Moreover, we can find such a pair in O(|0H|n) time using a
breadth-first search for each vertex of 0H.

Let (z,y) be a minimal cuttable pair in H and let P be a shortest path from z to y in H.

We claim that P does not contain any vertex from the interior of the path OH [z, y]. Indeed,
if z would be such a vertex, then a subpath of P from x to z or a subpath of P from z to y
would witness that (z,z) or (z,y) is a cuttable pair, contradicting the minimality of (z,y).

We infer that 0H [z, y] U P is a simple cycle in H, and let Hy be the part of H enclosed
by OH|[x,y] U P (see Figure 2). Since P is a shortest path between x and y, |P| < |0H [y, z]|
and we infer that |0Hy| < |0H|. Moreover, the choice of P and the pair (x,y) implies that
Hj is a strip, with the blue path being the path P and the red path being 0H [z, y].

Let x = z9,21,%2,...,%¢ = y be vertices of V(P) NV (9H) in the order in which they
appear on the path P (see Figure 2). We claim that they appear in the reverse order on the
path 0Hly, z], that is, on the path OH[y,] the vertex z; is closer than z; is to x whenever
1 < j. Assume otherwise, and let ¢ be the smallest index such that z;11 is closer to x than z;
on the path 0H|y, z]. Clearly ¢ > 1. As P is a shortest path between x and y, P is a simple
path, the vertices z; are distinct, and the subpath of P from x to z; separates z;11 from y in
the graph H. Therefore the subpath of P from x to z; intersects the subpath from z;41 to v,
a contradiction to the fact that P is a simple path.

For 1 < i < ¢, consider a closed walk P; in H that consists of a subpath of P from
zi—1 to z; and of OH|z;, z;—1]. Note that P; is a simple cycle unless it is of length 2. Let
H,y, Hs,...,H, be the set of all bricks enclosed by the paths P; that are simple cycles (see

Figure 2). From the previous claim we infer that Hy, Hy, Ha, ..., H, is a decomposition of H
into r + 1 bricks. Moreover, Y__, [0H;| < |P|+ |0Hy, z]| < |0H |z, y]| + |0H]y,]| = |0H|.
This finishes the proof of the lemma. |

If the algorithm of Lemma 3 is applied to a brick H, then a strip of the decomposition
containing a vertex or edge of JH has that vertex or edge on its perimeter. In particular, if
we apply the algorithm to the brick G, then no terminal will lie in the interior of a strip.

357

STACS’13

358

Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs

4 A subexponential-time parameterized algorithm

We now show how to use strip decompositions to give a subexponential-time parameterized
algorithm for PLANAR STEINER TREE.

4.1 Light strip decompositions

In this section, we formally define what we mean by the interaction of a Steiner tree with
a decomposition of G into strips. Moreover, we show that if we know that this interaction
is bounded sublinearly in k, then we can indeed find a Steiner tree of size at most k in
subexponential time. Throughout, let (G, S, k) be an instance of PLANAR STEINER TREE
and assume that it is a YES-instance. We will also assume that we have constructed the
cut-open graph G as described before. Furthermore, we call a Steiner tree T' C E(G) optimal
if the terminals in S are connected by T', |T'| < k, and |T| is minimum.

As a first step, we project trees in G onto G. This can be done in a natural way using
the mapping m. Somewhat abusing notation, given a tree T in G, we say that an edge e
of G belongs to T if m(e) € T. Note that this projection of T' onto G may no longer be
connected, and some edges of the tree may be duplicated if they coincide with the edges of
Tupz- However, inside a brick the tree T' should behave similarly in G' and in é, because the
interiors of bricks are isomorphic in G and G.

Using this projection, we can formally define the interaction between an optimal Steiner
tree and a decomposition of G into strips.

» Definition 4. Let T be an optimal Steiner tree, let H be a strip in some strip decomposition
of G, and let v € V(OH). We say that v is a portal for T if v is incident to an edge e that
belongs both to the interior of H and to T' (formally, e € intH and n(e) € T).

