2,639 research outputs found

    Development of Sensor Technology & Maintenance Concepts for Corrosion-Related Maintenance

    Get PDF

    A handheld high-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays

    Get PDF
    We report a micro-nuclear magnetic resonance (NMR) system compatible with multi-type biological/chemical lab-on-a-chip assays. Unified in a handheld scale (dimension: 14 x 6 x 11 cm³, weight: 1.4 kg), the system is capable to detect<100 pM of Enterococcus faecalis derived DNA from a 2.5 μL sample. The key components are a portable magnet (0.46 T, 1.25 kg) for nucleus magnetization, a system PCB for I/O interface, an FPGA for system control, a current driver for trimming the magnetic (B) field, and a silicon chip fabricated in 0.18 μm CMOS. The latter, integrated with a current-mode vertical Hall sensor and a low-noise readout circuit, facilitates closed-loop B-field stabilization (2 mT → 0.15 mT), which otherwise fluctuates with temperature or sample displacement. Together with a dynamic-B-field transceiver with a planar coil for micro-NMR assay and thermal control, the system demonstrates: 1) selective biological target pinpointing; 2) protein state analysis; and 3) solvent-polymer dynamics, suitable for healthcare, food and colloidal applications, respectively. Compared to a commercial NMR-assay product (Bruker mq-20), this platform greatly reduces the sample consumption (120x), hardware volume (175x), and weight (96x)

    Advanced Energy Harvesting Technologies

    Get PDF
    Energy harvesting is the conversion of unused or wasted energy in the ambient environment into useful electrical energy. It can be used to power small electronic systems such as wireless sensors and is beginning to enable the widespread and maintenance-free deployment of Internet of Things (IoT) technology. This Special Issue is a collection of the latest developments in both fundamental research and system-level integration. This Special Issue features two review papers, covering two of the hottest research topics in the area of energy harvesting: 3D-printed energy harvesting and triboelectric nanogenerators (TENGs). These papers provide a comprehensive survey of their respective research area, highlight the advantages of the technologies and point out challenges in future development. They are must-read papers for those who are active in these areas. This Special Issue also includes ten research papers covering a wide range of energy-harvesting techniques, including electromagnetic and piezoelectric wideband vibration, wind, current-carrying conductors, thermoelectric and solar energy harvesting, etc. Not only are the foundations of these novel energy-harvesting techniques investigated, but the numerical models, power-conditioning circuitry and real-world applications of these novel energy harvesting techniques are also presented

    Growth and Oxidation of Graphene and Two-Dimensional Materials for Flexible Electronic Applications

    Get PDF
    The non-volatile storage of information is becoming increasingly important in our data-driven society. Limitations in conventional devices are driving the research and development of incorporating new materials into conventional device architectures to improve performance, as well as developing an array of emerging memory technologies based on entirely new physical processes. The discovery of graphene allowed for developing new approaches to these problems, both itself and as part of the larger, and ever-expanding family of 2D materials. In this thesis the growth and oxidation of these materials is investigated for implementing into such devices, exploiting some of the unique properties of 2D materials including atomic thinness, mechanical flexibility and tune-ability through chemical modification - to meet some challenges facing the community. This begins with the growth of graphene by chemical vapour deposition for a high quality flexible electrode material, followed by oxidation of graphene for use in resistive memory devices. The theme of oxidation is then extended to another 2D material, HfS2, which is selectively oxidised for use as high-k dielectric in Van der Waals heterostructures for FETs and resistive memory devices. Lastly, a technique for fabrication of graphene-based devices directly on the copper growth substrate is demonstrated for use in flexible devices for sensing touch and humidity

    An Amphiphilic Pyridinoyl-hydrazone Probe for Colorimetric and Fluorescence pH Sensing

    Get PDF
    A new pH sensor based on a substituted aroylhydrazide with a flexible side chain and a terminal trimethyl ammonium group (PHA+) was designed and synthesized. The terminal quaternary ammonium guarantees excellent solubility in water. At the same time, the probe is very soluble in hydrophobic envirornments. The pyridinoyl-hydrazone moiety acts as the pH-sensitive fluorophore/chromophore probe. Extensive physicochemical characterization has been performed on the bromide salt PHABr. DFT calculations, based on single-crystal X-ray data, permitted to rationalize the optical behavior. Molecular dynamics simulations permitted to clarify the mode of interaction with lipid membrane. The ability of the probe to change color and fluorescence in response to different pH and media of different polarity has been investigated. PHABr shows a remarkable pH-dependent behavior in both absorption and fluorescence spectra with high sensitivity and strong on-off switch effect at neutral pH, perceptible even to the naked eye

    Diseño y caracterización de estructuras resonantes y estrategias de concentración avanzada aplicadasa dispositivos fotónicos

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Óptica, leída el 23-09-2020Efficient low-cost optoelectronic devices are used for many applications, for example, energy production, and sensing. The development of these devices can be step-forward using nanophotonic and nanoplasmonic structures. In this dissertation we propose, design, and analyze several nanostructures to improve the performance of these devices. For energy applications, we select amorphous silicon hydrogenated, and perovskite/crystallinesilicon tandem solar cells. We choose amorphous silicon solar cells because this material is abundant, non-toxic, long-life compared to organic solar cells, and can be fabricated at a low cost. The tandem perovskite/crystalline silicon solar cells are devices with potential power conversion efficiency > 30 %. Our designs are based on dielectric nanostructures. We applied a 1D nanostructure array to the top and bottom of amorphous silicon hydrogenated solar cells, in two separate designs. The absorption enhancement within the auxiliary layers of these devices is dissipated as heat and partially mitigate the defects resulted from the Staebler Wronski effect. A metasurface in the form of multilayer gratings embedded in the active layer of the perovskite top cell of the tandem device, improves the absorption efficiency in the whole device. A sawtooth periodic back texture has been optimized and tested to work with the metasurfacef or further improvement of the device performance. These nanostructures are arranged to maximize the absorption efficiency of the selected solar cells, mainly by reducing their total reflectance. The analysis and calculations are completed by modeling the conditions of the sun illumination, i.e, unpolarized light, and oblique incidence. The performance of the devices is calculated under these conditions...Los dispositivos optoelectrónicos eficientes y de bajo coste se utilizan en muchas aplicaciones. Por ejemplo, en la producción de energía y en sensores. La incorporacion de estructuras nanofotónicas y nanoplasmónicas es un paso adelante en el desarrollo de estos dispositivos. En esta tesis doctoral proponemos, diseñamos y analizamos varias nano-estructuras que mejoran el rendimiento de estos dispositivos. En aplicaciones para energía, hemos selecionado células de silicio amorfo hidrogenado, y células tándem de perovskitas y silicio cristalino. Hemos elegido las células solares de silicio cristalino porque es un material abundante, no tóxico, de larga vida comparada con las células orgánicas y fabricadas a bajo coste. Las células tándem perovskita/silicio cristalino son dispositivos con eficiencias de conversión superiores al 30 %. Nuestros diseños están basados en nano-estructuras dieléctricas. Hemos aplicado una nano-estructura periódica 1D a la superficie anterior y posterior de células solares de silicio amorfo hidrogenado en dos diseños separados. El aumento de la absorción en las capas auxiliares de estas células se disipa como calor y mitiga parcialmente los defectos producidos por el efecto Staebler-Wronski. Una metasuperficie hecha con redes apiladas en capas incluidas en las capa activa de la porción superior de una célula tándem mejora la eficiencia de absorción de todo el dispositivo...Fac. de Ciencias FísicasTRUEunpu

    Design, development and characterization of nanostructured electrochemical sensors