The number of portals of strips allows a distinction between light and heavy strips of a strip
decomposition of G. The threshold is based on a number p = p(k) = k2/3/log"* k. We
choose to represent it symbolically in order to expose the nature of the trade-offs made in
the design of the algorithm. We implicitly use that p = o(k) and that p, k/p = w(1).

» Definition 5. Let T" be an optimal Steiner tree and let H be a strip in some strip
decomposition of G. A strip H is called light with respect to T if OH contains at most k/p
portals for T'. Otherwise, H is called heavy with respect to T'.

We call a strip decomposition of G light if all its strips are light with respect to some
optimal Steiner tree T'. The next lemma shows that knowing a light strip decomposition of a
particular type allows the instance to be solved.

» Lemma 6. There exists an algorithm which takes as input an instance (G, S, k) of the
PLANAR STEINER TREE problem together with the tree Tops, the graph é, and a strip
decomposition D of G such that (i) D consists of at most O(k?p) strips of perimeter at most
O(k?) each, and (i) no terminal is in the interior of a strip of D, and which outputs either
nothing or a solution of size at most k. Moreover, if (G, S, k) is a YES instance and D is
light, then it returns a solution of size at most k. The algorithm runs in O(2O(V (k2 logk)/p) n)
time and polynomial space.

Proof. The algorithm starts by marking the set of edges that it will be allowed to use. First,
we mark all the perimeters of all the strips in the decomposition D. As there are at most
O(k?p) strips of perimeter at most O(k?) each, this procedure marks at most O(k*p) edges

M. Pilipczuk, M. Pilipczuk, O. Sankowski, and E. J. v. Leeuwen

in total. Second, we iteratively consider all strips H € D. For every strip H, consider each
set X C V(OH) of cardinality at most k/p. We then compute an optimal Steiner tree in
H connecting X. This is an instance of the PLANAR STEINER TREE problem where all
terminals lie on the outer face. Erickson et al. [12, p. 661] proved that such instances can
be solved in O(3n + (2> nlogn) time, where ¢ is the number of terminals. However, as
noted by Borradaile et al. [5, p. 3], this running time can be trimmed to O(¢3n). Hence in
O(K°MW |H|) time we can compute an optimal Steiner tree in H connecting X. If the cost of
this tree does not exceed k, then we mark its edges. Note that the number of edges marked
in this manner is at most O(k%p) - k/p - (Ok(f;)) -k = O(k°*/P)). Hence, the total number of
edges marked is O(kC*/P)),

Observe that this marking of G immediately implies a marking of G using the mapping
m. We now delete all the unmarked edges of G as well as any nonterminals that become
isolated, and apply the algorithm of Tazari [22] to the remaining instance. The graph of this
instance has O(k©*/P)) vertices. Hence Tazari’s algorithm runs in Q(20(Vklegk@®/m)y —

(’)(20(vV (k*logk)/ p)) time and polynomial space. If Tazari’s algorithm finds a solution, then it
is a solution of size at most k and we output it; otherwise, we output nothing. The marking
procedure takes O(kC*/P) n) < @20V (108 k)/P)) time and polynomial space as well.

It remains to prove that if (G, S, k) is a YES instance and every strip of D is light with
respect to an optimal Steiner tree T', then there exists an optimal solution 7" that uses only
the marked edges. Consider a strip H € D and let C1,C5,...,Cy be the components of the
forest T NintH. Each component C; is a Steiner tree connecting incident portals. As the
number of portals incident to C; is bounded by k/p, |C;| < k, and the interiors of the bricks
are isomorphic in G and G, we have marked some optimal Steiner tree C! connecting the
same portals at non-greater cost. Replace each component C; with C/, and perform such
replacements in all the strips of D, thus obtaining a tree T”. Clearly, T" is still a solution, it
is not more expensive than 7', and it only uses marked edges. <

It remains to find a light strip decomposition that is required by the lemma.