    Get PDF
    This is a publication-based thesis which focuses on the study of electrochemical microbiosensors for glucose detection. It investigates applications of a series of microfabricated gold electrodes based on several nanostructures in electrochemical biosensing technologies, embracing three major methodologies: direct electro-catalytic detection, enzymatic detection and dual-enzyme cascade detection. The study is described over five main chapters with a sixth providing a summary of the material presented and perspectives for the future. Chapter 1 provides an introduction to the field of the electrochemical biosensors with a specific focus on the chosen nanostructures and miniaturized systems, as well as a brief history of the biosensor. Chapter 2 presents results published in ACS Applied Nanomaterials, 2019, 2, 9, 5878-5889. It demonstrates the enzyme free detection of glucose via a direct electro-catalytic reaction. The miniaturized band array electrodes with specific width, length and inter-electrode-distance were integrated with homogeneously distributed copper foam nano dendrites. Such foam deposits presented for the first time at the micro scale were achieved using the in-situ hydrogen bubble template method. The resulting very high electroactive surface area of the porous foam deposits was one of the major advantages in terms of achieving superior performance from each micro band foam electrode towards glucose detection. Moreover, both sensors also showed a strong resistance to the poisoning effects of chloride ions and displayed excellent stability over a period of three months.Chapter 3 presents the first of t wo sets of results for the enzymatic detection of glucose, results published in Elsevier Electrochimica Acta, 2019, 293, 307-317. Chapter 4 then presents the second set of results on this topic which is published in and Elsevier Electrochimica Acta, 2019, 298, 97-105. The aim of these two chapters is to discuss the effect of miniaturization on the enzymatic biosensor performance which was studied in the presence of a carbon quantum dot (CQD) and gold nanoparticle nanohybrid system. CQDs, are a new class of carbon-based materials and have been used here for the first time as a matrix component integrated onto microfabricated gold electrode surfaces for enzyme immobilization and further miniaturization. The biosensors developed were studied by electrochemistry to investigate the analytical performance of each device. By scaling down the surface area of the biosensor, a 13-times increase in sensitivity was achieved towards glucose. Moreover both sensors-planar, micro disk array- exhibited excellent reproducibility, reusability and operational stability in terms of the performance of biosensors. Chapter 5 presents results published in RSC Analyst, 2020 (DOI: 10.1039/C9AN01664C). It demonstrates the operation of a dual-enzyme cascade which was constructed onto a micro band array electrode based on glucose oxidase and horseradish peroxidase enzymes. To achieve a very high surface area, a porous gold-foam was electrodeposited onto surface and then a second electrodeposition layer of chitosan and multi walled carbon nanotube nano-bio-composite. The micro band cascade scheme developed exhibited the highest sensitivity towards glucose detection in comparison to other systems reported in the literature. Chapter 6 provides an insight into the field of electrochemical biosensing with the support of the achievements presented in this thesis. Thus, by taking advantage of the available system, this chapter discusses the possible future applications of the electrochemical biosensors. The thesis then ends with section 7 which presents some Appendices

    First-Principles Density Functional Theory Study of Novel Materials for Solar Energy Conversion and Environment Applications