4.2 A branching algorithm to obtain a light strip decomposition

In this section, we develop a branching algorithm that outputs many strip decompositions,
one of which is light. It was observed before that Gisa brick, which can thus be decomposed
into strips using Lemma 3. This gives an initial strip decomposition where no terminal is in
the interior of a strip. However, we cannot guarantee that this decomposition is light. The
idea is therefore to guess a strip which is heavy with respect to some optimal Steiner tree,
and then to partition it into two simpler bricks, which are subsequently decomposed again
into strips using Lemma 3. Since we have no way of knowing which strips might be heavy or
what a good partition is, we apply branching and try all possibilities. Our analysis shows
that after branching a certain amount of times, we find a light strip decomposition in one of
the branches. We now present a formal description of this algorithmic intuition.

The main analytical tool to measure the progress of the algorithm is the following potential
function. For a strip decomposition D of G and an optimal solution T, let

lintH N 7=1(T)]

oD, T)= (4 > iy

HeH(D,T)

—[H(D,T)|.

Here H(D,T) is the set of strips from D that are heavy with respect to T. Note that the
potential is always nonnegative, as heavy strips each contain more than k/p portals for T

359

STACS’13

360

Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs

Figure 3 The split asserted by the statement of Lemma 7. The red dashed lines indicate the
partition into portal components. The dashed path represents a path of length at most k between r
and b, which must exist because r and b belong to the same portal component.

and thus their interiors each contain more than k/(2p) edges of T. Moreover, ®(D,T) < 4p
for any decomposition D and any solution 7. Finally, if ®(D,T) = 0 for some decomposition
D and some solution T, then all the strips of D are light with respect to T. The potential
function enables the definition of an extremal solution for a strip decomposition D: let T'(D)
denote an optimal solution that minimizes ®(D, T (D)).

We are now ready formalize the partition of a heavy strip (see Figure 3 for an illustration).

» Lemma 7. Let (G, S, k) be an instance of PLANAR STEINER TREE and let H be a strip
in some strip decomposition D ofG' not containing terminals in the interior, with R and B
being the red and blue paths of OH, respectively. Assume that (G, S, k) is a YES-instance
and assume furthermore that H is heavy with respect to T'(D). Let £ > k/p be the number of
portals in H for solution T(D). Then there exist vertices r € V(R) and b € V(B) such that
(i) there exists a path in H between r and b that avoids OH apart from the endpoints and
has length at most k,
(ii) for every such path P, the bricks with perimeters OH[r,b] U P and OH[b,r] U P both
contain at least £/2 — 2 portals for T(D).

Proof. Let F' be the forest induced in T'(D) by the internal edges of the strip, i.e., F =
T(D)NnintH. We say that two edges e1,ea € F are in the same portal component of F' if
some endpoint of e; can be connected to some endpoint of e; by a path in F traversing
only vertices not from V(0H). Observe that this path can have length 0, but then its only
vertex cannot belong to V(0H). We observe that this relation is an equivalence relation.
Note that the partition of the edges of F' into portal components can be more refined than a
partition into connected components, as edges from F' incident to the same portal are all in
different portal components. We say that a portal v is incident to a portal component C' if v
is incident to an edge from C.

Claim 1. Every portal component C is incident to a portal belonging to V(R) and to a
portal belonging to V(B).

Assume first that C' is incident only to portals from V(R). Let 71 and ro be the first and
the last portal on R that are incident to C, in counter-clockwise direction on 0H. As C'is
not incident to portals from V(B) and the endpoints of R belong to V(B), we have that
and 75 lie in the interior of R. From the definition of a strip, we know that OH|[ry, 2] is a
shortest path between r; and r5. We infer that in 7" we can substitute the portal component
C with the path 0H[ry, 2], thus creating a solution with non-greater cost (as C' contains
some path from r; to r9) and with strictly smaller potential. This contradicts the properties
of T(D). The argument that C must be incident to a portal from V(B) is analogous. This
settles Claim 1.