    Get PDF
    To design an efficient solar energy conversion device, theoretical input is extremely important to provide the basic guideline for experimental scientists, to fabricate the most efficient, cheap, and stable device with less efforts. This desire can be made possible if computational scientist use a proper theoretical protocol, design an energy material, then the experimentalist will only invest weeks or months on the synthetic effort. This thesis highlights my recent efforts in this direction. Monoclinic BiVO4 is has been using as a photocatalyst due to its stability, cheap, easily synthesizable, narrow band gap and ideal VB (-6.80 eV vs vacuum) but inappropriate CB (-4.56 eV vs vacuum) edge position, responsible for its low efficiency. We have carried out a comprehensive experimental and periodic density functional theory (DFT) simulations of the pristine, Oxygen defective (Ov), Se doped monoclinic BiVO4 and heterojunction with Selenium (Se-BiVO4), to improve not only its CB edge position but photocatalytic and charge carrier properties. It is found that Ov (1% Oxygen vacancy) and mild doped BiVO4 (1 to 2% Se) are thermodynamically stable, have ideal band edges ~ -4.30 eV), band gaps (~1.96 eV), and small effective masses of electrons and holes. We have also investigated the contribution of Se to higher performance by effecting morphology, light absorption and charge transfer properties in heterojunction. Finally, it is found that Se makes a direct Z-scheme (band alignments) with BiVO4 where the photoexcited electron of BiVO4 recombine with the VB of Se, consequences electron-hole separation at Se and BiVO4, respectively, as a result, enhanced photocurrent is obtained. Theoretical study of β-TaON in the form of primitive unit cell, supercell and its N, Ta, and O terminated surfaces are carried out with the help of periodic DFT. Optical and electronic properties of all these different species are simulated, which predict TaON as the best candidate for photocatalytic water splitting contrast to their Ta2O5 and Ta3N5 counterparts. The calculated bandgap, valence band, and conduction band edge positions predict that β-TaON should be an efficient photoanodic material. The valence band is made up of N 2p orbitals with a minor contribution from O 2p, while the conduction band is made up of Ta 5d. Turning to thin films, the valence band maximum; VBM (−6.4 eV vs. vacuum) and the conduction band minimum; CBM (−3.3 eV vs. vacuum) of (010)-O terminated surface are respectively well below and above the redox potentials of water as required for photocatalysis. Charge carriers have smaller effective masses than in the (001)-N terminated film (VBM −5.8 and CBM −3.7 eV vs. vacuum). However, due to wide band gap (3.0 eV) of (010)-O terminated surface, it cannot absorb visible wavelengths. On the other hand, the (001)-N terminated TaON thin film has a smaller band gap in the visible region (2.1 eV) but the bands are not aligned to the redox potential of water. Possibly a mixed phase material would produce an efficient photoanode for solar water splitting, where one phase performs the oxidation and the other reduction. Computational study of an optically transparent, near-infrared-absorbing low energy gap conjugated polymer, donor−acceptor−donor (D-A-D) with promising attributes for photovoltaic application is reported herein. The D and A moiety on the polymeric backbone have been found to be responsible for tuning the band gap, optical gap, open circuit (Voc) and short-circuit current density (Jsc) in the polymers solar cells (PSC). Reduction in the band gap, high charge transformation, and enhanced visible light absorption in the D-A-D system is because of strong overlapping of molecular orbitals of D and A. In addition, the enhanced planarity and weak steric hindrance between adjacent units of D-A-D, resulted in red-shifting of its onset of absorption. Finally, PSC properties of the designed D-A-D was modeled in the bulk heterojunction solar cell, which gives theoretical Voc of about 1.02 eV. DFT study has been carried out to design a new All-Solid-State dye-sensitized solar cell (SDSC), by applying a donor-acceptor conjugated polymer instead of liquid electrolyte. The typical redox mediator (I1−/I3−) is replaced with a narrow band gap, hole transporting material (HTM). A unique “upstairs” like band energy diagram is created by packing N3 between HTM and TiO2. Our theoretical simulations prove that the proposed configuration will be highly efficient as the HOMO level of HTM is 1.19 eV above the HOMO of sanitizer (dye); providing an efficient pathway for charge transfer. High short-circuit current density and power conversion efficiency is promised from the strong overlapping of molecular orbitals of HTM and sensitizer. A low reorganization energy of 0.21 eV and exciton binding energy of 0.55 eV, confirm the high efficiency of HTM. Theoretical and experimental studies of a series of four porphyrin-furan dyads were designed and synthesized, having anchoring groups, either at meso-phenyl or pyrrole-β position of a zinc porphyrin based on donor–π–acceptor (D–π–A) approach. The porphyrin macrocycle acts as donor, furan hetero cycle acts as π-spacer and either cyanoacetic acid or malonic acid group acts as acceptor. Optical bandgap, natural bonding, and molecular bonding orbital (HOMO–LUMO) analysis confirm the high efficiency pyrrole-β substituted zinc porphyrins contrast to meso-phenyl dyads. DFT study of polypyrrole-TiO2 composites has been carried out to explore their optical, electronic and charge transfer properties for the development of an efficient photocatalyst. Titanium dioxide (Ti16O32) was interacted with a range of pyrrole (Py) oligomers to predict the optimum composition of nPy-TiO2 composite with suitable band structure for efficient photocatalytic properties. The study has revealed that Py-Ti16O32 composites have narrow band gap and better visible light absorption capability compared to individual constituents. A red-shifting in λmax, narrowing band gap, and strong intermolecular interaction energy (-41 to −72 kcal/mol) of nPy-Ti16O32 composites confirm the existence of strong covalent type interactions. Electron−hole transferring phenomena are simulated with natural bonding orbital analysis where Py oligomers found as donor and Ti16O32 as an acceptor in nPy-Ti16O32 composites. Sensitivity and selectivity of polypyrrole (PPy) towards NH3, CO2 and CO have been studied at DFT. PPy oligomers are used both, in the doped (PPy+) and neutral (PPy) form, for their sensing abilities to realize the best state for gas sensing. Interaction energies and amount of charges (NBO and Mulliken charge analysis) are simulated which reveal the sensing ability of PPy towards these gases. PPy, both in doped and neutral state, is more sensitive to NH3 compared to CO2 and CO. More interestingly, NH3 causes doping of PPy and de-doping of PPy+, providing evidence that PPy/PPy+ is an excellent sensor for NH3 gas. UV-vis and UV-vis-near-IR spectra of nPy, nPy+, and nPy/nPy+-X complexes demonstrate strong interaction of PPy/PPy+ with these atmospheric gases. The applications of graphene (GR) and its derivatives in the field of composite materials for solar energy conversion, energy storage, environment purification and biosensor applications have been reviewed. The vast coverage of advancements in environmental applications of GR-based materials for photocatalytic degradation of organic pollutants, gas sensing and removal of heavy metal ions is presented. Additionally, the presences of graphene composites in the bio-sensing field have been also discussed in this review.College Funded University of Exeter, U
    corecore