M. Pilipczuk, M. Pilipczuk, O. Sankowski, and E. J. v. Leeuwen

Using Claim 1, we prove the claimed existence of the vertices r and b. Let r1,ro,..., 7
be the portals on R, in clockwise direction on 0H, and let by,bs,...,bs be the portals on
B, in counter-clockwise direction on 0H. Note that possibly r; = by or r; = bs. For indices
i€{1,2,...,t}and j € {1,2,...,s}, let f(i,7) be the number of portals in the interior of the
path 0H[r;,b;], i.e., f(i,7) = [{r1,...,mi=1} U{b1,...,bj—1}|. Let (i, Jo) be such a pair for
which (a) r;, and bj, are incident to the same portal component C, and (b) f(io, jo) < ¢/2—1
but is maximum. By Claim 1, we infer that r; and b; are always incident to the same portal
component and that f(1,1) = 0. Hence, such a pair (ig, jo) is well defined. Let r = r;, and
b="0,,. As r and b are incident to the same portal component, property (i) is satisfied. To
prove property (ii), we need the following claim:

Claim 2. f(i07j0) > €/2 — 2.

Assume otherwise, i.e. f(ig,jo) < ¥¢/2—3. If ig =t and jo = s, then f(ig,jo) >¢—2 >
¢/2 — 3, a contradiction. If 49 < ¢ and r; 41 is incident to the same portal component as r
and b, then we have that f(ig + 1,j0) < ¢/2 — 1, which is a contradiction with the choice of
(%0, jo). An analogous contradiction occurs if jo < s and bj,4+1 is incident to the same portal
component as 7 and b. Now note that if igp = ¢ and jo < s, then by Claim 1 portal b; 41 is
incident to the same portal component as r and b, which, as observed, gives a contradiction.
Similarly we exclude the case when jyo = s and iy < t. Therefore iy < ¢, jo < s, and both r;, 11
and bj,+1 do not belong to the same portal component as r and b. By Claim 1, r;,4; and
bj,+1 are incident to the same portal component. As f(io+1,jo+1) < f(io,jo)+2 < /21,
this contradicts the choice of (4o, jo) and settles Claim 2.

We now prove that property (ii) is satisfied. Let P be any path in H between r and b
that avoids OH apart from the endpoints. Consider the brick with perimeter 0H|[r,b] U P
and observe that all the portals in the interior of OH|[r, b] are still portals in this brick. As
fio,jo) > £/2 — 2, this brick has at least £/2 — 2 portals. Similarly, all the portals in the
interior of OH [b,r] are still portals in the brick with perimeter 0H[b,r] U P. Hence, this
brick also has at least £ — f(ig,j0) —2> ¢ — (¢{/2—1) —2 > {/2 — 2 portals. <

Note that £/2 — 2 = w(1), so we can assume that vertices r, b given by Lemma 7 are distinct
from each other. Hence, the obtained decomposition is non-degenerate.
Using Lemma 7, we can give the branching strategy.

» Lemma 8. There exists an algorithm that, given an instance (G, S, k) of PLANAR STEINER
TREE, the tree Tope, and the graph G', in time O(ko(”) n) outputs a sequence D1,Da, ..., Dy
of strip decompositions of G such that the following properties hold:
(i) t=kO®;
(ii) each decomposition consists of at most O(k?p) strips of perimeter at most O(k?) each,
and no terminal lies in the interior of any strip;
(iii) if (G,S,k) is a YES-instance, then there is a decomposition D; such that all the strips of
D; are light with respect to T(D;).
The working space of the algorithm, excluding the output decompositions, is polynomial.

Proof. We follow a recursive branching procedure. At depth d of the recursive procedure
we maintain a strip decomposition D with following properties: D consists of at most
O(dk(d + k)) strips of perimeter at most 2k? + dk each, and no terminal lies in the interior
of any strip. Moreover, at depth d we branch into at most O(dk3(d + k)3) branches. Finally,
we show that it suffices to run the branching to a depth of at most 8p. Hence, as p = o(k),
the total number of produced decompositions is bounded by t = k€@,

361

STACS’13

362

Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs

First, we need to provide a starting decomposition at the 0-th level of the recursion. We
start with a single brick G — that is, the entire graph G with its outer face (the Euler
tour of Ty,p;) as the perimeter. Recall that the size of Ty, is bounded by k2, and thus the
perimeter of G is at most 2k2. We apply Lemma 3 to this brick in order to obtain some
strip decomposition Dy of G. This decomposition consists of at most 2k? strips, each having
perimeter at most 2k2. As all the terminals lie on the perimeter of CA{ no terminal lies inside
any strip of Dy. This decomposition is the initial one for the branching procedure.

We now describe the operations performed on level d of the recursion. We do the following;:

output the current decomposition D as the next D;;

branch on each H,r, b, where H is a strip of D with R, B being the red and the blue path

of OH, respectively, and r € V(R),b € V(B) are vertices that can be connected via a

path P (chosen arbitrarily) of length at most k that avoids OH apart from the endpoints.

For each such H, r, b, divide H into bricks with perimeters 0H [r,b]U P and OH[b,r]U P,

and apply Lemma 3 to decompose both bricks into strips. Proceed with the in total

O(dk(d + k) - (k(d + k))?) obtained decompositions to the next level of the recursion.
Observe that if |0H| < 2k?+dk, then both bricks created in the initial division have perimeter
at most 2k% + (d + 1)k, as |P| < k. Applying Lemma 3 cannot create strips with longer
perimeter, and increases the number of strips in the decomposition by at most 4k2 +2(d+1)k.
Hence, the O(dk(d + k)) bound on the number of strips on level d of the recursion holds. As
all the obtained decompositions only refine the initial one, in all the subcases no terminal
will lie inside any strip.

We now analyse the running time of the algorithm. Note that finding the path P for
a given strip H and vertices r € V(R),b € V(B) boils down to finding a shortest path in
an appropriate subgraph of the graph G’, which can be done in O(n) time. As we output
O(k®®) decompositions, the bound on the running time follows.

It remains to prove that if we perform 8p levels of the branching procedure, then property
(iii) will hold. We do this by examining the change of the potential ®(D, T (D)) during the
branching procedure.

Claim 1. Let D be the decomposition at some step of the branching procedure, such that
strip H € D, where R, B are the red and blue paths of 0H, respectively, is heavy with
respect to T'(D). Let r € V(R) and b € V(B) be the vertices whose existence is asserted by
Lemma 7. Then in the branch of H, r, and b the potential decreases by at least 1/2.

Let D’ be the strip decomposition after performing the aforementioned branching.
We prove a slightly stronger claim, namely that ®(D',T(D)) < ®(D,T(D)) — 1/2. As
(D', T(D")) < ®(D',T(D)) by the definition of T'(D’), this implies Claim 1.

We consider three cases. First assume that all the strips created when constructing D’
from D are in fact light with respect to T'(D). Then the first term in the potential function
decreases by at least 2, as every heavy brick has more than k/(2p) edges from T'(D) in the
interior, while the second term increases by 1. Hence the potential decreases by at least 1.

Second, assume that exactly one created strip Hy is heavy. Without loss of generality
assume that this strip was obtained while decomposing the brick with perimeter H|[r,b] U P.
By Lemma 7, the brick with perimeter OH[b,r] U P has at least k/(2p) — 2 > k/(4p) portals;
here we use the bound k > 8p that holds for large enough k due to p = o(k). Hence, it
has at least k/(8p) edges from T'(D) in the interior. Therefore, the brick with perimeter
OH|[r,b] U P has at least k/(8p) edges from T'(D) fewer in the interior than H. The strip
Hj can only have fewer edges from T'(D) in the interior, so the first term of the potential
function decreases by at least 1/2. As the second term is unchanged, this settles this case.

Finally, assume that at least two created strips are heavy. Then the first term of the

M. Pilipczuk, M. Pilipczuk, O. Sankowski, and E. J. v. Leeuwen

potential function cannot increase, as every edge of T'(D) in the interior of the created heavy
strips was already in the interior of the heavy strip H, while the second term decreases by at
least 1. Hence the potential decreases by at least 1 in this case. This settles Claim 1.

Since the potential initially is at most 4p, and Claim 1 proves that the potential decreases
by at least 1/2 in one of the branches, it suffices to branch to at most 8p levels deep to
ensure that we find a decomposition D; for which ®(D;, T(D;)) = 0. As observed before, this
implies that all strips of D; are light with respect to T(D;). This proves property (iii). <«

We are ready to prove the main result of this paper.

» Theorem 9. The PLANAR STEINER TREE problem can be solved in (9(20((k1°gk)2/3) n)
time and polynomial space.

Proof. We start by constructing the approximate solution 75, and the graph G in O(n)
time. Then, we run the algorithm given by Lemma 8 and to each output decomposi-
tion we apply Lemma 6. The correctness of the algorithm follows from property (iii) in
the statement of Lemma 8, while the claim on the running time follows from the fact
that to at most O(k®®) = (9(20((’“0“)2/3)) instances we apply an algorithm running
in 020 (F*1ogk)/p)) — (20 ((klog %) n) time. The polynomial space bound can be
achieved by applying Lemma 6 to each output decomposition once it is fully constructed. <«

5 Conclusions and open problems

Although our result positively answers the question whether a subexponential-time paramet-
erized algorithm for PLANAR STEINER TREE exists, it raises many new open questions.

We first ask whether our algorithm can be improved. We can show that PLANAR STEINER
TREE cannot have a (’)(20(‘/@ n®M))-time algorithm unless the Exponential Time Hypothesis
is false, using the standard NP-hardness reduction from CONNECTED VERTEX COVER. It
seems reasonable to think that the right upper bound is (’)(20(‘/E) n®M). Such an algorithm

— up to a logarithmic factor in the exponent — follows immediately if PLANAR STEINER
TREE would admit a polynomial kernel. We conjecture that such a kernel indeed exists.

Apart from the parameterization by the size of the tree investigated in this paper, there
is a second natural parameterization of the STEINER TREE problem, namely by |S|, the
number of terminals. Recall that on general graphs the O(2/5/n®(M)-time algorithm due to
Nederlof [21] is probably optimal [7]. Our techniques seem to break down on this stronger
parameterization. Does PLANAR STEINER TREE admit a subexponential-time algorithm
with respect to the number of terminals in the instance?

Another interesting direction is to try to generalize our algorithm to the closely related
PLANAR STEINER FOREST problem. With a bit of simple preprocessing, we can obtain an
analogue of the approximate tree Ty, and construct the cut-open graph G. Using this graph,
we may perform the same branching procedure as in Lemma 8, and obtain a subexponential
number of subexponential kernels for this problem. However, the last step of the algorithm —
Tazari’s algorithm [22] based on Baker’s approach [1] — breaks down, as STEINER FOREST
is NP-hard on graphs of treewidth 3 [2, 16]. Thus, one needs significantly new ideas to turn
a subexponential kernel into a subexponential algorithm for this problem.

Last but not least, we mention that Borradaile et al. [4] did some work on lifting the
brick and strip decomposition to graphs of bounded genus. It may therefore be interesting
whether our algorithm can also be extended to such graphs.

Acknowledgments
The authors thank Fedor Fomin, M.S. Ramanujan, and Marek Cygan for helpful discussions.

363

STACS’13

364

Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs

—— References

1

10

11
12

13

14

15

16

17

18

19

20

21

22

23

24

B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J.
ACM, 41(1):153-180, 1994.

M. Bateni, M. T. Hajiaghayi, and D. Marx. Approximation schemes for Steiner forest on
planar graphs and graphs of bounded treewidth. J. ACM, 58(5):21, 2011.

M. W. Bern and P. E. Plassmann. The Steiner problem with edge lengths 1 and 2. Inf.
Process. Lett., 32(4):171-176, 1989.

G. Borradaile, E. D. Demaine, and S. Tazari. Polynomial-time approximation schemes for
subset-connectivity problems in bounded-genus graphs. In STACS, pages 171-182, 20009.
G. Borradaile, P. N. Klein, and C. Mathieu. An O(nlogn) approximation scheme for
Steiner tree in planar graphs. ACM Transactions on Algorithms, 5(3), 2009.

J. Byrka, F. Grandoni, T. Rothvof}, and L. Sanita. An improved LP-based approximation
for Steiner tree. In L. J. Schulman, editor, STOC, pages 583-592. ACM, 2010.

M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Paturi, S. Saur-
abh, and M. Wahlstrom. On problems as hard as CNF-SAT. In IEEE Conference on
Computational Complexity, pages 74-84. IEEE, 2012.

E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Subexponential
parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM,
52(6):866-893, 2005.

R. Diestel. Graph Theory. Springer, 2005.

M. Dom, D. Lokshtanov, and S. Saurabh. Incompressibility through colors and IDs. In
ICALP (1), pages 378-389, 2009.

R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

R. E. Erickson, C. L. Monma, and A. F. J. Veinott. Send-and-split method for minimum-
concave-cost network flows. Mathematics of Operations Research, 12(4):pp. 634-664, 1987.
J. Flum and M. Grohe. Parameterized Complezity Theory. Texts in Theoretical Computer
Science. Springer, 2006.

F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidimensionality and kernels.
In M. Charikar, editor, SODA, pages 503-510. STAM, 2010.

M. R. Garey and D. S. Johnson. The Rectilinear Steiner Tree problem is NP complete.
SIAM Journal of Applied Mathematics, 32:826-834, 1977.

E. Gassner. The Steiner forest problem revisited. J. Discrete Algorithms, 8(2):154-163,
2010.

R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential com-
plexity? J. Comput. Syst. Sci., 63(4):512-530, 2001.

R. Karp. On the computational complexity of combinatorial problems. Networks, 5:45—68,
1975.

P. N. Klein. A subset spanner for planar graphs, with application to Subset TSP. In J. M.
Kleinberg, editor, STOC, pages 749-756. ACM, 2006.

K. Mehlhorn. A faster approximation algorithm for the Steiner problem in graphs. Inf.
Process. Lett., 27(3):125-128, 1988.

J. Nederlof. Fast polynomial-space algorithms using Mébius inversion: Improving on Steiner
Tree and related problems. In ICALP (1), pages 713-725, 2009.

S. Tazari. Faster approximation schemes and parameterized algorithms on H-minor-free
and odd-minor-free graphs. In MFCS, pages 641-652, 2010.

P. Widmayer. On approximation algorithms for Steiner’s problem in graphs. In G. Tinhofer
and G. Schmidt, editors, WG, volume 246 of LNCS, pages 17-28. Springer, 1986.

Y.-F. Wu, P. Widmayer, and C. K. Wong. A faster approximation algorithm for the Steiner
problem in graphs. Acta Inf., 23(2):223-229, 1986.

	Introduction
	Preliminaries
	Parameterized complexity

	Bricks and strip decompositions
	A subexponential-time parameterized algorithm
	Light strip decompositions
	A branching algorithm to obtain a light strip decomposition

	Conclusions and open problems

